期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
Air tamponade in retinal detachment surgery followed by ultra-widefield fundus imaging system 被引量:4
1
作者 Qian-Yin Chen Yun-Xia Tang +6 位作者 Yan-Qiong He Hui-Min Lin Ru-Long Gao Meng-Yuan Li Jin-Tong Hou Hong-Jie Ma Jing-Lin Zhang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2018年第7期1198-1203,共6页
AIM: To report the surgical result of pars plana vitrectomy(PPV) with air tamponade for rhegmatogenous retinal detachment(RRD) by ultra-widefield fundus imaging system. METHODS: Of 25 consecutive patients(25 e... AIM: To report the surgical result of pars plana vitrectomy(PPV) with air tamponade for rhegmatogenous retinal detachment(RRD) by ultra-widefield fundus imaging system. METHODS: Of 25 consecutive patients(25 eyes) with fresh primary RRD and causative retinal break and vitreous traction were presented. All the patients underwent PPV with air tamponade. Visual acuity(VA) was examined postoperatively and images were captured by ultrawidefield scanning laser ophthalmoscope system(Optos). RESULTS: Initial reattachment was achieved in 25 cases(100%). The air volume was 〉60% on the postoperative day(POD) 1. The ultra-widefield images showed that the retina was reattached in all air-filled eyes postoperatively. The retinal break and laser burns in the superior were detected in 22 of 25 eyes(88%). A missed retinal hole was found under intravitreal air bubble in 1 case(4%). The air volume was range from 40% to 60% on POD 3. A doublelayered image was seen in 25 of 25 eyes with intravitreal gas. Retinal breaks and laser burns around were seen in the intravitreal air. On POD 7, small bubble without effect was seen in 6 cases(24%) and bubble was completely disappeared in 4 cases(16%). Small oval bubble in the superior area was observed in 15 cases(60%). There were no missed and new retinal breaks and no retinal detachment in all cases on the POD 14 and 1 mo and last follow-up. Air disappeared completely on a mean of 9.84 d postoperatively. The mean final postoperative bestcorrected visual acuity(BCVA) was 0.35 log MAR. Mean final postoperative BCVA improved significantly relative to mean preoperative(P〈0.05). Final VA of 0.3 log MAR or better was seen in 13 eyes. CONCLUSION: PPV with air tamponade is an effective management for fresh RRD with superior retinal breaks. The ultra-widefield fundus imaging can detect postoperative retinal breaks in air-filled eyes. It would be a useful facility for follow-up after PPV with air tamponade. Facedown position and acquired visual rehabilitation may be shorten. 展开更多
关键词 rhegmatogenous retinal detachment air tamponade ultra-widefield fundus imaging system
下载PDF
Adaptive optics scanning laser ophthalmoscopy in fundus imaging, a review and update 被引量:4
2
作者 Bing Zhang Ni Li +2 位作者 Jie Kang Yi He Xiao-Ming Chen 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2017年第11期1751-1758,共8页
Adaptive optics scanning laser ophthalmoscopy(AOSLO) has been a promising technique in funds imaging with growing popularity. This review firstly gives a brief history of adaptive optics(AO) and AO-SLO. Then it co... Adaptive optics scanning laser ophthalmoscopy(AOSLO) has been a promising technique in funds imaging with growing popularity. This review firstly gives a brief history of adaptive optics(AO) and AO-SLO. Then it compares AO-SLO with conventional imaging methods(fundus fluorescein angiography, fundus autofluorescence, indocyanine green angiography and optical coherence tomography) and other AO techniques(adaptive optics flood-illumination ophthalmoscopy and adaptive optics optical coherence tomography). Furthermore, an update of current research situation in AO-SLO is made based on different fundus structures as photoreceptors(cones and rods), fundus vessels, retinal pigment epithelium layer, retinal nerve fiber layer, ganglion cell layer and lamina cribrosa. Finally, this review indicates possible research directions of AO-SLO in future. 展开更多
关键词 adaptive optics scanning laser ophthalmoscopy retina fundus imaging
下载PDF
Unified deep learning model for predicting fundus fluorescein angiography image from fundus structure image
3
作者 Yiwei Chen Yi He +3 位作者 Hong Ye Lina Xing Xin Zhang Guohua Shi 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第3期105-113,共9页
The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera im... The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera imaging,single-phase FFA from scanning laser ophthalmoscopy(SLO),and three-phase FFA also from SLO.Although many deep learning models are available,a single model can only perform one or two of these prediction tasks.To accomplish three prediction tasks using a unified method,we propose a unified deep learning model for predicting FFA images from fundus structure images using a supervised generative adversarial network.The three prediction tasks are processed as follows:data preparation,network training under FFA supervision,and FFA image prediction from fundus structure images on a test set.By comparing the FFA images predicted by our model,pix2pix,and CycleGAN,we demonstrate the remarkable progress achieved by our proposal.The high performance of our model is validated in terms of the peak signal-to-noise ratio,structural similarity index,and mean squared error. 展开更多
关键词 fundus fluorescein angiography image fundus structure image image translation unified deep learning model generative adversarial networks
下载PDF
Applications of deep learning for detecting ophthalmic diseases with ultrawide-field fundus
4
作者 Qing-Qing Tang Xiang-Gang Yang +2 位作者 Hong-Qiu Wang Da-Wen Wu Mei-Xia Zhang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第1期188-200,共13页
AIM:To summarize the application of deep learning in detecting ophthalmic disease with ultrawide-field fundus images and analyze the advantages,limitations,and possible solutions common to all tasks.METHODS:We searche... AIM:To summarize the application of deep learning in detecting ophthalmic disease with ultrawide-field fundus images and analyze the advantages,limitations,and possible solutions common to all tasks.METHODS:We searched three academic databases,including PubMed,Web of Science,and Ovid,with the date of August 2022.We matched and screened according to the target keywords and publication year and retrieved a total of 4358 research papers according to the keywords,of which 23 studies were retrieved on applying deep learning in diagnosing ophthalmic disease with ultrawide-field images.RESULTS:Deep learning in ultrawide-field images can detect various ophthalmic diseases and achieve great performance,including diabetic retinopathy,glaucoma,age-related macular degeneration,retinal vein occlusions,retinal detachment,and other peripheral retinal diseases.Compared to fundus images,the ultrawide-field fundus scanning laser ophthalmoscopy enables the capture of the ocular fundus up to 200°in a single exposure,which can observe more areas of the retina.CONCLUSION:The combination of ultrawide-field fundus images and artificial intelligence will achieve great performance in diagnosing multiple ophthalmic diseases in the future. 展开更多
关键词 ultrawide-field fundus images deep learning disease diagnosis ophthalmic disease
下载PDF
DeepSVDNet:A Deep Learning-Based Approach for Detecting and Classifying Vision-Threatening Diabetic Retinopathy in Retinal Fundus Images
5
作者 Anas Bilal Azhar Imran +4 位作者 Talha Imtiaz Baig Xiaowen Liu Haixia Long Abdulkareem Alzahrani Muhammad Shafiq 《Computer Systems Science & Engineering》 2024年第2期511-528,共18页
Artificial Intelligence(AI)is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy(VTDR),which is a leading cause of visual impairment and blindness worldwide.However,previous automated VTDR ... Artificial Intelligence(AI)is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy(VTDR),which is a leading cause of visual impairment and blindness worldwide.However,previous automated VTDR detection methods have mainly relied on manual feature extraction and classification,leading to errors.This paper proposes a novel VTDR detection and classification model that combines different models through majority voting.Our proposed methodology involves preprocessing,data augmentation,feature extraction,and classification stages.We use a hybrid convolutional neural network-singular value decomposition(CNN-SVD)model for feature extraction and selection and an improved SVM-RBF with a Decision Tree(DT)and K-Nearest Neighbor(KNN)for classification.We tested our model on the IDRiD dataset and achieved an accuracy of 98.06%,a sensitivity of 83.67%,and a specificity of 100%for DR detection and evaluation tests,respectively.Our proposed approach outperforms baseline techniques and provides a more robust and accurate method for VTDR detection. 展开更多
关键词 Diabetic retinopathy(DR) fundus images(FIs) support vector machine(SVM) medical image analysis convolutional neural networks(CNN) singular value decomposition(SVD) classification
下载PDF
IM-EDRD from Retinal Fundus Images Using Multi-Level Classification Techniques
6
作者 M.P.Karthikeyan E.A.Mary Anita 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期567-580,共14页
In recent years,there has been a significant increase in the number of people suffering from eye illnesses,which should be treated as soon as possible in order to avoid blindness.Retinal Fundus images are employed for... In recent years,there has been a significant increase in the number of people suffering from eye illnesses,which should be treated as soon as possible in order to avoid blindness.Retinal Fundus images are employed for this purpose,as well as for analysing eye abnormalities and diagnosing eye illnesses.Exudates can be recognised as bright lesions in fundus pictures,which can be thefirst indicator of diabetic retinopathy.With that in mind,the purpose of this work is to create an Integrated Model for Exudate and Diabetic Retinopathy Diagnosis(IM-EDRD)with multi-level classifications.The model uses Support Vector Machine(SVM)-based classification to separate normal and abnormal fundus images at thefirst level.The input pictures for SVM are pre-processed with Green Channel Extraction and the retrieved features are based on Gray Level Co-occurrence Matrix(GLCM).Furthermore,the presence of Exudate and Diabetic Retinopathy(DR)in fundus images is detected using the Adaptive Neuro Fuzzy Inference System(ANFIS)classifier at the second level of classification.Exudate detection,blood vessel extraction,and Optic Disc(OD)detection are all processed to achieve suitable results.Furthermore,the second level processing comprises Morphological Component Analysis(MCA)based image enhancement and object segmentation processes,as well as feature extraction for training the ANFIS classifier,to reliably diagnose DR.Furthermore,thefindings reveal that the proposed model surpasses existing models in terms of accuracy,time efficiency,and precision rate with the lowest possible error rate. 展开更多
关键词 Retinal fundus images EXUDATE diabetic retinopathy SVM ANFIS morphological component analysis
下载PDF
Deep learning-based automated grading of visual impairment in cataract patients using fundus images
7
作者 蒋杰伟 ZHANG Yi +4 位作者 XIE He GONG Jiamin ZHU Shaomin WU Shanjun LI Zhongwen 《High Technology Letters》 EI CAS 2023年第4期377-387,共11页
Cataract is the leading cause of visual impairment globally.The scarcity and uneven distribution of ophthalmologists seriously hinder early visual impairment grading for cataract patients in the clin-ic.In this study,... Cataract is the leading cause of visual impairment globally.The scarcity and uneven distribution of ophthalmologists seriously hinder early visual impairment grading for cataract patients in the clin-ic.In this study,a deep learning-based automated grading system of visual impairment in cataract patients is proposed using a multi-scale efficient channel attention convolutional neural network(MECA_CNN).First,the efficient channel attention mechanism is applied in the MECA_CNN to extract multi-scale features of fundus images,which can effectively focus on lesion-related regions.Then,the asymmetric convolutional modules are embedded in the residual unit to reduce the infor-mation loss of fine-grained features in fundus images.In addition,the asymmetric loss function is applied to address the problem of a higher false-negative rate and weak generalization ability caused by the imbalanced dataset.A total of 7299 fundus images derived from two clinical centers are em-ployed to develop and evaluate the MECA_CNN for identifying mild visual impairment caused by cataract(MVICC),moderate to severe visual impairment caused by cataract(MSVICC),and nor-mal sample.The experimental results demonstrate that the MECA_CNN provides clinically meaning-ful performance for visual impairment grading in the internal test dataset:MVICC(accuracy,sensi-tivity,and specificity;91.3%,89.9%,and 92%),MSVICC(93.2%,78.5%,and 96.7%),and normal sample(98.1%,98.0%,and 98.1%).The comparable performance in the external test dataset is achieved,further verifying the effectiveness and generalizability of the MECA_CNN model.This study provides a deep learning-based practical system for the automated grading of visu-al impairment in cataract patients,facilitating the formulation of treatment strategies in a timely man-ner and improving patients’vision prognosis. 展开更多
关键词 deep learning convolutional neural network(CNN) visual impairment grading fundus image efficient channel attention
下载PDF
Convolutional Neural Network-Based Classificationof Multiple Retinal Diseases Using Fundus Images
8
作者 Aqsa Aslam Saima Farhan +3 位作者 Momina Abdul Khaliq Fatima Anjum Ayesha Afzaal Faria Kanwal 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期2607-2622,共16页
Use of deep learning algorithms for the investigation and analysis of medical images has emerged as a powerful technique.The increase in retinal dis-eases is alarming as it may lead to permanent blindness if left untr... Use of deep learning algorithms for the investigation and analysis of medical images has emerged as a powerful technique.The increase in retinal dis-eases is alarming as it may lead to permanent blindness if left untreated.Automa-tion of the diagnosis process of retinal diseases not only assists ophthalmologists in correct decision-making but saves time also.Several researchers have worked on automated retinal disease classification but restricted either to hand-crafted fea-ture selection or binary classification.This paper presents a deep learning-based approach for the automated classification of multiple retinal diseases using fundus images.For this research,the data has been collected and combined from three distinct sources.The images are preprocessed for enhancing the details.Six layers of the convolutional neural network(CNN)are used for the automated feature extraction and classification of 20 retinal diseases.It is observed that the results are reliant on the number of classes.For binary classification(healthy vs.unhealthy),up to 100%accuracy has been achieved.When 16 classes are used(treating stages of a disease as a single class),93.3%accuracy,92%sensitivity and 93%specificity have been obtained respectively.For 20 classes(treating stages of the disease as separate classes),the accuracy,sensitivity and specificity have dropped to 92.4%,92%and 92%respectively. 展开更多
关键词 CLASSIFICATION convolutional neural network fundus images medical image diagnosis retinal diseases
下载PDF
Multimodal imaging of experimental choroidal neovascularization 被引量:1
9
作者 Ioanna Tsioti Xuan Liu +2 位作者 Petra Schwarzer Martin S.Zinkernagel Despina Kokona 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2022年第6期886-893,共8页
AIM:To compare choroidal neovascularization(CNV)lesion measurements obtained by in vivo imaging modalities,with whole mount histological preparations stained with isolectin GS-IB4,using a murine laser-induced CNV mode... AIM:To compare choroidal neovascularization(CNV)lesion measurements obtained by in vivo imaging modalities,with whole mount histological preparations stained with isolectin GS-IB4,using a murine laser-induced CNV model.METHODS:B6 N.Cg-Tg(Csf1 r-EGFP)1 Hume/J heterozygous adult mice were subjected to laser-induced CNV and were monitored by fluorescein angiography(FA),multicolor(MC)fundus imaging and optical coherence tomography angiography(OCTA)at day 14 after CNV induction.Choroidalretinal pigment epithelium(RPE)whole mounts were prepared at the end of the experiment and were stained with isolectin GS-IB4.CNV areas were measured in all different imaging modalities at day 14 after CNV from three independent raters and were compared to choroidal-RPE whole mounts.Intraclass correlation coefficient(ICC)type 2(2-way random model)and its 95%confidence intervals(CI)were calculated to measure the correlation between different raters’measurements.Spearman’s rank correlation coefficient(Spearman’s r)was calculated for the comparison between FA,MC and OCTA data and histology data.RESULTS:FA(early and late)and MC correlates well with the CNV measurements ex vivo with FA having slightly better correlation than MC(FA early Spearman’s r=0.7642,FA late Spearman’s r=0.7097,and MC Spearman’s r=0.7418),while the interobser ver reliability was good for both techniques(FA early ICC=0.976,FA late ICC=0.964,and MC ICC=0.846).In contrast,OCTA showed a poor correlation with ex vivo measurements(Spearman’s r=0.05716)and high variability between different raters(ICC=0.603).CONCLUSION:This study suggests that FA and MC imaging could be used for the evaluation of CNV areas in vivo while caution must be taken and comparison studies should be performed when OCTA is employed as a CNV monitoring tool in small rodents. 展开更多
关键词 choroidal neovascularization in vivo imaging fluorescein angiography multicolor fundus imaging optical coherence tomography angiography
下载PDF
An Improved Deep Learning Framework for Automated Optic Disc Localization and Glaucoma Detection
10
作者 Hela Elmannai Monia Hamdi +3 位作者 Souham Meshoul Amel Ali Alhussan Manel Ayadi Amel Ksibi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1429-1457,共29页
Glaucoma disease causes irreversible damage to the optical nerve and it has the potential to cause permanent loss of vision.Glaucoma ranks as the second most prevalent cause of permanent blindness.Traditional glaucoma... Glaucoma disease causes irreversible damage to the optical nerve and it has the potential to cause permanent loss of vision.Glaucoma ranks as the second most prevalent cause of permanent blindness.Traditional glaucoma diagnosis requires a highly experienced specialist,costly equipment,and a lengthy wait time.For automatic glaucoma detection,state-of-the-art glaucoma detection methods include a segmentation-based method to calculate the cup-to-disc ratio.Other methods include multi-label segmentation networks and learning-based methods and rely on hand-crafted features.Localizing the optic disc(OD)is one of the key features in retinal images for detecting retinal diseases,especially for glaucoma disease detection.The approach presented in this study is based on deep classifiers for OD segmentation and glaucoma detection.First,the optic disc detection process is based on object detection using a Mask Region-Based Convolutional Neural Network(Mask-RCNN).The OD detection task was validated using the Dice score,intersection over union,and accuracy metrics.The OD region is then fed into the second stage for glaucoma detection.Therefore,considering only the OD area for glaucoma detection will reduce the number of classification artifacts by limiting the assessment to the optic disc area.For this task,VGG-16(Visual Geometry Group),Resnet-18(Residual Network),and Inception-v3 were pre-trained and fine-tuned.We also used the Support Vector Machine Classifier.The feature-based method uses region content features obtained by Histogram of Oriented Gradients(HOG)and Gabor Filters.The final decision is based on weighted fusion.A comparison of the obtained results from all classification approaches is provided.Classification metrics including accuracy and ROC curve are compared for each classification method.The novelty of this research project is the integration of automatic OD detection and glaucoma diagnosis in a global method.Moreover,the fusion-based decision system uses the glaucoma detection result obtained using several convolutional deep neural networks and the support vector machine classifier.These classification methods contribute to producing robust classification results.This method was evaluated using well-known retinal images available for research work and a combined dataset including retinal images with and without pathology.The performance of the models was tested on two public datasets and a combined dataset and was compared to similar research.The research findings show the potential of this methodology in the early detection of glaucoma,which will reduce diagnosis time and increase detection efficiency.The glaucoma assessment achieves about 98%accuracy in the classification rate,which is close to and even higher than that of state-of-the-art methods.The designed detection model may be used in telemedicine,healthcare,and computer-aided diagnosis systems. 展开更多
关键词 Optic disc GLAUCOMA fundus image deep learning
下载PDF
A novel method for detection of hard exudates from fundus images based on SVM and improved FCM
11
作者 高玮玮 SHEN Jian-xin +1 位作者 WANG Ming-hong ZUO Jing 《Journal of Chongqing University》 CAS 2018年第3期77-86,共10页
Diabetic retinopathy(DR) is one of the most important causes of visual impairment. Automatic recognition of DR lesions, like hard exudates(EXs), in retinal images can contribute to the diagnosis and screening of the d... Diabetic retinopathy(DR) is one of the most important causes of visual impairment. Automatic recognition of DR lesions, like hard exudates(EXs), in retinal images can contribute to the diagnosis and screening of the disease. To achieve this goal, an automatically detecting approach based on improved FCM(IFCM) as well as support vector machines(SVM) was established and studied. Firstly, color fundus images were segmented by IFCM, and candidate regions of EXs were obtained. Then, the SVM classifier is confirmed with the optimal subset of features and judgments of these candidate regions, as a result hard exudates are detected from fundus images. Our database was composed of 126 images with variable color, brightness, and quality. 70 of them were used to train the SVM and the remaining 56 to assess the performance of the method. Using a lesion based criterion, we achieved a mean sensitivity of 94.65% and a mean positive predictive value of 97.25%. With an image-based criterion, our approach reached a 100% mean sensitivity, 96.43% mean specificity and 98.21% mean accuracy. Furthermore, the average time cost in processing an image is 4.56 s. The results suggest that the proposed method can efficiently detect EXs from color fundus images and it could be a diagnostic aid for ophthalmologists in the screening for DR. 展开更多
关键词 diabetic retinopathy improved FCM support vector machines hard exudates fundus images
下载PDF
A narrative review of glaucoma screening from fundus images
12
作者 Xingxing Cao Xu Sun +1 位作者 Shuai Yan Yanwu Xu 《Annals of Eye Science》 2021年第3期45-58,共14页
The objective of the paper is to provide a general view for automatic cup to disc ratio(CDR)assessment in fundus images.As for the cause of blindness,glaucoma ranks as the second in ocular diseases.Vision loss caused ... The objective of the paper is to provide a general view for automatic cup to disc ratio(CDR)assessment in fundus images.As for the cause of blindness,glaucoma ranks as the second in ocular diseases.Vision loss caused by glaucoma cannot be reversed,but the loss may be avoided if screened in the early stage of glaucoma.Thus,early screening of glaucoma is very requisite to preserve vision and maintain quality of life.Optic nerve head(ONH)assessment is a useful and practical technique among current glaucoma screening methods.Vertical CDR as one of the clinical indicators for ONH assessment,has been well-used by clinicians and professionals for the analysis and diagnosis of glaucoma.The key for automatic calculation of vertical CDR in fundus images is the segmentation of optic cup(OC)and optic disc(OD).We take a brief description of methodologies about the OC and disc optic segmentation and comprehensively presented these methods as two aspects:hand-craft feature and deep learning feature.Sliding window regression,super-pixel level,image reconstruction,super-pixel level low-rank representation(LRR),deep learning methodologies for segmentation of OD and OC have been shown.It is hoped that this paper can provide guidance and bring inspiration to other researchers.Every mentioned method has its advantages and limitations.Appropriate method should be selected or explored according to the actual situation.For automatic glaucoma screening,CDR is just the reflection for a small part of the disc,while utilizing comprehensive factors or multimodal images is the promising future direction to furthermore enhance the performance. 展开更多
关键词 Glaucoma screening fundus images SEGMENTATION
下载PDF
Geometric Calibration and Mergence Algorithm of Ocular Fundus Images
13
《Chinese Journal of Biomedical Engineering(English Edition)》 1999年第4期94-95,共2页
关键词 CHEN Geometric Calibration and Mergence Algorithm of Ocular fundus Images
下载PDF
CD-FL:Cataract Images Based Disease Detection Using Federated Learning 被引量:1
14
作者 Arfat Ahmad Khan Shtwai Alsubai +4 位作者 Chitapong Wechtaisong Ahmad Almadhor Natalia Kryvinska Abdullah Al Hejaili Uzma Ghulam Mohammad 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期1733-1750,共18页
A cataract is one of the most significant eye problems worldwide that does not immediately impair vision and progressively worsens over time.Automatic cataract prediction based on various imaging technologies has been... A cataract is one of the most significant eye problems worldwide that does not immediately impair vision and progressively worsens over time.Automatic cataract prediction based on various imaging technologies has been addressed recently,such as smartphone apps used for remote health monitoring and eye treatment.In recent years,advances in diagnosis,prediction,and clinical decision support using Artificial Intelligence(AI)in medicine and ophthalmology have been exponential.Due to privacy concerns,a lack of data makes applying artificial intelligence models in the medical field challenging.To address this issue,a federated learning framework named CDFL based on a VGG16 deep neural network model is proposed in this research.The study collects data from the Ocular Disease Intelligent Recognition(ODIR)database containing 5,000 patient records.The significant features are extracted and normalized using the min-max normalization technique.In the federated learning-based technique,the VGG16 model is trained on the dataset individually after receiving model updates from two clients.Before transferring the attributes to the global model,the suggested method trains the local model.The global model subsequently improves the technique after integrating the new parameters.Every client analyses the results in three rounds to decrease the over-fitting problem.The experimental result shows the effectiveness of the federated learning-based technique on a Deep Neural Network(DNN),reaching a 95.28%accuracy while also providing privacy to the patient’s data.The experiment demonstrated that the suggested federated learning model outperforms other traditional methods,achieving client 1 accuracy of 95.0%and client 2 accuracy of 96.0%. 展开更多
关键词 PRIVACY-PRESERVING cataract disease federated learning fundus images healthcare smartphone applications machine learning
下载PDF
Intelligent Machine Learning Enabled Retinal Blood Vessel Segmentation and Classification
15
作者 Nora Abdullah Alkhaldi Hanan T.Halawani 《Computers, Materials & Continua》 SCIE EI 2023年第1期399-414,共16页
Automated segmentation of blood vessels in retinal fundus images is essential for medical image analysis.The segmentation of retinal vessels is assumed to be essential to the progress of the decision support system fo... Automated segmentation of blood vessels in retinal fundus images is essential for medical image analysis.The segmentation of retinal vessels is assumed to be essential to the progress of the decision support system for initial analysis and treatment of retinal disease.This article develops a new Grasshopper Optimization with Fuzzy Edge Detection based Retinal Blood Vessel Segmentation and Classification(GOFED-RBVSC)model.The proposed GOFED-RBVSC model initially employs contrast enhancement process.Besides,GOAFED approach is employed to detect the edges in the retinal fundus images in which the use of GOA adjusts the membership functions.The ORB(Oriented FAST and Rotated BRIEF)feature extractor is exploited to generate feature vectors.Finally,Improved Conditional Variational Auto Encoder(ICAVE)is utilized for retinal image classification,shows the novelty of the work.The performance validation of the GOFEDRBVSC model is tested using benchmark dataset,and the comparative study highlighted the betterment of the GOFED-RBVSC model over the recent approaches. 展开更多
关键词 Edge detection blood vessel segmentation retinal fundus images image classification deep learning
下载PDF
Cross-Validation Convolution Neural Network-Based Algorithm for Automated Detection of Diabetic Retinopathy
16
作者 S.Sudha A.Srinivasan T.Gayathri Devi 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期1985-2000,共16页
The substantial vision loss due to Diabetic Retinopathy(DR)mainly damages the blood vessels of the retina.These feature changes in the blood vessels fail to exist any manifestation in the eye at its initial stage,if t... The substantial vision loss due to Diabetic Retinopathy(DR)mainly damages the blood vessels of the retina.These feature changes in the blood vessels fail to exist any manifestation in the eye at its initial stage,if this problem doesn’t exhibit initially,that leads to permanent blindness.So,this type of disorder can be only screened and identified through the processing of fundus images.The different stages in DR are Micro aneurysms(Ma),Hemorrhages(HE),and Exudates,and the stages in lesion show the chance of DR.For the advancement of early detection of DR in the eye we have developed the CNN-based identification approach on the fundus blood lesion image.The CNN-based automated detection of DR proposes the novel Graph cutter-built background and foreground superpixel segmentation technique and the foremost classification of fundus images feature was done through hybrid classifiers as K-Nearest Neighbor(KNN)classifier,Support Vector Machine(SVM)classifier,and Cascaded Rotation Forest(CRF)classifier.Over this classifier,the feature cross-validation made the classification more accurate and the comparison is made with the previous works of parameters such as specificity,sensitivity,and accuracy shows that the hybrid classifier attains excellent performance and achieves an overall accuracy of 98%.Among these Cascaded Rotation Forest(CRF)classifier has more accuracy than others. 展开更多
关键词 CNN networking SEGMENTATION hybrid classifier data set CROSSVALIDATION fundus image
下载PDF
Modified Anam-Net Based Lightweight Deep Learning Model for Retinal Vessel Segmentation 被引量:1
17
作者 Syed Irtaza Haider Khursheed Aurangzeb Musaed Alhussein 《Computers, Materials & Continua》 SCIE EI 2022年第10期1501-1526,共26页
The accurate segmentation of retinal vessels is a challenging taskdue to the presence of various pathologies as well as the low-contrast ofthin vessels and non-uniform illumination. In recent years, encoder-decodernet... The accurate segmentation of retinal vessels is a challenging taskdue to the presence of various pathologies as well as the low-contrast ofthin vessels and non-uniform illumination. In recent years, encoder-decodernetworks have achieved outstanding performance in retinal vessel segmentation at the cost of high computational complexity. To address the aforementioned challenges and to reduce the computational complexity, we proposea lightweight convolutional neural network (CNN)-based encoder-decoderdeep learning model for accurate retinal vessels segmentation. The proposeddeep learning model consists of encoder-decoder architecture along withbottleneck layers that consist of depth-wise squeezing, followed by fullconvolution, and finally depth-wise stretching. The inspiration for the proposed model is taken from the recently developed Anam-Net model, whichwas tested on CT images for COVID-19 identification. For our lightweightmodel, we used a stack of two 3 × 3 convolution layers (without spatialpooling in between) instead of a single 3 × 3 convolution layer as proposedin Anam-Net to increase the receptive field and to reduce the trainableparameters. The proposed method includes fewer filters in all convolutionallayers than the original Anam-Net and does not have an increasing numberof filters for decreasing resolution. These modifications do not compromiseon the segmentation accuracy, but they do make the architecture significantlylighter in terms of the number of trainable parameters and computation time.The proposed architecture has comparatively fewer parameters (1.01M) thanAnam-Net (4.47M), U-Net (31.05M), SegNet (29.50M), and most of the otherrecent works. The proposed model does not require any problem-specificpre- or post-processing, nor does it rely on handcrafted features. In addition,the attribute of being efficient in terms of segmentation accuracy as well aslightweight makes the proposed method a suitable candidate to be used in thescreening platforms at the point of care. We evaluated our proposed modelon open-access datasets namely, DRIVE, STARE, and CHASE_DB. Theexperimental results show that the proposed model outperforms several stateof-the-art methods, such as U-Net and its variants, fully convolutional network (FCN), SegNet, CCNet, ResWNet, residual connection-based encoderdecoder network (RCED-Net), and scale-space approx. network (SSANet) in terms of {dice coefficient, sensitivity (SN), accuracy (ACC), and the areaunder the ROC curve (AUC)} with the scores of {0.8184, 0.8561, 0.9669, and0.9868} on the DRIVE dataset, the scores of {0.8233, 0.8581, 0.9726, and0.9901} on the STARE dataset, and the scores of {0.8138, 0.8604, 0.9752,and 0.9906} on the CHASE_DB dataset. Additionally, we perform crosstraining experiments on the DRIVE and STARE datasets. The result of thisexperiment indicates the generalization ability and robustness of the proposedmodel. 展开更多
关键词 Anam-Net convolutional neural network cross-database training data augmentation deep learning fundus images retinal vessel segmentation semantic segmentation
下载PDF
Intelligent Deep Learning Based Multi-Retinal Disease Diagnosis and Classification Framework
18
作者 Thavavel Vaiyapuri S.Srinivasan +4 位作者 Mohamed Yacin Sikkandar T.S.Balaji Seifedine Kadry Maytham N.Meqdad Yunyoung Nam 《Computers, Materials & Continua》 SCIE EI 2022年第12期5543-5557,共15页
In past decades,retinal diseases have become more common and affect people of all age grounds over the globe.For examining retinal eye disease,an artificial intelligence(AI)based multilabel classification model is nee... In past decades,retinal diseases have become more common and affect people of all age grounds over the globe.For examining retinal eye disease,an artificial intelligence(AI)based multilabel classification model is needed for automated diagnosis.To analyze the retinal malady,the system proposes a multiclass and multi-label arrangement method.Therefore,the classification frameworks based on features are explicitly described by ophthalmologists under the application of domain knowledge,which tends to be time-consuming,vulnerable generalization ability,and unfeasible in massive datasets.Therefore,the automated diagnosis of multi-retinal diseases becomes essential,which can be solved by the deep learning(DL)models.With this motivation,this paper presents an intelligent deep learningbased multi-retinal disease diagnosis(IDL-MRDD)framework using fundus images.The proposed model aims to classify the color fundus images into different classes namely AMD,DR,Glaucoma,Hypertensive Retinopathy,Normal,Others,and Pathological Myopia.Besides,the artificial flora algorithm with Shannon’s function(AFA-SF)basedmulti-level thresholding technique is employed for image segmentation and thereby the infected regions can be properly detected.In addition,SqueezeNet based feature extractor is employed to generate a collection of feature vectors.Finally,the stacked sparse Autoencoder(SSAE)model is applied as a classifier to distinguish the input images into distinct retinal diseases.The efficacy of the IDL-MRDD technique is carried out on a benchmark multi-retinal disease dataset,comprising data instances from different classes.The experimental values pointed out the superior outcome over the existing techniques with the maximum accuracy of 0.963. 展开更多
关键词 Multi-retinal disease computer aided diagnosis fundus images deep learning SEGMENTATION intelligent models
下载PDF
Transfer Learning-based Computer-aided Diagnosis System for Predicting Grades of Diabetic Retinopathy
19
作者 Qaisar Abbas Mostafa E.A.Ibrahim Abdul Rauf Baig 《Computers, Materials & Continua》 SCIE EI 2022年第6期4573-4590,共18页
Diabetic retinopathy(DR)diagnosis through digital fundus images requires clinical experts to recognize the presence and importance of many intricate features.This task is very difficult for ophthalmologists and timeco... Diabetic retinopathy(DR)diagnosis through digital fundus images requires clinical experts to recognize the presence and importance of many intricate features.This task is very difficult for ophthalmologists and timeconsuming.Therefore,many computer-aided diagnosis(CAD)systems were developed to automate this screening process ofDR.In this paper,aCAD-DR system is proposed based on preprocessing and a pre-train transfer learningbased convolutional neural network(PCNN)to recognize the five stages of DR through retinal fundus images.To develop this CAD-DR system,a preprocessing step is performed in a perceptual-oriented color space to enhance the DR-related lesions and then a standard pre-train PCNN model is improved to get high classification results.The architecture of the PCNN model is based on three main phases.Firstly,the training process of the proposed PCNN is accomplished by using the expected gradient length(EGL)to decrease the image labeling efforts during the training of the CNN model.Secondly,themost informative patches and images were automatically selected using a few pieces of training labeled samples.Thirdly,the PCNN method generated useful masks for prognostication and identified regions of interest.Fourthly,the DR-related lesions involved in the classification task such as micro-aneurysms,hemorrhages,and exudates were detected and then used for recognition of DR.The PCNN model is pre-trained using a high-end graphical processor unit(GPU)on the publicly available Kaggle benchmark.The obtained results demonstrate that the CAD-DR system outperforms compared to other state-of-the-art in terms of sensitivity(SE),specificity(SP),and accuracy(ACC).On the test set of 30,000 images,the CAD-DR system achieved an average SE of 93.20%,SP of 96.10%,and ACC of 98%.This result indicates that the proposed CAD-DR system is appropriate for the screening of the severity-level of DR. 展开更多
关键词 Diabetic Retinopathy retinal fundus images computer-aided diagnosis system deep learning transfer learning convolutional neural network
下载PDF
Automatic localization of macular area based on structure label transfer
20
作者 Xiao-Xin Guo Qun Li +1 位作者 Chao Sun Yi-Nan LU 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2018年第3期422-428,共7页
AIM: To explore feasibility and practicability of macula localization independent of macular morphological features. METHODS: A novel method was proposed to identify macula in fundus images by using structure label... AIM: To explore feasibility and practicability of macula localization independent of macular morphological features. METHODS: A novel method was proposed to identify macula in fundus images by using structure label transfer. Its main idea was to match a processed image with the candidate images with known structures, and then transfer the structure label representing the macular to the processed image as a result of macula localization. In this way, macula localization couldn't be influenced by lesion or other interference any more. RESULTS: The average success rate in four datasets was 98.18%. For accuracy, the average error distance in four datasets was 0.151 optic disc diameter (ODD). Even for severe lesion images, the proposed method can still maintain high success rate and high accuracy, e.g., 95.65% and 0.124 ODD in the case of STARE dataset, respectively, which indicated that the proposed method was highly robust and stable in the complicated situations. CONCLUSION: The proposed method can avoid the interference of lesion to macular morphological features in macula localization, and can locate macula with high accuracy and robustness, verifying its feasibility. 展开更多
关键词 fundus image optic disc MACULA structurelabel transfer
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部