期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
Impact of Vegetation Restoration on Soil Fungal Community Structure in Karst Rocky Desertification Areas
1
作者 Shasha WANG Jiacheng LAN 《Meteorological and Environmental Research》 2024年第2期55-61,共7页
In this paper,managed forest(MF)and natural forest(NF)in the Huajiang Demonstration Zone of Guanling,Guizhou were selected as research objects,and cropland(CL)was taken as control.High-throughput sequencing technology... In this paper,managed forest(MF)and natural forest(NF)in the Huajiang Demonstration Zone of Guanling,Guizhou were selected as research objects,and cropland(CL)was taken as control.High-throughput sequencing technology was used to study the characteristics of fungal community composition and species diversity in the surface(0-10 cm)soil of each restoration measure,in order to reveal the dominant soil fungal groups and fungal community composition in karst rocky desertification areas,which was conducive to a more comprehensive understanding of the soil conditions of different vegetation restoration measures.Research has shown that vegetation restoration significantly affected the diversity of soil fungal community,with significant increases in Sob index,Ace index,and Chao index.The vegetation restoration has significantly changed the composition of fungal community.The dominant fungi in the CL topsoil are Sordariomycetes(62.28%),Dothideomycetes(12.34%),and Eurotiomycetes(9.12%);the dominant fungi in the MF soil are Sordariomycetes(45.05%),Dothideomycetes(14.74%),and Mortierellomycetes(10.40%);the dominant fungi in the NF soil are unclassified fungal community(26.38%),Sordariomycetes(19.78%),and Agaricomycetes(13.82%).Vegetation restoration has changed the key fungal groups in the soil.Sordariomycetes,Fusarium,and Setophoma are the key dominant fungal groups in CL soil;Dioszegia is key dominant fungal group in MF soil;c_unclassified_k_Fungi,p_unclassified_k_Fungi,o_unclassified_k_Fungi,f_unclassified_k_Fungi,g_unclassified_k_Fungi,Teichospora,and Diaporthe are key dominant fungal groups in NF soil. 展开更多
关键词 Karst rocky desertification Vegetation restoration Soil fungal community fungal diversity
下载PDF
Fungal community structure analysis of peanut pod rot in soil in Hebei Province,China
2
作者 Lifei Zhu Chushu Zhang +6 位作者 Yueyi Tang Haixiang Zhou Wenting Wang Mian Wang Qiang Yu Furong Song Jiancheng Zhang 《Oil Crop Science》 CSCD 2023年第2期97-103,共7页
In recent years,peanut yield and quality are more seriously affected by pod rot disease in China.However,managing this disease has proven challenging due to the wide host range of its pathogens.In this study,four soil... In recent years,peanut yield and quality are more seriously affected by pod rot disease in China.However,managing this disease has proven challenging due to the wide host range of its pathogens.In this study,four soil samples were collected from fields with pod rot disease in Hebei Province,and 454 pyrosequencing was used to analyze the fungal communities structure within them.All 38490 ITS high-quality sequences were grouped into 1203 operational taxonomic units,the fungal community diversity of four soil samples was evaluated and compared using Shannon index and Simpson index.The results showed that members of Ascomycota were dominant,followed by Basidiomycota.According to the BLAST results at the species level,Guehomyces had the highest abundance,accounting for about 7.27%,followed by Alternaria,Fusarium,and Davidiella.The relative abundance of Fusarium oxysporum isolated from rotting peanuts in soil with peanut rot was higher than that in the control,indicating that Fusarium oxysporum might be one of the main pathogenic fungus of peanut rot in this area.This study delved into the broader fungal community associated with peanut pod rot,providing a theoretical foundation for preventing and treating this disease in agriculture. 展开更多
关键词 Peanut pod rot Soil pathogens fungal community Fusarium oxysporum
下载PDF
Effects of Consecutively Monocultured Rehmannia glutinosa L.on Diversity of Fungal Community in Rhizospheric Soil 被引量:18
3
作者 ZHANG Zhong-yi LIN Wen-xiong +2 位作者 YANG Yan-hui CHEN Hui CHEN Xin-jian 《Agricultural Sciences in China》 CAS CSCD 2011年第9期1374-1384,共11页
Continuous monoculture problems, or replanting diseases, are one of the key factors affecting productivity and quality of Chinese medicinal plants. The underlying mechanism is still being explored. Most of the studies... Continuous monoculture problems, or replanting diseases, are one of the key factors affecting productivity and quality of Chinese medicinal plants. The underlying mechanism is still being explored. Most of the studies on continuous monoculture ofRehmannia glutinosa L. are focused on plant nutritional physiology, root exudate, and its autotoxieity. However, the changes in the diversity of microflora in the rhizosphere mediated by the continuous monoculture pattern have been remained unknown. In this study, terminal restriction fragment length polymorphism (T-RFLP) technique was used for fingerprinting fungal diversity in the rhizosphere soil sampled from the fields ofR. glutinosa monocultured for 1 and 2 yr. The results showed that the structure of fungal community in consecutively moncultured rhizosphere soil was different from that in control soil (no cropping soil), and varied with the consecutive monoeulture years (1 and 2 yr). The comprehensive evaluation index (D) of fungal community estimated by principal component analysis of fragment number, peak area, Shannon-Weiner index, and Margalef index was higher in 1 yr monoculture soil than that in 2 yr monoculture soil, suggesting that consecutive monoculture of R. glutinosa could be a causative agent to decrease the diversity of fungal community in the rhizosphere soil. 展开更多
关键词 BIODIVERSITY consecutive monoculture problem fungal community Rehmannia glutinosa rhizosphere soil T-RFLP
下载PDF
A comprehensive analysis of the response of the fungal community structure to long-term continuous cropping in three typical upland crops 被引量:9
4
作者 LIU Hang PAN Feng-juan +4 位作者 HAN Xiao-zeng SONG Feng-bin ZHANG Zhi-ming YAN Jun XU Yan-li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第3期866-880,共15页
Certain agricultural management practices are known to affect the soil microbial community structure;however,knowledge of the response of the fungal community structure to the long-term continuous cropping and rotatio... Certain agricultural management practices are known to affect the soil microbial community structure;however,knowledge of the response of the fungal community structure to the long-term continuous cropping and rotation of soybean,maize and wheat in the same agroecosystem is limited.We assessed the fungal abundance,composition and diversity among soybean rotation,maize rotation and wheat rotation systems and among long-term continuous cropping systems of soybean,maize and wheat as the effect of crop types on fungal community structure.We compared these fungal parameters of same crop between long-term crop rotation and continuous cropping systems as the effect of cropping systems on fungal community structure.The fungal abundance and composition were measured by quantitative real-time PCR and Illumina MiSeq sequencing.The results revealed that long-term continuous soybean cropping increased the soil fungal abundance compared with soybean rotation,and the fungal abundance was decreased in long-term continuous maize cropping compared with maize rotation.The long-term continuous soybean cropping also exhibited increased soil fungal diversity.The variation in the fungal community structure among the three crops was greater than that between long-term continuous cropping and rotation cropping.Mortierella,Guehomyces and Alternaria were the most important contributors to the dissimilarity of the fungal communities between the continuous cropping and rotation cropping of soybean,maize and wheat.There were 11 potential pathogen and 11 potential biocontrol fungi identified,and the relative abundance of most of the potential pathogenic fungi increased during the long-term continuous cropping of all three crops.The relative abundance of most biocontrol fungi increased in long-term continuous soybean cropping but decreased in long-term continuous maize and wheat cropping.Our results indicate that the response of the soil fungal community structure to long-term continuous cropping varies based upon crop types. 展开更多
关键词 continuous cropping crop rotation fungal community structure Illumina MiSeq sequencing
下载PDF
Promoting the Growth of Pinus sylvestris var.mongolica Seedlings and Improving Rhizosphere Fungal Community Structure through Interaction between Trichoderma and Ectomycorrhizal Fungi 被引量:1
5
作者 Saiyaremu Halifu Xun Deng +3 位作者 Jun Zhang Jiangbao Xia Xiaoshuang Song Ruiqing Song 《Research in Ecology》 2021年第2期63-79,共17页
In this study,pot experiments were conducted on the seedlings of Pinus sylvestris var.mongolica to study the influence of Trichoderma(Trichoderma harzianum E15)and Ectomycorrhizal fungi(Suillus luteus N94)on the growt... In this study,pot experiments were conducted on the seedlings of Pinus sylvestris var.mongolica to study the influence of Trichoderma(Trichoderma harzianum E15)and Ectomycorrhizal fungi(Suillus luteus N94)on the growth of these seedlings.In particular,the effects of these fungi on the fungal community structure in the rhizosphere soil of the seedlings were investigated.Inoculation with Trichoderma harzianum E15 and Suillus luteus N94 significantly(P<0.05)promoted the growth of the Pinus sylvestris seedlings.The non-metric multidimensional scaling(NMDS)results indicated a significant difference(P<0.05)between the fungal community structures in the rhizosphere soil of the annual and biennial seedlings.In the rhizosphere soil of annual seedlings,the main fungi were Ascomycota,Basidiomycota,Zygomycota.Ascomycota,Basidiomycota,Mortierellomycota,and p-unclassified-k-Fungi were the main fungi in the rhizosphere soil of biennial seedlings.The dominant genus in the rhizosphere soil and a key factor promoting the growth of the annual and the biennial seedlings was Trichoderma,Suillus,respectively.Both of them were negatively correlated with the relative abundance of microbial flora in the symbiotic environment.Trichoderma had a significant promoting effect on the conversion of total phosphorus,total nitrogen,ammonium nitrogen,nitrate nitrogen,and the organic matter in the rhizosphere soil of the seedlings,while Suillus significantly promoted the conversion of organic matter and total phosphorus. 展开更多
关键词 Pinus sylvestris var.mongolica Growth promotion Rhizosphere fungal community Trichoderma harzianum Suillus luteus Pinus sylvestris var.mongolica Growth promotion Rhizosphere fungal community Trichoderma harzianum Suillus luteus
下载PDF
Analysis of the Fungal Community in Apple Replanted Soil Around Bohai Gulf 被引量:23
6
作者 WANG Gongshuai YIN Chengmiao +7 位作者 PAN Fengbing WANG Xiaobao XIANG Li WANG Yanfang WANG Jinzheng TIAN Changping CHEN Jie MAO Zhiquan 《Horticultural Plant Journal》 SCIE 2018年第5期175-181,共7页
Apple replant disease(ARD) is a frequently occurring plant disease in replanted orchards around Bohai Gulf, which causes growth inhibition and even death of plants. The aim of this study was to investigate the etiolog... Apple replant disease(ARD) is a frequently occurring plant disease in replanted orchards around Bohai Gulf, which causes growth inhibition and even death of plants. The aim of this study was to investigate the etiology of ARD around Bohai Gulf. In this study, the primary growth inhibition of apple seedlings was evaluated in ten replanted soils, sampled around Bohai Gulf. A fungal clone library was used to identify changes in the structure and composition of the soil fungal community. The results revealed that the Simpson diversity indices of Laizhou and Pulandian orchards were higher than others, presenting severe ARD. Ascomycota dominated around Bohai Gulf at the phyla level. Fusarium and Saccharomyces were abundant in all replanted soils. In addition, correlations between the relative abundance of fungal genera in soils and the severity of ARD were analyzed. The results showed that Fusarium was correlated positively with the severity of ARD, but Mortierella was negatively correlated. Furthermore, the quantitative PCR of Fusarium oxysporum, which was regarded as a factor of ARD, was performed. Overall, this study demonstrated that ARD was strongly associated with an unbalanced microbial ecosystem with more pathogenic fungi, while Fusarium in the apple replanted soil was the key factor for ARD around Bohai Gulf. 展开更多
关键词 APPLE replanted disease Fungi clone library FUSARIUM fungal community
原文传递
Grazing greatly reduces the temporal stability of soil cellulolytic fungal community in a steppe on the Tibetan Plateau 被引量:1
7
作者 Fei Wang Weidong Kong +4 位作者 Mukan Ji Kang Zhao Hao Chen Linyan Yue Xiaobin Dong 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第11期48-57,共10页
Excessive livestock grazing degrades grasslands ecosystem stability and sustainability by reducing soil organic matter and plant productivity. However, the effects of grazing on soil cellulolytic fungi, an important i... Excessive livestock grazing degrades grasslands ecosystem stability and sustainability by reducing soil organic matter and plant productivity. However, the effects of grazing on soil cellulolytic fungi, an important indicator of the degradation process for soil organic matter,remain less well understood. Using T-RFLP and sequencing methods, we investigated the effects of grazing on the temporal changes of cellulolytic fungal abundance and community structure in dry steppe soils during the growing months from May to September, on the Tibetan Plateau using T-RFLP and sequencing methods. The results demonstrated that the abundance of soil cellulolytic fungi under grazing treatment changed significantly from month to month, and was positively correlated with dissolved organic carbon(DOC) and soil temperature, but negatively correlated with soil p H. Contrastingly, cellulolytic fungal abundance did not change within the fencing treatment(ungrazed conditions). Cellulolytic fungal community structure changed significantly in the growing months in grazed soils,but did not change in fenced soils. Grazing played a key role in determining the community structure of soil cellulolytic fungi by explaining 8.1% of the variation, while p H and DOC explained 4.1% and 4.0%, respectively. Phylogenetically, the cellulolytic fungi were primarily affiliated with Ascomycota(69.65% in relative abundance) and Basidiomycota(30.35%).Therefore, grazing substantially reduced the stability of soil cellulolytic fungal abundance and community structure, as compared with the fencing treatment. Our finding provides a new insight into the responses of organic matter-decomposing microbes for grassland managements. 展开更多
关键词 Cellulolytic fungal community CBHI Stability GRAZING Dryland soil Tibetan Plateau
原文传递
Changes in soil fungal community on SOC and POM accumulation under different straw return modes in dryland farming
8
作者 Wei Fan Jinggui Wu 《Ecosystem Health and Sustainability》 SCIE 2021年第1期232-244,共13页
We conducted a 2.5-year field experiment to test the effects of straw incorporated evenly into the soil(EIS)on soil fungal community,SOC chemical composition,and particulate organic matter fractions via comparing with... We conducted a 2.5-year field experiment to test the effects of straw incorporated evenly into the soil(EIS)on soil fungal community,SOC chemical composition,and particulate organic matter fractions via comparing with no straw returning(CK),straw mulching(SM),straw plowed into the soil(SP),and identified the linkages between soil fungal community as well as organic C accumulation and POM formation.Our results showed that EIS treatment significantly increased the concentrations of SOC and the proportion of carbohydrate C,di-O-alkyl C,and O-alkyl C in SOC structure,increased the mass proportion and OC contents of MA(c)POM and mM-POM in the upper 40 cm of soil.Meanwhile,EIS treatment increased the relative abundance of Ascomycota,Zygomycota,Chytridiomycota,and Dothideomycetes in 0-20 cm depths,and also had the highest relative abundance of Glomeromycetes and Dothideomycetes in the 20-40 cm soil.Also,our study suggests that straw return enhanced the relative abundances of fungi involved in the carbon cycle and sequestration,including Zygomycota,Chytridiomycota,and Glomeromycota,and Ascomycota.The shifts in fungal community structure can accelerate organic C accumulation and the formation of soil particulate organic matter,especially in EIS treatment. 展开更多
关键词 Returning straw fungal community organic C accumulation particulate organic matter
原文传递
Soil Fungal Diversity and Community Composition in Response to Continuous Sweet Potato Cropping Practices
9
作者 Dan Xiang Yue Wu +5 位作者 Huan Li Qing Liu Zhenfeng Zhou Qinghua Chen Nan Zhang Liang Xu 《Phyton-International Journal of Experimental Botany》 SCIE 2021年第4期1247-1258,共12页
Soil fungi are extremely important for maintaining soil health and plant production in agricultural systems.Currently,the effect of continuous cropping of sweet potato on soil fungal communities and physiochemical par... Soil fungi are extremely important for maintaining soil health and plant production in agricultural systems.Currently,the effect of continuous cropping of sweet potato on soil fungal communities and physiochemical parameters has not been well documented.In the present study,four sweet potato fields consecutively monocultured for 1,2,3,and 4 years were selected to investigate the effect of monoculture on soil fungal communities through Illumina MiSeq sequencing.Continuous cropping of sweet potatoes dramatically altered the fungal community composition,whereas fungal diversity was almost unchanged.Ascomycota and Basidiomycota were the most abundant phyla in all soil samples,accounting for 32.59%and 21.14%of the average relative abundance,respectively.The abundance of some potential pathogens,such as Ascobolus spp,specifically Ascobolus stercorarius,and some unknown fungi increased significantly as the sweet potato monoculture period increased,and their presence were highly positively correlated with disease incidence.In contrast,Basidiomycota,Bullera,Fusarium and Trichocladium most likely play roles as antagonists of sweet potato disease development,as their relative abundance decreased significantly over time and were negatively correlated with disease incidence.Redundancy and correlation analyses revealed that soil pH and organic carbon content were the most important factors driving these changes.Our findings provided a dynamic overview of the fungal community and presented a clear scope for screening beneficial fungi and pathogens of sweet potato. 展开更多
关键词 Soil fungal community internal transcribed spacers continuous cropping Illumina Miseq sequencing soil pH
下载PDF
Significant changes in arbuscular mycorrhizal community and soil physicochemical properties during the saline-alkali grassland vegetation succession 被引量:1
10
作者 YAJIE LIU LINLIN FANG CHUNXUE YANG 《BIOCELL》 SCIE 2022年第11期2475-2488,共14页
Arbuscular mycorrhizal(AM)fungi are widely distributed in various habitats,and the community composition varies in response to the changing environmental conditions.To explore the response of community composition to ... Arbuscular mycorrhizal(AM)fungi are widely distributed in various habitats,and the community composition varies in response to the changing environmental conditions.To explore the response of community composition to the succession of saline-alkali land,soil samples were collected from three succession stages of Songnen saline-alkali grassland.Subsequently,the soil characteristics were determined and the AM fungi in soil samples were analyzed by high-throughput sequencing.Then,the response relationship between community composition and soil characteristics was studied by Canonical correlation and Pearson analyses.The soil properties improved with the succession of saline-alkali grassland.There was no significant difference in alpha diversity between the first and second succession stage(Suaeda glauca and Puccinellia tenuiflora,respectively),and the microbial community had a dense association network at the third stage(Leymus chinensis);in addition,each succession stage had significantly enriched amplicon sequence variants(ASVs)and functional pathways.All the soil properties except cellulase activity had significant effects on community composition.Furthermore,the pH,organic carbon,organic matter,and sucrase activity significantly correlated with alpha diversity indices.These results provide a theoretical basis for realizing the significant changes in AM fungal community and soil properties during the saline-alkali grassland vegetation succession. 展开更多
关键词 AM fungal community High-throughput sequencing Succession of saline-alkali land Soil physicochemical characteristics
下载PDF
Soil pH and dissolved organic carbon shape microbial communities in wetlands with two different vegetation types in Changdu area,Tibet
11
作者 ZOU Lan BAI Yin-ping +2 位作者 HUANG Jing XIAO De-rong YANG Gang 《Journal of Mountain Science》 SCIE CSCD 2023年第3期750-764,共15页
Soil microorganisms play pivotal roles in element biogeochemical cycling and ecological functions in wetland ecosystem,which may affect global climate change.Variations in biotic and abiotic factors are known to affec... Soil microorganisms play pivotal roles in element biogeochemical cycling and ecological functions in wetland ecosystem,which may affect global climate change.Variations in biotic and abiotic factors are known to affect soil microbial diversity,community structure and the corresponding functions.However,the relative importance of these biotic and abiotic factors on wetland soil microbial diversity and community structure on the QinghaiTibet Plateau remains poorly understood.In this study,we explored soil bacterial and fungal diversity and composition of five wetlands under two vegetation types(herbs vs Hippophae thibetana)in Changdu area,Tibet,through Illumina high throughput sequencing analysis of 16S rRNA for bacteria and internal transcribed spacer(ITS)for fungi.Results showed that soil bacterial alpha diversity was higher in H.thibetana dominated wetlands and was significantly and positively correlated with soil pH.No difference was detected in the soil fungal alpha diversity among samples and between vegetation types.The dominant soil bacterial phyla were Proteobacteria,Actinobacteria,Acidobacteria,and Firmicutes.While Ascomycota,Basidiomycota and Mucoromycota were the dominant fungal phyla.Soil bacterial and fungal community structures were significantly distinct by vegetation types.In addition,redundancy analysis indicated that soil pH was the key factor shaping soil bacterial community structure.Nevertheless,soil p H showed no effect on fungal community.Instead,soil dissolved organic carbon was the major factor contributing to soil fungal community structure.This study emphasized that wetland soil microbial communities were distinct by vegetation types and the driving factors of microbial beta diversity between bacterial and fungal community were also different in wetlands in Changdu area. 展开更多
关键词 SoilPproperty Microbialdiversity Bacterial community fungal community Hippophae thibetana Qinghai-Tibet Plateau
下载PDF
Effects of Tillage Depth on Nutrients and Microbial Communities in Tobacco-Planting Soil
12
作者 Guanxing Shang Qibo Zou +7 位作者 Jiamei Zhang Jing Wang Yuanbo Zhang Mingchang Liu Shihai Wang Dan Zhang Wei Wang Yiming Wang 《Agricultural Sciences》 2023年第12期1702-1715,共14页
The implementation of appropriate tillage practices is of great significance for agricultural production. However, the effects of different tillage depths on soil nutrients content and microbial communities in tobacco... The implementation of appropriate tillage practices is of great significance for agricultural production. However, the effects of different tillage depths on soil nutrients content and microbial communities in tobacco-planting soils are still lacking systematic research. In this study, three different tillage depths of 15 cm (T1), 20 cm (T2), and 30 cm (T3) were set up for field experiments in Liupanshui, Guizhou Province, to explore the effects of tillage depth on tobacco-planting soil nutrients and bacterial and fungal communities based on 16S rRNA and ITS sequencing and figure out the key factors affecting soil microbial communities. The results showed that T2 and T3 increased the contents of organic matter, total nitrogen, total phosphorus, available phosphorus, and available potassium in tobacco-planting soil, and increased the diversity of bacterial communities compared with T1. There was no significant difference in the structure of bacterial and fungal communities in different tillage depth treatments, but some dominant genera were significantly enriched in T2 and T3. Desulfobacter, Setophoma, Humicola, and Acremonium were significantly enriched in T2. Chthonomonas and Fusarium were significantly enriched in T3. These genera favor the decomposition of organic matter and the cycling of nutrients, and control soil pests and diseases. Redundancy analysis indicated that TP and AK were the key factors influencing the dominant genera of bacteria and fungi. This study provides a scientific basis for the selection of soil tillage depth for tobacco production in this region. 展开更多
关键词 Tillage Depth TOBACCO Soil Nutrients Bacterial community fungal community
下载PDF
Spore production in the solid-state fermentation of stevia residue by Trichoderma guizhouense and its effects on corn growth 被引量:3
13
作者 LIU Hong-jun DUAN Wan-dong +4 位作者 LIU Chao MENG Ling-xue LI Hong-xu LI Rong SHEN Qi-rong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第5期1147-1156,共10页
Trichoderma is an important and widely used plant growth-promoting fungus(PGPF).In this study,stevia residue amended with amino acids hydrolyzed from animal carcasses was used for the production of Trichoderma guizhou... Trichoderma is an important and widely used plant growth-promoting fungus(PGPF).In this study,stevia residue amended with amino acids hydrolyzed from animal carcasses was used for the production of Trichoderma guizhouense NJAU 4742 by solid-state fermentation,and then its potential to promote corn plant growth was evaluated in combination with chemical fertilizer(CF)or organic fertilizer(OF).The highest spore number of 7×10^(9) CFU g^(–1) fresh weight was obtained under the following optimal parameters:material ratio of 50%(stevia residue:rice bran=1:1),pH value of 3.0(amended with 6.67%amino acids),initial moisture content of 60%,inoculum size of 10%,material thickness of 3 cm and an incubation time of 4 days.The aboveground corn plant biomass obtained with T.guizhouense applied alone and with CF treatments were slightly higher than those of no fertilizer control and CF treatments,respectively.However,T.guizhouense applied with OF significantly(P<0.05)increased aboveground biomass compared to OF and yielded the highest aboveground biomass among all the treatments.Moreover,T.guizhouense applications primarily influenced the fungal bulk soil community composition,among which three OTUs(OTU_(2) and OTU_(9) classified as Chaetomium,and OTU_(4)classified as Trichoderma)were stimulated in both bulk and rhizosphere soil.Notably,a specific OTU_(3)(Phymatotrichopsis)was only stimulated by T.guizhouense applied with OF,possibly leading to high soil productivity.These results show that it is feasible to employ stevia residue in the eco-friendly fermentation of T.guizhouense,which is strongly suggested for enhancing OF applications. 展开更多
关键词 TRICHODERMA solid-state fermentation stevia residue plant growth-promoting fungi soil fungal community
下载PDF
Different mechanisms underlying divergent responses of autotrophic and heterotrophic respiration to long-term throughfall reduction in a warm-temperate oak forest 被引量:2
14
作者 Jinglei Zhang Shirong Liu +5 位作者 Cuiju Liu Hui Wang Junwei Luan Xiaojing Liu Xinwei Guoand Baoliang Niu 《Forest Ecosystems》 SCIE CSCD 2021年第3期537-547,共11页
Background:There are many studies on disentangling the responses of autotrophic(AR)and heterotrophic(HR)respiration components of soil respiration(SR)to long-term drought,but few studies have focused on the mechanisms... Background:There are many studies on disentangling the responses of autotrophic(AR)and heterotrophic(HR)respiration components of soil respiration(SR)to long-term drought,but few studies have focused on the mechanisms underlying its responses.Methods:To explore the impact of prolonged drought on AR and HR,we conducted the 2-year measurements on soil CO_(2) effluxes in the 7th and 8th year of manipulated throughfall reduction(TFR)in a warm-temperate oak forest.Results:Our results showed long-term TFR decreased HR,which was positively related to bacterial richness.More importantly,some bacterial taxa such as Novosphingobium and norank Acidimicrobiia,and fungal Leptobacillium were identified as major drivers of HR.In contrast,long-term TFR increased AR due to the increased fine root biomass and production.The increased AR accompanied by decreased HR appeared to counteract each other,and subsequently resulted in the unchanged SR under the TFR.Conclusions:Our study shows that HR and AR respond in the opposite directions to long-term TFR.Soil microorganisms and fine roots account for the respective mechanisms underlying the divergent responses of HR and AR to long-term TFR.This highlights the contrasting responses of AR and HR to prolonged drought should be taken into account when predicting soil CO_(2) effluxes under future droughts. 展开更多
关键词 Prolonged drought CO_(2)efflux Fine root Bacterial community fungal community
下载PDF
Fungal diversity and its mechanism of community shaping in the milieu of sanitary landfill 被引量:1
15
作者 Rong Ye Sai Xu +3 位作者 Qian Wang Xindi Fu Huixiang Dai Wenjing Lu 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2021年第4期325-335,共11页
Land filling is the main method to dispose municipal solid waste in China.During the decomposition of organic waste in landfills,fungi play an important role in organic carbon degradation and nitrogen cycling.However,... Land filling is the main method to dispose municipal solid waste in China.During the decomposition of organic waste in landfills,fungi play an important role in organic carbon degradation and nitrogen cycling.However,fungal composition and potential functions in landfill have not yet been characterized.In this study,refuse and leachate samples with different areas and depths were taken from a large sanitary landfill in Beijing to identify fungal communities in landfills.In high-throughput sequencing of ITS region,474 operational taxonomic units(OTUs)were obtained from landfill samples with a cutoff level of 3%and a sequencing depth of 19962.The results indicates that Ascomycota,with the average relative abundance of 84.9%,was the predominant phylum in landfill fungal communities.At the genus level,Family Hypocreaceae unclassified(15.7%),Fusarium(9.9%)and Aspergillus(8.3%)were the most abundant fungi found in the landfill and most of them are of saprotrophic lifestyle,which plays a big role in nutrient cycling in ecosystem.Fungi existed both in landfilled refuse and leachate while both the richness and evenness of fungal communities were higher in the former.In addition,fungal communities in landfilled refuse presented geographic variances,which could be partly attributed to physical habitat properties(pH,dissolved organic carbon,volatile solid,NH_(4)^(+),NO_(2)^(−)and NO_(3)^(−)),while NO_(3)^(−)was considered the most significant factor(p<0.05)in shaping fungal community. 展开更多
关键词 Sanitary landfill fungal community DIVERSITY Saprotroph Physical habitat Environmental factor
原文传递
Effects of nanofertilizer and nano-plant hormone on soil chemical properties and microbial community in two different soil types
16
作者 John Lester Viscara PIDE Nolissa Delmo ORGANO +6 位作者 Andre Freire CRUZ Lilia M.FERNANDO Lucille C.VILLEGAS Evelyn F.DELFIN Michelle Ann Magat CALUBAQUIB Roselle Estera MADAYAG Erlinda S.PATERNO 《Pedosphere》 SCIE CAS CSCD 2023年第5期765-775,共11页
Application of nanotechnology in agriculture has been expanded to improve crop production.The impact of nanomaterials(NMs)on factors that influence the survival and function of beneficial microorganisms is a less stud... Application of nanotechnology in agriculture has been expanded to improve crop production.The impact of nanomaterials(NMs)on factors that influence the survival and function of beneficial microorganisms is a less studied aspect that needs to be better understood.Only a few studies have assessed the effects of NMs on beneficial soil microorganisms.This study was conducted to assess the effects of nanofertilizer FertiGroe?N(FG-N)and nano-plant hormone HormoGroe?auxin(HG-A)on the chemical properties and microbial communities of two contrasting soils,Lipa clay loam(CL)and Sariaya sandy loam(SL),over a 35-d incubation period in the laboratory.Bacterial and fungal communities were evaluated using amplicon sequencing analysis within the 16S and internal transcribed spacer regions,respectively.The application of FG-N significantly decreased soil pH,but did not affect total N and available P for both soil types.A significant increase in exchangeable K was observed only in Lipa CL.The application of HG-A had no significant effect on soil chemical properties.Regarding the bacterial community after incubation,the relative abundances of Acidobacteriia,Chthonomonadetes,and Saccharimonadia decreased,whereas Acidimicrobiia,Chloroflexia,and Gemmatimonadetes increased with FG-N application in Lipa CL.The application of HG-A increased the relative abundance of Rubrobacteria,Chthonomonadetes,and Chloroflexia in Lipa CL.For the fungal community,FG-N application increased the relative abundance of Sordariomycetes,Agaricomycetes,and Eurotiomycetes,whereas Dothideomycetes and Mortierellomycetes decreased in Lipa CL after incubation.In Sariaya SL,FG-N application increased the relative abundance of Dothideomycetes,Eurotiomycetes,and Mortierellomycetes,but decreased that of Sordariomycetes and Agaricomycetes.Fungal classes observed in the control samples were not detected in the HG-A treatment,but were recovered after incubation in Lipa CL.The microbial diversity in both soil types showed slight changes with FG-N and HG-A application.Principal coordinate analysis illustrated the clustering of bacterial and fungal taxa between Lipa CL and Sariaya SL.Pearson correlation analysis showed that several bacterial and fungal communities were positively or negatively correlated with soil pH.The results suggest that FG-N can be safely used in crop production and HG-A may be used mainly for vegetative propagation. 展开更多
关键词 amplicon sequencing bacterial community crop production fungal community microbial diversity NANOMATERIAL NANOTECHNOLOGY
原文传递
Subsurface aeration alters the fungal composition of rhizosphere soil and tomato plant performance in Northwest China
17
作者 Yuan Li Mingzhi Zhang +3 位作者 Xiaoshu Cao Jingwei Wang Zhenxing Zhang Quanwen Niu 《International Journal of Agricultural and Biological Engineering》 SCIE CAS 2023年第1期172-183,共12页
Rhizosphere hypoxia constrains plant growth,and numerous studies have shown that root zone aeration accelerates plant photosynthesis and growth and increases crop yields.Nevertheless,the mechanism by which soil microo... Rhizosphere hypoxia constrains plant growth,and numerous studies have shown that root zone aeration accelerates plant photosynthesis and growth and increases crop yields.Nevertheless,the mechanism by which soil microorganisms are involved in this process is not clear.The purpose of the present study was to examine the effects of aeration and irrigation depth on the composition and structure of rhizosphere soil fungal communities and tomato plant performance.The amount of aeration assayed was equal to 0(CK),0.5(V1),1(V2),and 1.5(V3)times the porosity of the soil.The two depths of subsurface drip irrigation used were 15(D15)and 40 cm(D40).The results demonstrated that soil aeration not only increased tomato plant performance but also influenced fungal diversity and composition.Compared to the no-aeration treatment,the V3 soil aeration treatment increased the total dry weight and fruit yield by 39.9%and 65.6%,respectively.The results also showed that the abundance of the phylum Ascomycota and the family Lasiosphaeriaceae increased with increasing soil aeration,whereas those of members of the phylum Zygomycota and the order Capnodiales decreased with increasing soil aeration.Moreover,the variation in subsurface irrigation depth altered the rhizosphere soil fungal community.In general,the results of this study demonstrate that root zone aeration can ameliorate hypoxic conditions in Lou soils and is beneficial to soil fungal communities and tomato plant performance. 展开更多
关键词 TOMATO soil aeration rhizosphere soil fungal community plant performance
原文传递
Conversion of pure Chinese fir plantation to multi-layered mixed plantation enhances the soil aggregate stability by regulating microbial communities in subtropical China 被引量:5
18
作者 Guannv Gao Xueman Huang +7 位作者 Haocheng Xu Yi Wang Weijun Shen Wen Zhang Jinliu Yan Xiaoyan Su Shushou Liao Yeming You 《Forest Ecosystems》 SCIE CSCD 2022年第6期823-837,共15页
Background:Soil aggregates are the basic units of soil structure,and their stability is a key indicator of soil quality and capacity to support ecosystem functions.The impacts of various environmental factors on soil ... Background:Soil aggregates are the basic units of soil structure,and their stability is a key indicator of soil quality and capacity to support ecosystem functions.The impacts of various environmental factors on soil aggregates have been widely studied.However,there remains elusive knowledge on the synergistic effects of changing forest stand structure on soil aggregate stability(SAS),particularly in subtropical China where soil erosion remains a critical issue.Methods:We investigated variations in the components of soil humus(HS),including humic acids(HAs),fulvic acids(FAs),and humins(HMs),under pure Chinese fir(Cunninghamia lanceolata)plantation(PP)and multilayered mixed plantation(MP)comprising C.lanceolata,Castanopsis hystrix,and Michelia hedyosperma.The state of soil aggregate stability,was determined by three separate methods,i.e.,dry-sieving,wet-sieving,and the Le Bissonnais.High-throughput sequencing was used to determine the diversity and composition of microbial communities under PP and MP.We then built partial least squares path models(PLS-PM)for assessing the responses of SAS to the variations in soil microorganisms and HS components.Results:The MP stands had significantly greater SAS(P<0.05),higher content of HAs and more rapid organic matter humification within aggregates,than the PP stands.High-throughput sequencing confirmed that the Pielou andα-diversity index values(Chao1 and Shannon)for fungi were all significantly higher under MP than under PP,while no marked difference was found in bacterialα-diversity between the two plantation types.Moreover,there were markedly greater abundance of three bacterial phyla(Verrucomicrobia,Chloroflexi,and Gemmatimonadetes)and three fungal phyla(Ascomycota,Kickxellomycota,and Glomeromycota),and significantly less abundance of two bacterial phyla(Planctomycetes and Firmicutes)and four fungal phyla(Basidiomycota,Mortierellomycota,Mucoromycota,and Rozellomycota)under MP than under PP.The Chloroflexi and Ascomycota phyla appeared to be the primary drivers of soil aggregate distribution.Our findings revealed that the promotion of SAS under MP was mainly driven by increased soil organic matter(SOM)content,which altered bacterial communities and enhanced fungal diversity,thereby increasing HAs content and the rate of organic matter humification.Conclusions:Considering the combined effects of enhanced soil quality,productivity,and relevant economic costs,introducing broadleaved tree species into Chinese fir plantations can be an effective strategy for stabilizing soil structure against erosion in subtropical China.Our study elucidated the controls on variations of SAS in Chinese fir-dominated plantations and demonstrated the benefit of converting pure Chinese fir plantation to multi-layered mixed plantations in increasing soil structural stability and improving site quality. 展开更多
关键词 Broadleaved tree species Chinese fir plantation Soil aggregate stability HUMUS Bacterial and fungal communities High-throughput sequencing
下载PDF
Effects of flue gas desulfurization gypsum and clover planting on qualities of soil and winter jujube in coastal saline-alkali orchard of north China
19
作者 Qi Shao Xuejing Xia +8 位作者 Guihua Li Hui Li Jitong Lin Yanhong Lou Quangang Yang Hui Wang Zhongchen Yang Hong Pan Yuping Zhuge 《Soil Ecology Letters》 CSCD 2024年第1期141-152,共12页
Flue gas desulfurization gypsum and clover planting alleviated the soil salinization stress.Soil pH and total phosphorus affected the bacterial communi-ties.Total phosphorus affected the fungal communities.Flue gas de... Flue gas desulfurization gypsum and clover planting alleviated the soil salinization stress.Soil pH and total phosphorus affected the bacterial communi-ties.Total phosphorus affected the fungal communities.Flue gas desulfurization gypsum and clover planting improved jujube quality.The coastal area of Shandong Province,characterized by coastal saline tidal soil,is one of the main production areas of winter jujube in China.However,the low soil fertility and poor soil structure in jujube orchard restricted the development of the jujube industry.The objectives of this study were to 1)evaluate the effect of application of flue gas desulfurization(FGD)gypsum and clover planting on soil quality improvement and soil microbial community structure of jujube orchard;2)investigate the effects of two measures on the nutrition and quality of winter jujube.The results showed that FGD gypsum reduced the soil total salt content by 65.6%,and clover planting increased the soil organic matter content by 30.7%,which effectively alleviated the soil salinization stress and improved the soil structure.Soil pH and total phosphorus(TP)were the main determinants influencing bacterial community composition,and TP was the dominant factor of the fungal community composition in the saline-alkali soils.Meanwhile,FGD gypsum addition and clover planting significantly increased the sugar degree and Vc content of winter jujube,thus improved jujube quality,and further contributed to the ecological sustainable development of winter jujube industry. 展开更多
关键词 saline-alkali soils winter jujube bacterial community fungal community fue gas desulfurization gypsum clover planting
原文传递
Plant-associated fungal communities in the light of meta’omics 被引量:6
20
作者 Derek Peršoh 《Fungal Diversity》 SCIE 2015年第6期1-25,共25页
Approaches for the cultivation-independent analysis of microbial communities are summarized as meta’omics,which predominantly includes metagenomic,-transcriptomic,-proteomic and-metabolomic studies.These have shown t... Approaches for the cultivation-independent analysis of microbial communities are summarized as meta’omics,which predominantly includes metagenomic,-transcriptomic,-proteomic and-metabolomic studies.These have shown that endophytic,root-associated and soil fungal communities are strongly shaped by associated plant species.The impact of plant identity on the composition of its litterssociated fungal community remains to be disentangled from the impact of litter chemistry.The composition of the plant community also shapes the fungal community.Most strikingly,adjacent plant species may share mycorrhizal symbionts even if the plants usually have different types of mycorrhizal fungi associated with them(ectomycorrhizal,ericoid and arbuscular mycorrhizal fungi).Environmental parameters weakly explain fungal community composition globally,and their effect is inconsistent at local and regional scales.Decrease in similarity among communities with increasing distance(i.e.distance decay)has been reported from local to global scales.This pattern is only exceptionally caused by spatial dispersal limitation of fungal propagules,but mostly due to the inability of the fungi to establish at the particular locality(i.e.environmental filtering or competitive exclusion).Fungal communities usually undergo pronounced seasonal changes and also differ between consecutive years.This indicates that development of the communities is usually not solely cyclic.Meta’omic studies challenge the classical view of plant litter decomposition.They show that mycorrhizal and(previously)endophytic fungi may be involved in plant litter decomposition and only partly support the idea of a succession from an Ascomycota to a Basidiomycota-dominated community.Furthermore,vertical separation of saprotrophic and mycorrhizal species in soil and sequential degradation from easily accessible to‘recalcitrant’plant compounds,such as lignin,can probably not be generalized.The current models of litter decomposition may therefore have to be eventually refined for certain ecosystems and environmental conditions.To gain deeper insights into fungal ecology,a meta’omic study design is outlined which focuses on environmental processes,because fungal communities are usually taxonomically diverse,but functionally redundant.This approach would initially identify dynamics of chemical shifts in the host and/or substrate by metametabolomics.Detected shifts would be subsequently linked to microbial activity by correlation with metatranscriptomic and/or metaproteomic data.A holistic trait-based approach might finally identify factors shaping taxonomic composition in communities against the dynamics of the environmental process(es)they are involved in. 展开更多
关键词 Meta’omics Metaomics fungal community Metagenomics METAPROTEOMICS METATRANSCRIPTOMICS Metametabolomics Phyllosphere fungi Endophytic fungi Litter decomposition Decomposer fungi Root-associated fungi Arbuscular mycorrhiza ECTOMYCORRHIZA Ericoid mycorrhiza Soil fungi Functional diversity Environmental processes Distance decay Environmental filtering Saisonality Temporal shift fungal traits
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部