A series of pot experiments and field trials were carried out to evaluate the effects of arbuscular mycor- rhizal fungi (AMF) on activities of soil enzymes and carbon sequestration capacity in reclaimed mine soil. A...A series of pot experiments and field trials were carried out to evaluate the effects of arbuscular mycor- rhizal fungi (AMF) on activities of soil enzymes and carbon sequestration capacity in reclaimed mine soil. A complex substrate of coal gangue, fly ash and sludge was used as reclaimed mine soil, and ryegrass was planted with AMF inoculation to construct a plant-complex substrate-microbe ecological restoration sys- tem. The changes to the soil organic carbon (SOC), activities of soil enzymes and glomalin-related soil protein (GRSP) were measured and the effects of AMF on activities of soil enzymes and carbon sequestra- tion capacity (n reclaimed mine soil were analyzed. The results show that the contents of GRSP (total glo- malin (TG) and easily extractable glomalin (EEG)), SOC and activities of enzymes increased, and the increments were higher in the AMF inoculation treated plant-complex substrate-microbe ecological res- toration systems than those with no AMF inoculated treatments after 12 months of ryegrass growth. TG, EEG and soil enzyme activity have a significant positive correlation, and the correlative coefficient was 0.427-0.573; SOC and TG, EEG have a significant positive correlation (p 〈 0.01 ), indicating that AMF plays an important role in carbon sequestration of reclaimed mine soils.展开更多
基金supported by the Environmental Science andTechnology Fund of Environmental Protection Department of Jiangsu Province,China (No. 2007024)
文摘A series of pot experiments and field trials were carried out to evaluate the effects of arbuscular mycor- rhizal fungi (AMF) on activities of soil enzymes and carbon sequestration capacity in reclaimed mine soil. A complex substrate of coal gangue, fly ash and sludge was used as reclaimed mine soil, and ryegrass was planted with AMF inoculation to construct a plant-complex substrate-microbe ecological restoration sys- tem. The changes to the soil organic carbon (SOC), activities of soil enzymes and glomalin-related soil protein (GRSP) were measured and the effects of AMF on activities of soil enzymes and carbon sequestra- tion capacity (n reclaimed mine soil were analyzed. The results show that the contents of GRSP (total glo- malin (TG) and easily extractable glomalin (EEG)), SOC and activities of enzymes increased, and the increments were higher in the AMF inoculation treated plant-complex substrate-microbe ecological res- toration systems than those with no AMF inoculated treatments after 12 months of ryegrass growth. TG, EEG and soil enzyme activity have a significant positive correlation, and the correlative coefficient was 0.427-0.573; SOC and TG, EEG have a significant positive correlation (p 〈 0.01 ), indicating that AMF plays an important role in carbon sequestration of reclaimed mine soils.