Geometrically nonlinear oscillations are investigated on sigmoid functionally graded material (S-FGM) plates with a longitudinal speed. The material properties of the plates obey a sigmoid distribution rule along th...Geometrically nonlinear oscillations are investigated on sigmoid functionally graded material (S-FGM) plates with a longitudinal speed. The material properties of the plates obey a sigmoid distribution rule along the thickness direction. Based on the D'Alembert's principle, a nonlinear equation of motion is derived for the moving S-FGM plates, where the von K^rm^n nonlinear plate theory is adopted. Utilizing the Galerkin method, the equation of motion is discretized and solved via the method of harmonic bal- ance. The approximate analytical solutions are validated through the adaptive step-size fourth-order Runge-Kutta method. Besides, the stability of the steady-state solutions is examined. The results reveal that the mode interaction behavior can happen between the first two modes of the moving S-FGM plates, leading to a complex nonlinear frequency response. It is further found that the power-law index, the longitudinal speed, the exci- tation amplitude, and the in-plane pretension force can significantly affect the nonlinear frequency-response characteristics of longitudinally traveling S-FGM plates.展开更多
Based on von Karman's plate theory, the axisymmetric thermal buckling and post-buckling of the functionally graded material (FGM) circular plates with in- plane elastic restraints under transversely non-uniform tem...Based on von Karman's plate theory, the axisymmetric thermal buckling and post-buckling of the functionally graded material (FGM) circular plates with in- plane elastic restraints under transversely non-uniform temperature rise are studied. The properties of the FGM media are varied through the thickness based on a simple power law. The governing equations are numerically solved by a shooting method. The results of the critical buckling temperature, post-buckling equilibrium paths, and configurations for the in-plane elastically restrained plates are presented. The effects of the in-plane elastic restraints, material property gradient, and temperature variation on the responses of thermal buckling and post-buckling are examined in detail.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11672071,11302046,and 11672072)the Fundamental Research Funds for the Central Universities(No.N150504003)
文摘Geometrically nonlinear oscillations are investigated on sigmoid functionally graded material (S-FGM) plates with a longitudinal speed. The material properties of the plates obey a sigmoid distribution rule along the thickness direction. Based on the D'Alembert's principle, a nonlinear equation of motion is derived for the moving S-FGM plates, where the von K^rm^n nonlinear plate theory is adopted. Utilizing the Galerkin method, the equation of motion is discretized and solved via the method of harmonic bal- ance. The approximate analytical solutions are validated through the adaptive step-size fourth-order Runge-Kutta method. Besides, the stability of the steady-state solutions is examined. The results reveal that the mode interaction behavior can happen between the first two modes of the moving S-FGM plates, leading to a complex nonlinear frequency response. It is further found that the power-law index, the longitudinal speed, the exci- tation amplitude, and the in-plane pretension force can significantly affect the nonlinear frequency-response characteristics of longitudinally traveling S-FGM plates.
基金Project supported by the National Natural Science Foundation of China(Nos.11272278 and11672260)the China Postdoctoral Science Foundation(No.149558)
文摘Based on von Karman's plate theory, the axisymmetric thermal buckling and post-buckling of the functionally graded material (FGM) circular plates with in- plane elastic restraints under transversely non-uniform temperature rise are studied. The properties of the FGM media are varied through the thickness based on a simple power law. The governing equations are numerically solved by a shooting method. The results of the critical buckling temperature, post-buckling equilibrium paths, and configurations for the in-plane elastically restrained plates are presented. The effects of the in-plane elastic restraints, material property gradient, and temperature variation on the responses of thermal buckling and post-buckling are examined in detail.