Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore th...Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore the dynamic behaviors of an FGM stepped beam with different boundary conditions based on an efficient solving method.Under the assumptions of the Euler-Bernoulli beam theory,the governing differential equations of an individual FGM beam are derived with Hamilton’s principle and decoupled via the separation-of-variable approach.Then,the free and forced vibrations of the FGM stepped beam are solved with the transfer matrix method(TMM).Two models,i.e.,a three-level FGM stepped beam and a five-level FGM stepped beam,are considered,and their natural frequencies and mode shapes are presented.To demonstrate the validity of the method in this paper,the simulation results by ABAQUS are also given.On this basis,the detailed parametric analyses on the frequencies and dynamic responses of the three-level FGM stepped beam are carried out.The results show the accuracy and efficiency of the TMM.展开更多
Free vibration response of functionally graded material (FGM) beams is studied based on the Levinson beam theory (LBT). Equations of motion of an FGM beam are derived by directly integrating the stress-form equati...Free vibration response of functionally graded material (FGM) beams is studied based on the Levinson beam theory (LBT). Equations of motion of an FGM beam are derived by directly integrating the stress-form equations of elasticity along the beam depth with the inertial resultant forces related to the included coupling and higherorder shear strain. Assuming harmonic response, governing equations of the free vibration of the FGM beam are reduced to a standard system of second-order ordinary differential equations associated with boundary conditions in terms of shape functions related to axial and transverse displacements and the rotational angle. By a shooting method to solve the two-point boundary value problem of the three coupled ordinary differential equations, free vibration response of thick FGM beams is obtained numerically. Particularly, for a beam with simply supported edges, the natural frequency of an FGM Levinson beam is analytically derived in terms of the natural frequency of a corresponding homogenous Euler-Bernoulli beam. As the material properties are assumed to vary through the depth according to the power-law functions, the numerical results of frequencies are presented to examine the effects of the material gradient parameter, the length-to-depth ratio, and the boundary conditions on the vibration response.展开更多
Free vibration of statically thermal postbuckled functionally graded material (FGM) beams with surface-bonded piezoelectric layers subject to both temperature rise and voltage is studied. By accurately considering t...Free vibration of statically thermal postbuckled functionally graded material (FGM) beams with surface-bonded piezoelectric layers subject to both temperature rise and voltage is studied. By accurately considering the axial extension and based on the Euler-Bernoulli beam theory, geometrically nonlinear dynamic governing equations for FGM beams with surface-bonded piezoelectric layers subject to thermo-electro- mechanical loadings are formulated. It is assumed that the material properties of the middle FGM layer vary continuously as a power law function of the thickness coordinate, and the piezoelectric layers are isotropic and homogenous. By assuming that the amplitude of the beam vibration is small and its response is harmonic, the above mentioned non-linear partial differential equations are reduced to two sets of coupled ordinary differential equations. One is for the postbuckling, and the other is for the linear vibration of the beam superimposed upon the postbuckled configuration. Using a shooting method to solve the two sets of ordinary differential equations with fixed-fixed boundary conditions numerically, the response of postbuckling and free vibration in the vicinity of the postbuckled configuration of the beam with fixed-fixed ends and subject to transversely nonuniform heating and uniform electric field is obtained. Thermo-electric postbuckling equilibrium paths and characteristic curves of the first three natural frequencies versus the temperature, the electricity, and the material gradient parameters are plotted. It is found that the three lowest frequencies of the prebuckled beam decrease with the increase of the temperature, but those of a buckled beam increase monotonically with the temperature rise. The results also show that the tensional force produced in the piezoelectric layers by the voltage can efficiently increase the critical buckling temperature and the natural frequency.展开更多
The exact relationship between the bending solutions of functionally graded material (FGM) beams based on the Levinson beam theory and those of the correspond- ing homogenous beams based on the classical beam theory...The exact relationship between the bending solutions of functionally graded material (FGM) beams based on the Levinson beam theory and those of the correspond- ing homogenous beams based on the classical beam theory is presented for the material properties of the FGM beams changing continuously in the thickness direction. The de- flection, the rotational angle, the bending moment, and the shear force of FGM Levinson beams (FGMLBs) are given analytically in terms of the deflection of the reference ho- mogenous Euler-Bernoulli beams (HEBBs) with the same loading, geometry, and end supports. Consequently, the solution of the bending of non-homogenous Levinson beams can be simplified to the calculation of transition coefficients, which can be easily deter- mined by variation of the gradient of material properties and the geometry of beams. This is because the classical beam theory solutions of homogenous beams can be eas- ily determined or are available in the textbook of material strength under a variety of boundary conditions. As examples, for different end constraints, particular solutions are given for the FGMLBs under specified loadings to illustrate validity of this approach. These analytical solutions can be used as benchmarks to check numerical results in the investigation of static bending of FGM beams based on higher-order shear deformation theories.展开更多
Large deformation of a cantilever axially functionally graded (AFG) beam subject to a tip load is analytically studied using the homotopy analysis method (HAM). It is assumed that its Young’s modulus varies along the...Large deformation of a cantilever axially functionally graded (AFG) beam subject to a tip load is analytically studied using the homotopy analysis method (HAM). It is assumed that its Young’s modulus varies along the longitudinal direction according to a power law. Taking the solution of the corresponding homogeneous beam as the initial guess and obtaining a convergence region by adjusting an auxiliary parameter, the analytical expressions for large deformation of the AFG beam are provided. Results obtained by the HAM are compared with those obtained by the finite element method and those in the previous works to verify its validity. Good agreement is observed. A detailed parametric study is carried out. The results show that the axial material variation can greatly change the deformed configuration, which provides an approach to control and manage the deformation of beams. By tailoring the axial material distribution, a desired deformed configuration can be obtained for a specific load. The analytical solution presented herein can be a helpful tool for this procedure.展开更多
In extreme heat transfer environments, functionally graded materials(FGMs)have aroused great concern due to the excellent thermal shock resistance. With the development of micro-scale devices, the size-dependent effec...In extreme heat transfer environments, functionally graded materials(FGMs)have aroused great concern due to the excellent thermal shock resistance. With the development of micro-scale devices, the size-dependent effect has become an important issue. However, the classical continuum mechanical model fails on the micro-scale due to the influence of the size-dependent effect. Meanwhile, for thermoelastic behaviors limited to small-scale problems, Fourier's heat conduction law cannot explain the thermal wave effect. In order to capture the size-dependent effect and the thermal wave effect, the nonlocal generalized thermoelastic theory for the formulation of an FGM microbeam is adopted in the present work. For numerical validation, the transient responses for a simply supported FGM microbeam heated by the ramp-type heating are considered.The governing equations are formulated and solved by employing the Laplace transform techniques. In the numerical results, the effects of the ramp-heating time parameter, the nonlocal parameter, and the power-law index on the considered physical quantities are presented and discussed in detail.展开更多
An analytical solution for buckling of an eccentrically stiffened sandwich truncated conical shell is investigated. The shell consists of two functionally graded material (FGM) coating layers and a core layer which ...An analytical solution for buckling of an eccentrically stiffened sandwich truncated conical shell is investigated. The shell consists of two functionally graded material (FGM) coating layers and a core layer which are metal or ceramic subjected to an axial compressive load and an external uniform pressure. Shells are reinforced by stringers and rings, in which the material properties of shells and stiffeners are graded in the thickness direction following a general sigmoid law distribution. Two models of coated shell-stiffener arrangements are investigated. The change of the spacing between stringers in the meridional direction is taken into account. A couple set of three-variable- coefficient partial differential equations in terms of displacement components are solved by the Galerkin method. A closed-form expression for determining the buckling load is obtained. The numerical examples are presented and compared with previous works.展开更多
Analysis of thermal post-buckling of FGM (Functionally Graded Material) Timoshenko beams subjected to transversely non-uniform temperature rise is presented. By accurately considering the axial extension and transve...Analysis of thermal post-buckling of FGM (Functionally Graded Material) Timoshenko beams subjected to transversely non-uniform temperature rise is presented. By accurately considering the axial extension and transverse shear deformation in the sense of theory of Timoshenko beam, geometrical nonlinear governing equations including seven basic unknown functions for functionally graded beams subjected to mechanical and thermal loads were formulated. In the analysis, it was assumed that the material properties of the beam vary continuously as a power function of the thickness coordinate. By using a shooting method, the obtained nonlinear boundary value problem was numerically solved and thermal buckling and post-buckling response of transversely nonuniformly heated FGM Timoshenko beams with fixed-fixed edges were obtained. Characteristic curves of the buckling deformation of the beam varying with thermal load and the power law index are plotted. The effects of material gradient property on the buckling deformation and critical temperature of beam were discussed in details. The results show that there exists the tension-bend coupling deformation in the uniformly heated beam because of the transversely non-uniform characteristic of materials.展开更多
B4C, SiC and C, Cu functionally graded-materials (FGMs) have been developed by plasma spraying and hot pressing. Their high-heat flux properties have been investigated by high energy laser and electron beam for the si...B4C, SiC and C, Cu functionally graded-materials (FGMs) have been developed by plasma spraying and hot pressing. Their high-heat flux properties have been investigated by high energy laser and electron beam for the simulation of plasma disruption process of the future fusion reactors, And a study on eroded products of B4C/Cu FGM under transient thermal load of electron beam was performed. In the experiment, SEM and EDS analysis indicated that B4C and SiC were decomposed, carbon was preferentially evaporated under high thermal load, and a part of Si and Cu were melted, in addition, the splash of melted metal and the particle emission of brittle destruction were also found. Different erosive behaviors of carbon-based materials (CBMs) caused by laser and electron beam were also discussed.展开更多
In this paper, Donnell's shell theory and smeared stiffeners technique are improved to analyze the postbuckling and buckling behaviors of circular cylindrical shells of stiffened thin functionally graded material (...In this paper, Donnell's shell theory and smeared stiffeners technique are improved to analyze the postbuckling and buckling behaviors of circular cylindrical shells of stiffened thin functionally graded material (FGM) sandwich under an axial loading on elastic foundations, and the shells are considered in a thermal environment. The shells are stiffened by FGM rings and stringers. A general sigmoid law and a general power law are proposed. Thermal elements of the shells and reinforcement stiffeners are considered. Explicit expressions to find critical loads and postbuckling load-deflection curves are obtained by applying the Galerkin method and choosing the three-term approximate solution of deflection. Numerical results show various effects of temperature, elastic foundation, stiffeners, material and geometrical properties, and the ratio between face sheet thickness and total thickness on the nonlinear behavior of shells.展开更多
This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node...This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node distribution.Firstly,based on the first-order shear deformation theory,the governing equation of free vibration of a functionally graded beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam axial displacement,transverse displacement,and cross-sectional rotation angle by considering the effects of shear deformation and rotational inertia of the beam cross-section.Then,ignoring the shear deformation of the beam section and only considering the effect of the rotational inertia of the section,the governing equation of the beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam transverse displacement.Based on the differential quadrature method theory,the eigenvalue problem of ordinary differential equations is transformed into the eigenvalue problem of standard generalized algebraic equations.Finally,the first several natural frequencies of the beam can be calculated.The feasibility and accuracy of the improved DQM are verified using the finite element method(FEM)and combined with the results of relevant literature.展开更多
Advancements in manufacturing technology,including the rapid development of additive manufacturing(AM),allow the fabrication of complex functionally graded material(FGM)sectioned beams.Portions of these beams may be m...Advancements in manufacturing technology,including the rapid development of additive manufacturing(AM),allow the fabrication of complex functionally graded material(FGM)sectioned beams.Portions of these beams may be made from different materials with possibly different gradients of material properties.The present work proposes models to investigate the free vibration of FGM sectioned beams based on onedimensional(1D)finite element analysis.For this purpose,a sample beam is divided into discrete elements,and the total energy stored in each element during vibration is computed by considering either the Timoshenko or Euler-Bernoulli beam theory.Then,Hamilton’s principle is used to derive the equations of motion for the beam.The effects of material properties and dimensions of FGM sections on the beam’s natural frequencies and their corresponding mode shapes are then investigated based on a dynamic Timoshenko model(TM).The presented model is validated by comparison with three-dimensional(3D)finite element simulations of the first three mode shapes of the beam.展开更多
This study presents an analytical solution of thermal and mechanical displacements, strains, and stresses for a thick-walled rotating spherical pressure vessel made of functionally graded materials (FGMs). The pressur...This study presents an analytical solution of thermal and mechanical displacements, strains, and stresses for a thick-walled rotating spherical pressure vessel made of functionally graded materials (FGMs). The pressure vessel is subject to axisymmetric mechanical and thermal loadings within a uniform magnetic field. The material properties of the FGM are considered as the power-law distribution along the thickness. Navier’s equation, which is a second-order ordinary differential equation, is derived from the mechanical equilibrium equation with the consideration of the thermal stresses and the Lorentz force resulting from the magnetic field. The distributions of the displacement, strains, and stresses are determined by the exact solution to Navier’s equation. Numerical results clarify the influence of the thermal loading, magnetic field, non-homogeneity constant, internal pressure, and angular velocity on the magneto-thermo-elastic response of the functionally graded spherical vessel. It is observed that these parameters have remarkable effects on the distributions of radial displacement, radial and circumferential strains, and radial and circumferential stresses.展开更多
This paper considers the pure bending problem of simply supported transversely isotropic circular plates with elastic compliance coefficients being arbitrary functions of the thickness coordinate. First, the partial d...This paper considers the pure bending problem of simply supported transversely isotropic circular plates with elastic compliance coefficients being arbitrary functions of the thickness coordinate. First, the partial differential equation, which is satisfied by the stress functions for the axisymmetric deformation problem is derived. Then, stress functions are obtained by proper manipulation. The analytical expressions of axial force, bending moment and displacements are then deduced through integration. And then, stress functions are employed to solve problems of transversely isotropic functionally graded circular plate, with the integral constants completely determined from boundary conditions. An elasticity solution for pure bending problem, which coincides with the available solution when degenerated into the elasticity solutions for homogenous circular plate, is thus obtained. A numerical example is finally presented to show the effect of material inhomogeneity on the elastic field in a simply supported circular plate of transversely isotropic functionally graded material (FGM).展开更多
The distribution of thermal stresses in functionally graded polycrystalline diamond compact (PDC) and in single coating of PDC are analyzed respectively by thermo-mechanical finite element analysis (FEA). It is shown ...The distribution of thermal stresses in functionally graded polycrystalline diamond compact (PDC) and in single coating of PDC are analyzed respectively by thermo-mechanical finite element analysis (FEA). It is shown that they each have a remarkable stress concentration at the edge of the interfaces. The diamond coatings usually suffer premature failure because of spallation, distortion or defects such as cracks near the interface due to these excessive residual stresses. Results showed that the axial tensile stress in FGM coating is reduced from 840 MPa to 229 MPa compared with single coating, and that the shear stress is reduced from 671 MPa to 471 MPa. Therefore, the single coating is more prone to spallation and cracking than the FGM coating. The effects of the volume compositional distribution factor (n) and the number of the graded layers (L) on the thermal stresses in FGM coating are also discussed respectively. Modelling results showed that the optimum value of the compositional distribution factor is 1.2, and that the best number of the graded layers is 6.展开更多
The natural dynamic characteristics of a circular cylindrical tube made of three-directional(3 D)functional graded material(FGM)based on the Timoshenko beam theory are investigated.Hamilton’s principle is utilized to...The natural dynamic characteristics of a circular cylindrical tube made of three-directional(3 D)functional graded material(FGM)based on the Timoshenko beam theory are investigated.Hamilton’s principle is utilized to derive the novel motion equations of the tube,considering the interactions among the longitudinal,transverse,and rotation deformations.By dint of the differential quadrature method(DQM),the governing equations are discretized to conduct the analysis of natural dynamic characteristics.The Ritz method,in conjunction with the finite element method(FEM),is introduced to verify the present results.It is found that the asymmetric modes in the tube are controlled by the 3 D FGM,which exhibit more complicated shapes compared with the unidirectional(1 D)and bi-directional(2 D)FGM cases.Numerical examples illustrate the effects of the axial,radial,and circumferential FGM indexes as well as the supported edges on the natural dynamic characteristics in detail.It is notable that the obtained results are beneficial for accurate design of smart structures composed from multi-directional FGM.展开更多
The frequency of the Love-type surface waves in a bedded structure con- sisting of a porous piezoelectric (PP) medium and a functionally graded material (FGM) substrate is approximated. The FGM layer is assumed to hav...The frequency of the Love-type surface waves in a bedded structure con- sisting of a porous piezoelectric (PP) medium and a functionally graded material (FGM) substrate is approximated. The FGM layer is assumed to have a constant initial stress. The Wentzel-Kramers-Brillouin (WKB) approximation technique is used for the wave solution in the FGM layer, and the method of separation of variables is applied for the solution in the porous piezoelectric medium. The dependence of the wave frequency on the wave number is obtained for both electrically open and short cases. The effects of the gradient coefficient of the FGM layer, the initial stresses (tensile stress and compressive stress), and the width of the FGM layer are marked distinctly and shown graphically. The findings may contribute towards the design and optimization of acoustic wave devices.展开更多
The problem of a transversely isotropic functionally graded material (FGM) plate welded with a circular inclusion is considered. The analysis starts with the general- ized England-Spencer plate theory for transverse...The problem of a transversely isotropic functionally graded material (FGM) plate welded with a circular inclusion is considered. The analysis starts with the general- ized England-Spencer plate theory for transversely isotropic FGM plates, which expresses a three-dimensional (3D) general solution in terms of four analytic functions. Several analytical solutions are then obtained for an infinite FGM plate welded with a circular inclusion and subjected to the loads at infinity. Three different cases are considered, i.e., a rigid circular inclusion fixed in the space, a rigid circular inclusion rotating about the x-, y-, and z-axes, and an elastic circular inclusion with different material constants from the plate itself. The static responses of the plate and/or the inclusion are investigated through numerical examples.展开更多
The paper develops and examines the complete solutions for the elastic field induced by the point load vector in a general functionally graded material(FGM)model with transverse isotropy.The FGMs are approximated with...The paper develops and examines the complete solutions for the elastic field induced by the point load vector in a general functionally graded material(FGM)model with transverse isotropy.The FGMs are approximated with n-layered materials.Each of the n-layered materials is homogeneous and transversely isotropic.The complete solutions of the displacement and stress fields are explicitly expressed in the forms of fifteen classical Hankel transform integrals with ten kernel functions.The ten kernel functions are explicitly expressed in the forms of backward transfer matrices and have clear mathematical properties.The singular terms of the complete solutions are analytically isolated and expressed in exact closed forms in terms of elementary harmonic functions.Numerical results show that the computation of the complete solutions can be achieved with high accuracy and efficiency.展开更多
Functionally graded materials (FGM) have been widely used in many industries such as aerospace, energy and electronics. In this experimental study of fabricating FGM, an approach was developed to prepare AI/Si FGM u...Functionally graded materials (FGM) have been widely used in many industries such as aerospace, energy and electronics. In this experimental study of fabricating FGM, an approach was developed to prepare AI/Si FGM using power ultrasonic separation method. Material sample with continuously changing composition and performance/properties was successfully produced. Results showed that the microstructure of the FGM sample transited, from its top to bottom, from the hypereutectic structure with a large quantity of primary Si gradually to the eutectic, and finally to the hypoeutectic with numerous primary AI dendrites. The distribution of primary Si and microhardness of the FGM sample also presented graded characteristics, resulting that the wear resistance of the FGM sample decreased from top to bottom. Preliminary discussion was made on the mechanism of the formation of AI/Si FGM.展开更多
基金the National Natural Science Foundation of China(Nos.12302007,12372006,and 12202109)the Specific Research Project of Guangxi for Research Bases and Talents(No.AD23026051)。
文摘Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore the dynamic behaviors of an FGM stepped beam with different boundary conditions based on an efficient solving method.Under the assumptions of the Euler-Bernoulli beam theory,the governing differential equations of an individual FGM beam are derived with Hamilton’s principle and decoupled via the separation-of-variable approach.Then,the free and forced vibrations of the FGM stepped beam are solved with the transfer matrix method(TMM).Two models,i.e.,a three-level FGM stepped beam and a five-level FGM stepped beam,are considered,and their natural frequencies and mode shapes are presented.To demonstrate the validity of the method in this paper,the simulation results by ABAQUS are also given.On this basis,the detailed parametric analyses on the frequencies and dynamic responses of the three-level FGM stepped beam are carried out.The results show the accuracy and efficiency of the TMM.
基金supported by the National Natural Science Foundation of China(No.11272278)
文摘Free vibration response of functionally graded material (FGM) beams is studied based on the Levinson beam theory (LBT). Equations of motion of an FGM beam are derived by directly integrating the stress-form equations of elasticity along the beam depth with the inertial resultant forces related to the included coupling and higherorder shear strain. Assuming harmonic response, governing equations of the free vibration of the FGM beam are reduced to a standard system of second-order ordinary differential equations associated with boundary conditions in terms of shape functions related to axial and transverse displacements and the rotational angle. By a shooting method to solve the two-point boundary value problem of the three coupled ordinary differential equations, free vibration response of thick FGM beams is obtained numerically. Particularly, for a beam with simply supported edges, the natural frequency of an FGM Levinson beam is analytically derived in terms of the natural frequency of a corresponding homogenous Euler-Bernoulli beam. As the material properties are assumed to vary through the depth according to the power-law functions, the numerical results of frequencies are presented to examine the effects of the material gradient parameter, the length-to-depth ratio, and the boundary conditions on the vibration response.
基金supported by the National Natural Science Foundation of China (Nos. 10872083 and10602021)the Doctoral Foundation of Ministry of Education of China (No. 200807310002)
文摘Free vibration of statically thermal postbuckled functionally graded material (FGM) beams with surface-bonded piezoelectric layers subject to both temperature rise and voltage is studied. By accurately considering the axial extension and based on the Euler-Bernoulli beam theory, geometrically nonlinear dynamic governing equations for FGM beams with surface-bonded piezoelectric layers subject to thermo-electro- mechanical loadings are formulated. It is assumed that the material properties of the middle FGM layer vary continuously as a power law function of the thickness coordinate, and the piezoelectric layers are isotropic and homogenous. By assuming that the amplitude of the beam vibration is small and its response is harmonic, the above mentioned non-linear partial differential equations are reduced to two sets of coupled ordinary differential equations. One is for the postbuckling, and the other is for the linear vibration of the beam superimposed upon the postbuckled configuration. Using a shooting method to solve the two sets of ordinary differential equations with fixed-fixed boundary conditions numerically, the response of postbuckling and free vibration in the vicinity of the postbuckled configuration of the beam with fixed-fixed ends and subject to transversely nonuniform heating and uniform electric field is obtained. Thermo-electric postbuckling equilibrium paths and characteristic curves of the first three natural frequencies versus the temperature, the electricity, and the material gradient parameters are plotted. It is found that the three lowest frequencies of the prebuckled beam decrease with the increase of the temperature, but those of a buckled beam increase monotonically with the temperature rise. The results also show that the tensional force produced in the piezoelectric layers by the voltage can efficiently increase the critical buckling temperature and the natural frequency.
基金supported by the National Natural Science Foundation of China(No.11272278)
文摘The exact relationship between the bending solutions of functionally graded material (FGM) beams based on the Levinson beam theory and those of the correspond- ing homogenous beams based on the classical beam theory is presented for the material properties of the FGM beams changing continuously in the thickness direction. The de- flection, the rotational angle, the bending moment, and the shear force of FGM Levinson beams (FGMLBs) are given analytically in terms of the deflection of the reference ho- mogenous Euler-Bernoulli beams (HEBBs) with the same loading, geometry, and end supports. Consequently, the solution of the bending of non-homogenous Levinson beams can be simplified to the calculation of transition coefficients, which can be easily deter- mined by variation of the gradient of material properties and the geometry of beams. This is because the classical beam theory solutions of homogenous beams can be eas- ily determined or are available in the textbook of material strength under a variety of boundary conditions. As examples, for different end constraints, particular solutions are given for the FGMLBs under specified loadings to illustrate validity of this approach. These analytical solutions can be used as benchmarks to check numerical results in the investigation of static bending of FGM beams based on higher-order shear deformation theories.
基金Project supported by the China Postdoctoral Science Foundation(No.2018M630167)
文摘Large deformation of a cantilever axially functionally graded (AFG) beam subject to a tip load is analytically studied using the homotopy analysis method (HAM). It is assumed that its Young’s modulus varies along the longitudinal direction according to a power law. Taking the solution of the corresponding homogeneous beam as the initial guess and obtaining a convergence region by adjusting an auxiliary parameter, the analytical expressions for large deformation of the AFG beam are provided. Results obtained by the HAM are compared with those obtained by the finite element method and those in the previous works to verify its validity. Good agreement is observed. A detailed parametric study is carried out. The results show that the axial material variation can greatly change the deformed configuration, which provides an approach to control and manage the deformation of beams. By tailoring the axial material distribution, a desired deformed configuration can be obtained for a specific load. The analytical solution presented herein can be a helpful tool for this procedure.
基金Project supported by the National Natural Science Foundation of China (Nos. 11972176 and12062011)the Incubation Programme of Excellent Doctoral Dissertation-Lanzhou University of Technology。
文摘In extreme heat transfer environments, functionally graded materials(FGMs)have aroused great concern due to the excellent thermal shock resistance. With the development of micro-scale devices, the size-dependent effect has become an important issue. However, the classical continuum mechanical model fails on the micro-scale due to the influence of the size-dependent effect. Meanwhile, for thermoelastic behaviors limited to small-scale problems, Fourier's heat conduction law cannot explain the thermal wave effect. In order to capture the size-dependent effect and the thermal wave effect, the nonlocal generalized thermoelastic theory for the formulation of an FGM microbeam is adopted in the present work. For numerical validation, the transient responses for a simply supported FGM microbeam heated by the ramp-type heating are considered.The governing equations are formulated and solved by employing the Laplace transform techniques. In the numerical results, the effects of the ramp-heating time parameter, the nonlocal parameter, and the power-law index on the considered physical quantities are presented and discussed in detail.
基金supported by the Vietnam National Foundation for Science and Technology Development(No.107.02-2015.11)
文摘An analytical solution for buckling of an eccentrically stiffened sandwich truncated conical shell is investigated. The shell consists of two functionally graded material (FGM) coating layers and a core layer which are metal or ceramic subjected to an axial compressive load and an external uniform pressure. Shells are reinforced by stringers and rings, in which the material properties of shells and stiffeners are graded in the thickness direction following a general sigmoid law distribution. Two models of coated shell-stiffener arrangements are investigated. The change of the spacing between stringers in the meridional direction is taken into account. A couple set of three-variable- coefficient partial differential equations in terms of displacement components are solved by the Galerkin method. A closed-form expression for determining the buckling load is obtained. The numerical examples are presented and compared with previous works.
基金Project supported by the National Natural Science Foundation of China (No.10472039)
文摘Analysis of thermal post-buckling of FGM (Functionally Graded Material) Timoshenko beams subjected to transversely non-uniform temperature rise is presented. By accurately considering the axial extension and transverse shear deformation in the sense of theory of Timoshenko beam, geometrical nonlinear governing equations including seven basic unknown functions for functionally graded beams subjected to mechanical and thermal loads were formulated. In the analysis, it was assumed that the material properties of the beam vary continuously as a power function of the thickness coordinate. By using a shooting method, the obtained nonlinear boundary value problem was numerically solved and thermal buckling and post-buckling response of transversely nonuniformly heated FGM Timoshenko beams with fixed-fixed edges were obtained. Characteristic curves of the buckling deformation of the beam varying with thermal load and the power law index are plotted. The effects of material gradient property on the buckling deformation and critical temperature of beam were discussed in details. The results show that there exists the tension-bend coupling deformation in the uniformly heated beam because of the transversely non-uniform characteristic of materials.
文摘B4C, SiC and C, Cu functionally graded-materials (FGMs) have been developed by plasma spraying and hot pressing. Their high-heat flux properties have been investigated by high energy laser and electron beam for the simulation of plasma disruption process of the future fusion reactors, And a study on eroded products of B4C/Cu FGM under transient thermal load of electron beam was performed. In the experiment, SEM and EDS analysis indicated that B4C and SiC were decomposed, carbon was preferentially evaporated under high thermal load, and a part of Si and Cu were melted, in addition, the splash of melted metal and the particle emission of brittle destruction were also found. Different erosive behaviors of carbon-based materials (CBMs) caused by laser and electron beam were also discussed.
基金Project supported by the Vietnam National Foundation for Science and Technology Development(No.107.02-2015.11)
文摘In this paper, Donnell's shell theory and smeared stiffeners technique are improved to analyze the postbuckling and buckling behaviors of circular cylindrical shells of stiffened thin functionally graded material (FGM) sandwich under an axial loading on elastic foundations, and the shells are considered in a thermal environment. The shells are stiffened by FGM rings and stringers. A general sigmoid law and a general power law are proposed. Thermal elements of the shells and reinforcement stiffeners are considered. Explicit expressions to find critical loads and postbuckling load-deflection curves are obtained by applying the Galerkin method and choosing the three-term approximate solution of deflection. Numerical results show various effects of temperature, elastic foundation, stiffeners, material and geometrical properties, and the ratio between face sheet thickness and total thickness on the nonlinear behavior of shells.
基金Anhui Provincial Natural Science Foundation(2308085QD124)Anhui Province University Natural Science Research Project(GrantNo.2023AH050918)The University Outstanding Youth Talent Support Program of Anhui Province.
文摘This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node distribution.Firstly,based on the first-order shear deformation theory,the governing equation of free vibration of a functionally graded beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam axial displacement,transverse displacement,and cross-sectional rotation angle by considering the effects of shear deformation and rotational inertia of the beam cross-section.Then,ignoring the shear deformation of the beam section and only considering the effect of the rotational inertia of the section,the governing equation of the beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam transverse displacement.Based on the differential quadrature method theory,the eigenvalue problem of ordinary differential equations is transformed into the eigenvalue problem of standard generalized algebraic equations.Finally,the first several natural frequencies of the beam can be calculated.The feasibility and accuracy of the improved DQM are verified using the finite element method(FEM)and combined with the results of relevant literature.
基金Project supported by Khalifa University of Science and Technology(No.CIRA 2019-024)。
文摘Advancements in manufacturing technology,including the rapid development of additive manufacturing(AM),allow the fabrication of complex functionally graded material(FGM)sectioned beams.Portions of these beams may be made from different materials with possibly different gradients of material properties.The present work proposes models to investigate the free vibration of FGM sectioned beams based on onedimensional(1D)finite element analysis.For this purpose,a sample beam is divided into discrete elements,and the total energy stored in each element during vibration is computed by considering either the Timoshenko or Euler-Bernoulli beam theory.Then,Hamilton’s principle is used to derive the equations of motion for the beam.The effects of material properties and dimensions of FGM sections on the beam’s natural frequencies and their corresponding mode shapes are then investigated based on a dynamic Timoshenko model(TM).The presented model is validated by comparison with three-dimensional(3D)finite element simulations of the first three mode shapes of the beam.
文摘This study presents an analytical solution of thermal and mechanical displacements, strains, and stresses for a thick-walled rotating spherical pressure vessel made of functionally graded materials (FGMs). The pressure vessel is subject to axisymmetric mechanical and thermal loadings within a uniform magnetic field. The material properties of the FGM are considered as the power-law distribution along the thickness. Navier’s equation, which is a second-order ordinary differential equation, is derived from the mechanical equilibrium equation with the consideration of the thermal stresses and the Lorentz force resulting from the magnetic field. The distributions of the displacement, strains, and stresses are determined by the exact solution to Navier’s equation. Numerical results clarify the influence of the thermal loading, magnetic field, non-homogeneity constant, internal pressure, and angular velocity on the magneto-thermo-elastic response of the functionally graded spherical vessel. It is observed that these parameters have remarkable effects on the distributions of radial displacement, radial and circumferential strains, and radial and circumferential stresses.
基金Project (Nos. 10472102 and 10432030) supported by the NationalNatural Science Foundation of China
文摘This paper considers the pure bending problem of simply supported transversely isotropic circular plates with elastic compliance coefficients being arbitrary functions of the thickness coordinate. First, the partial differential equation, which is satisfied by the stress functions for the axisymmetric deformation problem is derived. Then, stress functions are obtained by proper manipulation. The analytical expressions of axial force, bending moment and displacements are then deduced through integration. And then, stress functions are employed to solve problems of transversely isotropic functionally graded circular plate, with the integral constants completely determined from boundary conditions. An elasticity solution for pure bending problem, which coincides with the available solution when degenerated into the elasticity solutions for homogenous circular plate, is thus obtained. A numerical example is finally presented to show the effect of material inhomogeneity on the elastic field in a simply supported circular plate of transversely isotropic functionally graded material (FGM).
基金Research Program in the Ninth National Five-Year-Plan of Ministryof Land and Resources, China
文摘The distribution of thermal stresses in functionally graded polycrystalline diamond compact (PDC) and in single coating of PDC are analyzed respectively by thermo-mechanical finite element analysis (FEA). It is shown that they each have a remarkable stress concentration at the edge of the interfaces. The diamond coatings usually suffer premature failure because of spallation, distortion or defects such as cracks near the interface due to these excessive residual stresses. Results showed that the axial tensile stress in FGM coating is reduced from 840 MPa to 229 MPa compared with single coating, and that the shear stress is reduced from 671 MPa to 471 MPa. Therefore, the single coating is more prone to spallation and cracking than the FGM coating. The effects of the volume compositional distribution factor (n) and the number of the graded layers (L) on the thermal stresses in FGM coating are also discussed respectively. Modelling results showed that the optimum value of the compositional distribution factor is 1.2, and that the best number of the graded layers is 6.
基金Project supported by the National Natural Science Foundation of China(Nos.11902001 and12072221)the China Postdoctoral Science Foundation(No.2018M641643)the Anhui Provincial Natural Science Foundation of China(Nos.1908085QA13 and 1808085ME128)。
文摘The natural dynamic characteristics of a circular cylindrical tube made of three-directional(3 D)functional graded material(FGM)based on the Timoshenko beam theory are investigated.Hamilton’s principle is utilized to derive the novel motion equations of the tube,considering the interactions among the longitudinal,transverse,and rotation deformations.By dint of the differential quadrature method(DQM),the governing equations are discretized to conduct the analysis of natural dynamic characteristics.The Ritz method,in conjunction with the finite element method(FEM),is introduced to verify the present results.It is found that the asymmetric modes in the tube are controlled by the 3 D FGM,which exhibit more complicated shapes compared with the unidirectional(1 D)and bi-directional(2 D)FGM cases.Numerical examples illustrate the effects of the axial,radial,and circumferential FGM indexes as well as the supported edges on the natural dynamic characteristics in detail.It is notable that the obtained results are beneficial for accurate design of smart structures composed from multi-directional FGM.
文摘The frequency of the Love-type surface waves in a bedded structure con- sisting of a porous piezoelectric (PP) medium and a functionally graded material (FGM) substrate is approximated. The FGM layer is assumed to have a constant initial stress. The Wentzel-Kramers-Brillouin (WKB) approximation technique is used for the wave solution in the FGM layer, and the method of separation of variables is applied for the solution in the porous piezoelectric medium. The dependence of the wave frequency on the wave number is obtained for both electrically open and short cases. The effects of the gradient coefficient of the FGM layer, the initial stresses (tensile stress and compressive stress), and the width of the FGM layer are marked distinctly and shown graphically. The findings may contribute towards the design and optimization of acoustic wave devices.
基金supported by the National Natural Science Foundation of China(Nos.11202188,11321202,and 11172263)the Program for Innovative Research Team of Zhejiang Sci-Tech University
文摘The problem of a transversely isotropic functionally graded material (FGM) plate welded with a circular inclusion is considered. The analysis starts with the general- ized England-Spencer plate theory for transversely isotropic FGM plates, which expresses a three-dimensional (3D) general solution in terms of four analytic functions. Several analytical solutions are then obtained for an infinite FGM plate welded with a circular inclusion and subjected to the loads at infinity. Three different cases are considered, i.e., a rigid circular inclusion fixed in the space, a rigid circular inclusion rotating about the x-, y-, and z-axes, and an elastic circular inclusion with different material constants from the plate itself. The static responses of the plate and/or the inclusion are investigated through numerical examples.
基金Project supported by the National Natural Science Foundation of China(No.42207182)the Research Grants Council of the Hong Kong Special Administrative Region Government of China(Nos.HKU 17207518 and R5037-18)。
文摘The paper develops and examines the complete solutions for the elastic field induced by the point load vector in a general functionally graded material(FGM)model with transverse isotropy.The FGMs are approximated with n-layered materials.Each of the n-layered materials is homogeneous and transversely isotropic.The complete solutions of the displacement and stress fields are explicitly expressed in the forms of fifteen classical Hankel transform integrals with ten kernel functions.The ten kernel functions are explicitly expressed in the forms of backward transfer matrices and have clear mathematical properties.The singular terms of the complete solutions are analytically isolated and expressed in exact closed forms in terms of elementary harmonic functions.Numerical results show that the computation of the complete solutions can be achieved with high accuracy and efficiency.
基金the National Natural Science Foundation of China(No.50474055)
文摘Functionally graded materials (FGM) have been widely used in many industries such as aerospace, energy and electronics. In this experimental study of fabricating FGM, an approach was developed to prepare AI/Si FGM using power ultrasonic separation method. Material sample with continuously changing composition and performance/properties was successfully produced. Results showed that the microstructure of the FGM sample transited, from its top to bottom, from the hypereutectic structure with a large quantity of primary Si gradually to the eutectic, and finally to the hypoeutectic with numerous primary AI dendrites. The distribution of primary Si and microhardness of the FGM sample also presented graded characteristics, resulting that the wear resistance of the FGM sample decreased from top to bottom. Preliminary discussion was made on the mechanism of the formation of AI/Si FGM.