期刊文献+
共找到1,341篇文章
< 1 2 68 >
每页显示 20 50 100
Sound Transmission Loss Analysis of a Double Plate-Acoustic Cavity Coupling System with In-Plane Functionally Graded Materials
1
作者 Changzhong Chen Mingfei Chen Wenliang Yu 《Journal of Applied Mathematics and Physics》 2024年第6期2333-2345,共13页
In this paper, the isogeometric analysis (IGA) is employed to develop an acoustic radiation model for a double plate-acoustic cavity coupling system, with a focus on analyzing the sound transmission loss (STL). The fu... In this paper, the isogeometric analysis (IGA) is employed to develop an acoustic radiation model for a double plate-acoustic cavity coupling system, with a focus on analyzing the sound transmission loss (STL). The functionally graded (FG) plate exhibits a different material properties in-plane, and the power-law rule is adopted as the governing principle for material mixing. To validate the harmonic response and demonstrate the accuracy and convergence of the isogeometric modeling, ANASYS is utilized to compare with numerical examples. A plane wave serves as the acoustic excitation, and the Rayleigh integral is applied to discretize the radiated plate. The STL results are compared with the literature, confirming the reliability of the coupling system. Finally, the investigation is conducted to study impact of cavity depth and power-law parameter on the STL. 展开更多
关键词 Isogeometric Analysis Sound Transmission Loss Double-Plate System functionally graded materials Acoustic Structure Coupling
下载PDF
Transfer matrix method for free and forced vibrations of multi-level functionally graded material stepped beams with different boundary conditions
2
作者 Xiaoyang SU Tong HU +3 位作者 Wei ZHANG Houjun KANG Yunyue CONG Quan YUAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第6期983-1000,共18页
Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore th... Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore the dynamic behaviors of an FGM stepped beam with different boundary conditions based on an efficient solving method.Under the assumptions of the Euler-Bernoulli beam theory,the governing differential equations of an individual FGM beam are derived with Hamilton’s principle and decoupled via the separation-of-variable approach.Then,the free and forced vibrations of the FGM stepped beam are solved with the transfer matrix method(TMM).Two models,i.e.,a three-level FGM stepped beam and a five-level FGM stepped beam,are considered,and their natural frequencies and mode shapes are presented.To demonstrate the validity of the method in this paper,the simulation results by ABAQUS are also given.On this basis,the detailed parametric analyses on the frequencies and dynamic responses of the three-level FGM stepped beam are carried out.The results show the accuracy and efficiency of the TMM. 展开更多
关键词 transfer matrix method(TMM) free vibration forced vibration functionally graded material(FGM) stepped beam
下载PDF
Wave propagation of a functionally graded plate via integral variables with a hyperbolic arcsine function
3
作者 Mokhtar Ellali Mokhtar Bouazza Ashraf M.Zenkour 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期547-561,共15页
Several studies on functionally graded materials(FGMs)have been done by researchers,but few studies have dealt with the impact of the modification of the properties of materials with regard to the functional propagati... Several studies on functionally graded materials(FGMs)have been done by researchers,but few studies have dealt with the impact of the modification of the properties of materials with regard to the functional propagation of the waves in plates.This work aims to explore the effects of changing compositional characteristics and the volume fraction of the constituent of plate materials regarding the wave propagation response of thick plates of FGM.This model is based on a higher-order theory and a new displacement field with four unknowns that introduce indeterminate integral variables with a hyperbolic arcsine function.The FGM plate is assumed to consist of a mixture of metal and ceramic,and its properties change depending on the power functions of the thickness of the plate,such as linear,quadratic,cubic,and inverse quadratic.By utilizing Hamilton’s principle,general formulae of the wave propagation were obtained to establish wave modes and phase velocity curves of the wave propagation in a functionally graded plate,including the effects of changing compositional characteristics of materials. 展开更多
关键词 FGM plate effects of material properties wave propagation indeterminate integral variables inverse sinus hyperbolic function
下载PDF
Dynamic Characteristics of Functionally Graded Timoshenko Beams by Improved Differential Quadrature Method
4
作者 Xiaojun Huang Liaojun Zhang +1 位作者 Hanbo Cui Gaoxing Hu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1647-1668,共22页
This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node... This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node distribution.Firstly,based on the first-order shear deformation theory,the governing equation of free vibration of a functionally graded beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam axial displacement,transverse displacement,and cross-sectional rotation angle by considering the effects of shear deformation and rotational inertia of the beam cross-section.Then,ignoring the shear deformation of the beam section and only considering the effect of the rotational inertia of the section,the governing equation of the beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam transverse displacement.Based on the differential quadrature method theory,the eigenvalue problem of ordinary differential equations is transformed into the eigenvalue problem of standard generalized algebraic equations.Finally,the first several natural frequencies of the beam can be calculated.The feasibility and accuracy of the improved DQM are verified using the finite element method(FEM)and combined with the results of relevant literature. 展开更多
关键词 Timoshenko beams functionally graded materials dynamic characteristics natural frequency improved differential quadrature method
下载PDF
Review of functionally graded materials processed by additive manufacturing 被引量:2
5
作者 宋学平 黄健康 樊丁 《China Welding》 CAS 2023年第3期41-50,共10页
Additive manufacturing(AM)technology makes parts through layer-by-layer deposition,which can regulate the microstructure and properties of different parts of a single part well.It provides a new idea for the preparati... Additive manufacturing(AM)technology makes parts through layer-by-layer deposition,which can regulate the microstructure and properties of different parts of a single part well.It provides a new idea for the preparation of functionally gradient materials(FGM),and has become a research hotspot at present.By referring to and analyzing the recent research achievements in the additive manufacturing tech-nology of FGM,the latest research progress at domestic and abroad from four aspects were summaried:selective laser melting additive man-ufacturing,electron beam additive manufacturing,arc additive manufacturing,path planning,and material texture.Moreover,the existing problems in the research are pointed out,and the future research direction and focus are prospected. 展开更多
关键词 functionally graded materials additive manufacture research progress
下载PDF
Wave propagation analysis of porous functionally graded piezoelectric nanoplates with a visco-Pasternak foundation 被引量:1
6
作者 Zhaonian LI Juan LIU +2 位作者 Biao HU Yuxing WANG Huoming SHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第1期35-52,共18页
This study investigates the size-dependent wave propagation behaviors under the thermoelectric loads of porous functionally graded piezoelectric(FGP) nanoplates deposited in a viscoelastic foundation.It is assumed tha... This study investigates the size-dependent wave propagation behaviors under the thermoelectric loads of porous functionally graded piezoelectric(FGP) nanoplates deposited in a viscoelastic foundation.It is assumed that(i) the material parameters of the nanoplates obey a power-law variation in thickness and(ii) the uniform porosity exists in the nanoplates.The combined effects of viscoelasticity and shear deformation are considered by using the Kelvin-Voigt viscoelastic model and the refined higher-order shear deformation theory.The scale effects of the nanoplates are captured by employing nonlocal strain gradient theory(NSGT).The motion equations are calculated in accordance with Hamilton’s principle.Finally,the dispersion characteristics of the nanoplates are numerically determined by using a harmonic solution.The results indicate that the nonlocal parameters(NLPs) and length scale parameters(LSPs) have exactly the opposite effects on the wave frequency.In addition,it is found that the effect of porosity volume fractions(PVFs) on the wave frequency depends on the gradient indices and damping coefficients.When these two values are small,the wave frequency increases with the volume fraction.By contrast,at larger gradient index and damping coefficient values,the wave frequency decreases as the volume fraction increases. 展开更多
关键词 scale effect functionally graded material(FGM) dispersion characteristic piezoelectric nanoplate viscoelastic foundation
下载PDF
The nonlocal solution of two parallel cracks in functionally graded materials subjected to harmonic anti-plane shear waves 被引量:5
7
作者 Jun Liang Shiping Wu Shanyi Du Center for Composite Materials and Structure,Harbin Institute of Technology,Harbin 150001,China 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2007年第4期427-435,共9页
In this paper, the dynamic interaction of two parallel cracks in functionally graded materials (FGMs) is investigated by means of the non-local theory. To make the analysis tractable, the shear modulus and the mater... In this paper, the dynamic interaction of two parallel cracks in functionally graded materials (FGMs) is investigated by means of the non-local theory. To make the analysis tractable, the shear modulus and the material density are assumed to vary exponentially with the coordinate vertical to the crack. To reduce mathematical difficulties, a one-dimensional non-local kernel is used instead of a twodimensional one for the dynamic problem to obtain stress fields near the crack tips. By use of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations, in which the unknown variables are the jumps of displacements across the crack surfaces. To solve the dual integral equations, the jumps of displacements across the crack surfaces are expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularity is present at the crack tips. The non-local elastic solutions yield a finite hoop stress at the crack tips. The present result provides theoretical references helpful for evaluating relevant strength and preventing material failure of FGMs with initial cracks. The magnitude of the finite stress field depends on relevant parameters, such as the crack length, the distance between two parallel cracks, the parameter describing the FGMs, the frequency of the incident waves and the lattice parameter of materials. 展开更多
关键词 CRACK The non-local theory Stress waves functionally graded materials
下载PDF
SCATTERING OF HARMONIC ANTI-PLANE SHEAR STRESS WAVES BY A CRACK IN FUNCTIONALLY GRADED PIEZOELECTRIC/PIEZOMAGNETIC MATERIALS 被引量:6
8
作者 Liang Jun 《Acta Mechanica Solida Sinica》 SCIE EI 2007年第1期75-86,共12页
In this paper, the dynamic behavior of a permeable crack in functionally graded piezoelectric/piezomagnetic materials is investigated. To make the analysis tractable, it is assumed that the material properties vary ex... In this paper, the dynamic behavior of a permeable crack in functionally graded piezoelectric/piezomagnetic materials is investigated. To make the analysis tractable, it is assumed that the material properties vary exponentially with the coordinate parallel to the crack. By using the Fourier transform, the problem can be solved with the help of a pair of dual integral equations in which the unknown is the jump of displacements across the crack surfaces. These equations are solved to obtain the relations between the electric filed, the magnetic flux field and the dynamic stress field near the crack tips using the Schmidt method. Numerical examples are provided to show the effect of the functionally graded parameter and the circular frequency of the incident waves upon the stress, the electric displacement and the magnetic flux intensity factors of the crack. 展开更多
关键词 functionally graded piezoelectric/piezomagnetic materials CRACK stress wave
下载PDF
Thermo-magnetic analysis of thick-walled spherical pressure vessels made of functionally graded materials 被引量:2
9
作者 M. A. NEMATOLLAHI A. DINI M. HOSSEINI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第6期751-766,共16页
This study presents an analytical solution of thermal and mechanical displacements, strains, and stresses for a thick-walled rotating spherical pressure vessel made of functionally graded materials (FGMs). The pressur... This study presents an analytical solution of thermal and mechanical displacements, strains, and stresses for a thick-walled rotating spherical pressure vessel made of functionally graded materials (FGMs). The pressure vessel is subject to axisymmetric mechanical and thermal loadings within a uniform magnetic field. The material properties of the FGM are considered as the power-law distribution along the thickness. Navier’s equation, which is a second-order ordinary differential equation, is derived from the mechanical equilibrium equation with the consideration of the thermal stresses and the Lorentz force resulting from the magnetic field. The distributions of the displacement, strains, and stresses are determined by the exact solution to Navier’s equation. Numerical results clarify the influence of the thermal loading, magnetic field, non-homogeneity constant, internal pressure, and angular velocity on the magneto-thermo-elastic response of the functionally graded spherical vessel. It is observed that these parameters have remarkable effects on the distributions of radial displacement, radial and circumferential strains, and radial and circumferential stresses. 展开更多
关键词 analytical solution magnetic field thermal loading ROTATING thick-walled SPHERICAL pressure VESSEL functionally graded material (FGM)
下载PDF
Complete solutions for elastic fields induced by point load vector in functionally graded material model with transverse isotropy
10
作者 Sha XIAO Zhongqi YUE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第3期411-430,共20页
The paper develops and examines the complete solutions for the elastic field induced by the point load vector in a general functionally graded material(FGM)model with transverse isotropy.The FGMs are approximated with... The paper develops and examines the complete solutions for the elastic field induced by the point load vector in a general functionally graded material(FGM)model with transverse isotropy.The FGMs are approximated with n-layered materials.Each of the n-layered materials is homogeneous and transversely isotropic.The complete solutions of the displacement and stress fields are explicitly expressed in the forms of fifteen classical Hankel transform integrals with ten kernel functions.The ten kernel functions are explicitly expressed in the forms of backward transfer matrices and have clear mathematical properties.The singular terms of the complete solutions are analytically isolated and expressed in exact closed forms in terms of elementary harmonic functions.Numerical results show that the computation of the complete solutions can be achieved with high accuracy and efficiency. 展开更多
关键词 functionally graded material(FGM) transverse isotropy ELASTICITY closedform singular solution Green's function point load vector
下载PDF
3D thermally induced analysis of annular plates of functionally graded materials 被引量:2
11
作者 Yun-Fang Yang Ding Chen Bo Yang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2019年第5期297-301,I0004,共6页
Within the framework of three-dimensional elasticity theory,this paper investigates the thermal response of functionally graded annular plates in which the material can be transversely isotropic and vary along the thi... Within the framework of three-dimensional elasticity theory,this paper investigates the thermal response of functionally graded annular plates in which the material can be transversely isotropic and vary along the thickness direction in an arbitrary manner.The generalized Mian and Spencer method is utilized to obtain the analytical solutions of annular plates under a through-thickness steady temperature field.The present analytical solutions are validated through comparisons against those available in open literature.A parametric study is conducted to examine the effects of gradient distribution,different temperature fields,different diameter ratio and boundary conditions on the deformation and stress fields of the plate.The results show that these factors can have obvious effects on the thermo-elastic behavior of functionally gradient materials(FGM)annular plates. 展开更多
关键词 ANNULAR PLATE functionally graded materials THERMO-ELASTICITY ANALYTICAL SOLUTION
下载PDF
SCATTERING OF THE HARMONIC STRESS WAVE BY CRACKS IN FUNCTIONALLY GRADED PIEZOELECTRIC MATERIALS 被引量:2
12
作者 Ma Li Nie Wu +1 位作者 Wu Linzhi Zhou Zhengong 《Acta Mechanica Solida Sinica》 SCIE EI 2005年第4期295-301,共7页
The present paper considers the scattering of the time harmonic stress wave by a single crack and two collinear cracks in functionally graded piezoelectric material (FGPM). It is assumed that the properties of the F... The present paper considers the scattering of the time harmonic stress wave by a single crack and two collinear cracks in functionally graded piezoelectric material (FGPM). It is assumed that the properties of the FGPM vary continuously as an exponential function. By using the Fourier transform and defining the jumps of displacements and electric potential components across the crack surface as the unknown functions, two pairs of dual integral equations are derived. To solve the dual integral equations, the jumps of the displacement and electric potential components across the crack surface are expanded in a series of Jacobi polynomials. Numerical examples are provided to show the influences of material properties on the dynamic stress and the electric displacement intensity factors. 展开更多
关键词 functionally graded piezoelectric materials CRACK stress intensity factor stress wave
下载PDF
Bending and Free Vibration Analysis of Porous-Functionally-Graded(PFG)Beams Resting on Elastic Foundations
13
作者 Lazreg Hadji Fabrice Bernard Nafissa Zouatnia 《Fluid Dynamics & Materials Processing》 EI 2023年第4期1043-1054,共12页
The bending and free vibration of porous functionally graded(PFG)beams resting on elastic foundations are analyzed.The material features of the PFG beam are assumed to vary continuously through the thickness according... The bending and free vibration of porous functionally graded(PFG)beams resting on elastic foundations are analyzed.The material features of the PFG beam are assumed to vary continuously through the thickness according to the volume fraction of components.The foundation medium is also considered to be linear,homogeneous,and isotropic,and modeled using the Winkler-Pasternak law.The hyperbolic shear deformation theory is applied for the kinematic relations,and the equations of motion are obtained using the Hamilton’s principle.An analytical solution is presented accordingly,assuming that the PFG beam is simply supported.Comparisons with the open literature are implemented to verify the validity of such a formulation.The effects of the elastic foundations,porosity volume percentage and span-to-depth ratio are finally discussed in detail. 展开更多
关键词 BENDING free vibration porosity functionally graded material winkler-pasternak elastic foundation
下载PDF
Hybrid graded element model for transient heat conduction in functionally graded materials 被引量:4
14
作者 Lei-Lei Cao Qing-Hua Qin Ning Zhao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第1期128-139,共12页
This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs). First, a Laplace transform approach is used to handle the time variable. Then, a f... This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs). First, a Laplace transform approach is used to handle the time variable. Then, a fundamental solution in Laplace space for FGMs is constructed. Next, a hybrid graded element is formulated based on the obtained fundamental solution and a frame field. As a result, the graded properties of FGMs are naturally reflected by using the fundamental solution to interpolate the intra-element field. Further, Stefest's algorithm is employed to convert the results in Laplace space back into the time-space domain. Finally, the performance of the proposed method is assessed by several benchmark examples. The results demonstrate well the efficiency and accuracy of the proposed method. 展开更多
关键词 graded element model functionally graded materials Hybrid FEM Transient heat conduction
下载PDF
Bending and wave propagation analysis of axially functionally graded beams based on a reformulated strain gradient elasticity theory
15
作者 Shaopeng WANG Jun HONG +1 位作者 Dao WEI Gongye ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第10期1803-1820,共18页
A new size-dependent axially functionally graded(AFG) micro-beam model is established with the application of a reformulated strain gradient elasticity theory(RSGET). The new micro-beam model incorporates the strain g... A new size-dependent axially functionally graded(AFG) micro-beam model is established with the application of a reformulated strain gradient elasticity theory(RSGET). The new micro-beam model incorporates the strain gradient, velocity gradient,and couple stress effects, and accounts for the material variation along the axial direction of the two-component functionally graded beam. The governing equations and complete boundary conditions of the AFG beam are derived based on Hamilton's principle. The correctness of the current model is verified by comparing the static behavior results of the current model and the finite element model(FEM) at the micro-scale. The influence of material inhomogeneity and size effect on the static and dynamic responses of the AFG beam is studied. The numerical results show that the static and vibration responses predicted by the newly developed model are different from those based on the classical model at the micro-scale. The new model can be applied not only in the optimization of micro acoustic wave devices but also in the design of AFG micro-sensors and micro-actuators. 展开更多
关键词 Timoshenko beam theory reformulated strain gradient elastic theory(RSGET) axially functionally graded(AFG)material Hamilton's principle
下载PDF
Optimization design and residual thermal stress analysis of PDC functionally graded materials 被引量:5
16
作者 CAO Pin-lu LIU Bao-chang +1 位作者 YIN Kun ZHANG Zu-pei 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第8期1318-1323,共6页
The distribution of thermal stresses in functionally graded polycrystalline diamond compact (PDC) and in single coating of PDC are analyzed respectively by thermo-mechanical finite element analysis (FEA). It is shown ... The distribution of thermal stresses in functionally graded polycrystalline diamond compact (PDC) and in single coating of PDC are analyzed respectively by thermo-mechanical finite element analysis (FEA). It is shown that they each have a remarkable stress concentration at the edge of the interfaces. The diamond coatings usually suffer premature failure because of spallation, distortion or defects such as cracks near the interface due to these excessive residual stresses. Results showed that the axial tensile stress in FGM coating is reduced from 840 MPa to 229 MPa compared with single coating, and that the shear stress is reduced from 671 MPa to 471 MPa. Therefore, the single coating is more prone to spallation and cracking than the FGM coating. The effects of the volume compositional distribution factor (n) and the number of the graded layers (L) on the thermal stresses in FGM coating are also discussed respectively. Modelling results showed that the optimum value of the compositional distribution factor is 1.2, and that the best number of the graded layers is 6. 展开更多
关键词 功能梯度材料 优化设计 PDC 钻头 FGM
下载PDF
Design of Co-sedimentation Experiments Used to Fabricate Functionally Graded Materials with a Continuous Change of Composition 被引量:1
17
作者 杨中民 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第2期11-13,共3页
In the process of particle settling in a dilute,a density graded distribution of the liquid below the suspension needs to be designed according to the gravity of the suspension prior to sedimentation.In the present pa... In the process of particle settling in a dilute,a density graded distribution of the liquid below the suspension needs to be designed according to the gravity of the suspension prior to sedimentation.In the present paper a compositionally graded W-Mo composite was formed via the settling of the W and Mo particles,with a density gradient distributed in the initial clear liquid along the settling direction. 展开更多
关键词 co-sedimentation DESIGN functionally graded material
下载PDF
DYNAMIC RESPONSE FOR FUNCTIONALLY GRADED MATERIALS WITH PENNY-SHAPED CRACKS 被引量:1
18
作者 Wang Baolin Han Jiecai Du Shanyi 《Acta Mechanica Solida Sinica》 SCIE EI 1999年第2期106-113,共8页
This paper provides a method for studying the penny-shaped cracksconfiguration in functionally graded material(FGM)structuressubjected to dynamic or steady loading. It is assumed that the FGMare transversely isotropic... This paper provides a method for studying the penny-shaped cracksconfiguration in functionally graded material(FGM)structuressubjected to dynamic or steady loading. It is assumed that the FGMare transversely isotropic and all the material properties onlydepend on the axial coordi- nate z. In the analysis, the elasticregion is treated as a number of layers. The material properties aretaken to be constants for each layer. By utilizing the Laplacetransform and Hankel transform tech- nique, the general solution forthe layers are derived. 展开更多
关键词 fracture mechanics functionally graded materials MULTILAYERS
下载PDF
COUPLED THERMAL/MECHANICAL ANALYSIS FOR THE FRACTURE OF FUNCTIONALLY GRADED MATERIALS UNDER TRANSIENT THERMAL LOADING 被引量:1
19
作者 Zhang Xinghong Wang Baolin Han Jiecai 《Acta Mechanica Solida Sinica》 SCIE EI 2002年第2期95-101,共7页
A comprehensive treatment of fracture of functionally gradedmaterials (FGMs) is provided. It is assumed that the materialproperties depend only on the coordinate perpendicular to the cracksurface And vary continuously... A comprehensive treatment of fracture of functionally gradedmaterials (FGMs) is provided. It is assumed that the materialproperties depend only on the coordinate perpendicular to the cracksurface And vary continuously along the crack faces. By using alaminated composite plate model to simulate the ma- Terialnon-homogeneity, an algorithm for solving the system based on Laplacetransform and Fourier transform Techniques is presented. Unlikeearlier studies that considered certain assumed propertydistributions and a Single crack problem, the current investigationstudies multiple crack problem in the FGMs with arbitrarily Varyingmaterial properties. Transient thermal stresses are presented. 展开更多
关键词 functionally graded materials fracture mechanics transient thermal stress Laplace trans- form
下载PDF
THERMAL AND THERMO-ELASTIC-PLASTIC RESPONSE OF CERAMIC-METAL FUNCTIONALLY GRADED MATERIALS—THERMAL SHOCK PROBLEM 被引量:1
20
作者 Zhai, PC Zhang, QJ Yuan, RZ 《Acta Mechanica Solida Sinica》 SCIE EI 1997年第2期148-156,共9页
The thermal and thermo-elastic-plastic response of newly developed ceramic-metal functionally graded materials under a thermal shock load is studied. The materials are heated at the ceramic surface with a sudden high-... The thermal and thermo-elastic-plastic response of newly developed ceramic-metal functionally graded materials under a thermal shock load is studied. The materials are heated at the ceramic surface with a sudden high-intensity heat flux input, and cooled at the metal surface with a flowing liquid nitrogen. Emphasis is placed on two aspects: (1) the influence of the graded composition of the materials on the temperature and stress response; and (2) the optimum design of the graded composition from a unified viewpoint of the heat insulation property and stress relaxation property. Moreover, a comparison between the thermoelastic stress and the thermo-elastic-plastic stress is also made to indicate the plasticity effect. 展开更多
关键词 functionally graded materials thermal shock thermo-elastic-plastic response
下载PDF
上一页 1 2 68 下一页 到第
使用帮助 返回顶部