The prediction and control of furnace heat indicators are of great importance for improving the heat levels and conditions of the complex and difficult-to-operate hour-class delay blast furnace(BF)system.In this work,...The prediction and control of furnace heat indicators are of great importance for improving the heat levels and conditions of the complex and difficult-to-operate hour-class delay blast furnace(BF)system.In this work,a prediction and feedback model of furnace heat indicators based on the fusion of data-driven and BF ironmaking processes was proposed.The data on raw and fuel materials,process op-eration,smelting state,and slag and iron discharge during the whole BF process comprised 171 variables with 9223 groups of data and were comprehensively analyzed.A novel method for the delay analysis of furnace heat indicators was established.The extracted delay variables were found to play an important role in modeling.The method that combined the genetic algorithm and stacking efficiently im-proved performance compared with the traditional machine learning algorithm in improving the hit ratio of the furnace heat prediction model.The hit ratio for predicting the temperature of hot metal in the error range of±10℃ was 92.4%,and that for the chemical heat of hot metal in the error range of±0.1wt%was 93.3%.On the basis of the furnace heat prediction model and expert experience,a feedback model of furnace heat operation was established to obtain quantitative operation suggestions for stabilizing BF heat levels.These sugges-tions were highly accepted by BF operators.Finally,the comprehensive and dynamic model proposed in this work was successfully ap-plied in a practical BF system.It improved the BF temperature level remarkably,increasing the furnace temperature stability rate from 54.9%to 84.9%.This improvement achieved considerable economic benefits.展开更多
Estimating the residual heat of blast furnace slag flushing in China,classifying and introducing the current proposed methods of slag flushing waste heat utilization,and listing existing cases.In order to better save ...Estimating the residual heat of blast furnace slag flushing in China,classifying and introducing the current proposed methods of slag flushing waste heat utilization,and listing existing cases.In order to better save energy and water in the slag flushing process of blast furnaces,an ideal comprehensive cascade utilization system scheme for annual recovery of waste heat is proposed.Based on the measured waste heat data of a steel plant,design calculations are carried out to further analyze the economic feasibility of the new scheme and provide reference for its promotion and application.展开更多
A three-dimension full-size numerical simulation of the effect of air distribution on turbulent flow and combustion in a tubular heating furnace was carried out. A standard k –ε turbulent model, a simplified PDF c...A three-dimension full-size numerical simulation of the effect of air distribution on turbulent flow and combustion in a tubular heating furnace was carried out. A standard k –ε turbulent model, a simplified PDF combustion model and a discrete ordinate transfer radiation model were used. The hybrid grid combining a structured and a non-structured grid was generated without any simplification of the complicated geometric configuration around the burner. It was found that the multistage combustion could reduce and control the peak value of temperature. At the same time, it was concluded that the amount of primary air had little effect on the global distribution of velocity and temperature in the furnace, but a great effect on that around the burner. It is recommended that 45% - 65% of the total amount of air be taken in in primary air inlets in the furnace. All the results are important to optimize the combustion progress.展开更多
This article studies the transient heat conduction in a slab when passing through various sections of the furnace, and focuses on the thickness of the scale layer formed on the slab. The transient heat conduction beha...This article studies the transient heat conduction in a slab when passing through various sections of the furnace, and focuses on the thickness of the scale layer formed on the slab. The transient heat conduction behavior of a slab in various sections of the heating furnace is analyzed using the Laplace transformation method, including the pre-heating zone, the first heating zone, the second heating zone, and the soaking zone. The heating pattern of the furnace is then modified to reduce fuel consumption. The simulation results show that the scale layer formed on the slab significantly influences the quality of the hot rolled coil formed, and how the furnace parameters affect the efficiency of the furnace and the quality of the coil.展开更多
In order to investigate Joule heating power,a three-dimensional finite element model(FEM) was developed to predict Joule heating power in the channels of double-loop inductor. The simulated results were compared with ...In order to investigate Joule heating power,a three-dimensional finite element model(FEM) was developed to predict Joule heating power in the channels of double-loop inductor. The simulated results were compared with experimental data from low load trials for a 400 kW inductor. The results,such as power factor and Joule heating power,show reasonable correlation with experimental data,and Joule heating rate reaches the maximum at the corners and the minimum at the centre of the cross-section area. With increasing relative permeability of iron core,length of coils,current frequency and resistivity of metal melt,the power factor and Joule heating power change. It is concluded that current frequency,the resistivity and length of the coil play a critical role in determining the power factor and Joule heating power,whereas relative permeability of the magnetic core shows no significant influence on them.展开更多
The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the ...The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the pure time delay and nonlinear time-varying.Proposed one kind optimized variable method of PID controller based on the genetic algorithm with improved BP network that better realized the completely automatic intelligent control of the entire thermal process than the classics critical purporting(Z-N)method.A heating furnace for the object was simulated with MATLAB,simulation results show that the control system has the quicker response characteristic,the better dynamic characteristic and the quite stronger robustness,which has some promotional value for the control of industrial furnace.展开更多
A finite-time stabilization controller for the heating furnace temperature control system is proposed.Based on the extended Lyapunov finite-time stability theory and power integral method,a finite-time stable conditio...A finite-time stabilization controller for the heating furnace temperature control system is proposed.Based on the extended Lyapunov finite-time stability theory and power integral method,a finite-time stable condition of the heating furnace temperature control system is given.The temperature of the heating furnace is directed by the finite-time stabilization controller to make it stable in finite time.And the quality and quantity of slabs is improved.The simulation example is presented to illustrate the applicability of the developed results.展开更多
The technical .wtors of castables innovation of matin iron trough in blust furnaces of WISCO in recent ten years were analyed, and corrosion process of dense corundum, sub-white corundum and brown corundum aggregates ...The technical .wtors of castables innovation of matin iron trough in blust furnaces of WISCO in recent ten years were analyed, and corrosion process of dense corundum, sub-white corundum and brown corundum aggregates in the castables for the main iron trough was researched. It is regarded tha.t there is no inevitable relation between castables properties and service life, and it must be considered that whether the normal technical in- dex in. the stan&trd can be used as judgment basis. Based on the improvement of matrix, the service hfe (once throughput of hot metal ) of castables used in main iron trough increases from 90 000 tons to 140 000 - 180 000 tons ; the properties of different raw materials are Jidly applied, and structure improvement of iron trough and progress of material technique are very important reasons.展开更多
Based on thermal value theory, the aim of this paper is to deduce the theoretical formulas for evaluating the energy effective utilization degree in technological pyrological processes exemplified by metallurgical hea...Based on thermal value theory, the aim of this paper is to deduce the theoretical formulas for evaluating the energy effective utilization degree in technological pyrological processes exemplified by metallurgical heating furnaces. Heat transfer models for continuous heating furnaces, batch-type heating furnaces, and regenerative heating furnaces are established, respectively. By analyzing the movement path of injected infinitesimal heat attached on steel or gas, thermal value equations of continuous, batch-type, and regenerative heating furnaces are derived. Then the influences of such factors as hot charging, gas preheating and intake time of heat on energy effective utilization degree are discussed by thermal value equations. The results show that thermal value rises with hot charging and air preheating for continuous heating furnaces, with shorter intake time when heat is attached on steel or longer intake time when heat is attached on gas for batch-type heating furnaces and that with more heat supply at early heating stage or less at late stage for regenerative heating furnaces.展开更多
Natural gas should be heated and throttled for the purpose of purification and transportation at the first gas production factory of the Changqing field. The safe use and heat-transfer efficiency of a heating-furnace ...Natural gas should be heated and throttled for the purpose of purification and transportation at the first gas production factory of the Changqing field. The safe use and heat-transfer efficiency of a heating-furnace affect the safe and smooth production of natural gas directly. At gas collecting stations now, no measures of anticorrosion have been adopted in heating furnaces which erode and scale badly. In order to solve the corrosive problem of heating-furnaces, prolong operating life of heating-furnaces, assure safe and smooth production of natural gas, the mechanism and influencing factors of corrosion of the heating-furnace were analyzed and some corresponding measures were brought forward based on a field investigation of usage behavior and present operational status of heating-furnaces at the first gas production factory. The results show that the corrosive ion and soluble CO2 and O2 in water erode metal badly at the condition of being heated. Corrosion of a heating-furnace are mostly oxygen corrosion, corrosive ion corrosion, acid corrosion, iron encrustation corrosion, dry and wet interface corrosion, caustic corrosion, etc; The influencing factors of corrosion mainly include soluble O2 and CO2 in water, pH value, heat loading, corrosive ion, soluble solid (salinity) and non-flowing character of water, etc.展开更多
The heat transfer analysis was performed for an industrial ladle furnace (LF) with a capacity of 55-57 t in Turkey. The heat losses by conduction, convection and radiation from outer and bottom surfaces, top and ele...The heat transfer analysis was performed for an industrial ladle furnace (LF) with a capacity of 55-57 t in Turkey. The heat losses by conduction, convection and radiation from outer and bottom surfaces, top and electrodes of LF were determined in detail. Finally, some suggestions about decreasing heat losses were presented.展开更多
A multi-fluid blast furnace model was simply introduced and was used to simulate several innovative ironmaking operations. The simulation results show that injecting hydrogen bearing materials, especially injecting na...A multi-fluid blast furnace model was simply introduced and was used to simulate several innovative ironmaking operations. The simulation results show that injecting hydrogen bearing materials, especially injecting natural gas and plastics, the hydrogen reduction is enhanced, and the furnace performance is improved simultaneously. Total heat input shows obvious decrease due to the decrease of heat consumption in direct reduction, solution loss and silicon transfer reactions. If carbon composite agglomerates are charged into the furnace, the temperature of thermal reserve zone will obviously decrease, and the reduction of iron-bearing burden materials will be retarded. However, the efficiency of blast furnace is improved just due to the decrease in heat requirements for solution loss, sinter reduction, and silicon transfer reactions, and less heat loss through top gas and furnace wall. Finally, the model is used to investigate the performance of blast furnace under the condition of top gas recycling together with plastics injection, cold oxygen blasting and carbon composite agglomerate charging. The lower furnace temperature, extremely accelerated reduction rate, drastically decreased CO2 emission and remarkably enhanced heat efficiency were obtained by using the innovative operations, and the blast furnace operation with superhigh efficiency can be realized.展开更多
The campaign life of blast furnace (BF) hearths has become the limiting factor for safety and high efficiency production of modern BFs. However, the early warning mechanism of hearth security has not been clear. In ...The campaign life of blast furnace (BF) hearths has become the limiting factor for safety and high efficiency production of modern BFs. However, the early warning mechanism of hearth security has not been clear. In this article, based on heat transfer calculations, heat flux and erosion monitoring, the features of heat flux and erosion were analyzed and compared among different types of hearths. The primary detecting elements, mathematical models, evaluating standards, and warning methods were discussed. A novel early warning mechanism with the three-level quantificational standards was proposed for BF hearth security.展开更多
Possibility of combustible gas production from municipal solid waste (MSW) using hot blast furnace (BF) slag has been studied.The objective of this work is to generate combustible gas from MSW using heated BF slag...Possibility of combustible gas production from municipal solid waste (MSW) using hot blast furnace (BF) slag has been studied.The objective of this work is to generate combustible gas from MSW using heated BF slag.In this experiment,the thermal stability of the MSW was analyzed by thermogravimetric analysis,and effects of temperature,gasifying agent (air,N2,steam) and BF slag on the gas products were investigated at 600?900 ?C.The thermogravimetric analysis indicates that the weight loss of MSW includes four stages:evaporation of the moisture,combustion of volatile materials,burning of carbon residue and burnout of ash.The contents of the combustible gas increase with increasing temperature,and the lower calorific value (LCV) increases rapidly at 600?900 ?C.It is found that volume fraction of CO,H2 and CH4 at different atmospheres increases in the order N2〈air〈steam.It is believed that BF slag acts as the catalyst and the heat carrier,which promotes the gasification reactivity of MSW.展开更多
To predict three-dimensional temperature distribution of molten aluminum and its influencing factors inside an industrial aluminum holding furnace,a fluid-solid coupled method was presented.The fluid-solid coupled mat...To predict three-dimensional temperature distribution of molten aluminum and its influencing factors inside an industrial aluminum holding furnace,a fluid-solid coupled method was presented.The fluid-solid coupled mathematics models of aluminum holding furnace in the premixed combustion processing were established based on mass conservation,moment conservation,momentum conservation,energy conservation and chemistry species conservation.Computational results agree well with the test data of the typical condition.The maximum combustion temperature is 1 850 K.The average temperature of the molten aluminum is 1 158 K,and the maximum temperature difference is about 240 K.The average temperature increases 0.3 ℃ while the temperature of combustion air increases 1 ℃.The optimal excess air ratio is 1.25-1.30.展开更多
The physical and mathematical model of temperature field for blast furnace stave coolers was established. The computation results show that the heat resistance of 2-6 mm water scale within the cooling pipe is about 7...The physical and mathematical model of temperature field for blast furnace stave coolers was established. The computation results show that the heat resistance of 2-6 mm water scale within the cooling pipe is about 7%-20% of the total heat resistance of cooling stave body, as for drilling duct type, the heat resistance of 2-6 mm water scale is about 88%-98% of the total heat resistance. Using drilling duct or full cast pipe can eliminate gas clearance and coating layer between pipes and cast iron body and reduce the heat resistance of the cooler sharply and improve the coefficient of heat transfer to a great extent. The water velocity within coolers can be kept at the 1evel of 0.5- 1 .5 m/s, the higher water velocity can not decrease the hot surface temperature, but can increase energy consumption for cooling water.展开更多
A mathematical model describing the flow field, heat transfer and the electromagnetic phenomenon in a DC electric arc furnace has been developed. First the governing equations in the arc plasma region are solved and t...A mathematical model describing the flow field, heat transfer and the electromagnetic phenomenon in a DC electric arc furnace has been developed. First the governing equations in the arc plasma region are solved and the calculated results of heat transfer, current density and shear stresses on the anode surface are used as boundary conditions in a model of molten bath. Then a two-dimensional time-dependent model is used to describe the flow field and electromagnetic phenomenon in the molten bath. Moreover, the effect of bottom electrode diameter on the circulation of molten bath is studied.展开更多
The preparation of functional material titanium carbide by the carbothermal reduction of Ti-bearing blast furnace slag with microwave heating is an effective method for valuable metals recovery;it can alleviate the en...The preparation of functional material titanium carbide by the carbothermal reduction of Ti-bearing blast furnace slag with microwave heating is an effective method for valuable metals recovery;it can alleviate the environmental pressure caused by slag stocking.The dynamic dielectric parameters of Ti-bearing blast furnace slag/pulverized coal mixture under high-temperature heating are measured by the cylindrical resonant cavity perturbation method.Combining the transient dipole and large π bond delocalization polarization phenomena, the interaction mechanism of the microwave macroscopic non-thermal effect on the titanium carbide synthesis reaction was revealed.The material thickness range during microwave heating was optimized by the joint analysis of penetration depth and reflection loss, which is of great significance to the design of the microwave reactor for the carbothermal reduction of Ti-bearing blast furnace slag.展开更多
A radiative heat transfer mathematical model for a one-dimensional long furnace was set up in a through-type roller-hearth furnace (TTRHF) in compact strip production (CSP). To accurately predict the heat exchange...A radiative heat transfer mathematical model for a one-dimensional long furnace was set up in a through-type roller-hearth furnace (TTRHF) in compact strip production (CSP). To accurately predict the heat exchange in the furnace, modeling of the complex gas energy-balance equation in volume zones was considered, and the heat transfer model of heating slabs and wall lines was coupled with the radiative heat transfer model to identify the surface zonal temperature. With numerical simulation, the temperature fields of gas, slabs, and wall lines in the furnace under one typical working condition were carefully accounted and analyzed. The fundamental theory for analyzing the thermal process in TI'RI-IF was provided.展开更多
The mathematical model has been estublished for the simulation of steel coil's heat transfer during annealing thermal process in HPH (high performance hydrogen) furnace. The equivalent radial thermal conductivity i...The mathematical model has been estublished for the simulation of steel coil's heat transfer during annealing thermal process in HPH (high performance hydrogen) furnace. The equivalent radial thermal conductivity is adopted by statistical analysis regression approach through the combination of a large quantity of production data collected in practice and theoretical analyses. The effect of the number of coils on circulating flow gas is considered for calculating the convection heat transfer coefficient, The temperature within the coil is predicted with the developed model during the annealing cycle including heating process and cooling process. The good consistently between the predicted results and the experimental data has demonstrated that the mathematical model established and the parameters identified by this paper are scientifically feasible and the effective method of calculation for coil equivalent radial heat transfer coefficient and circulating gas flow has been identified successfully, which largely enhances the operability and feasibility of the mathematic- model. This model provides a theoretical basis and an effective means to conduct studies on the impact that foresaid factors may imposed on the steel coil's temperature field, to analyze the stress within coils, to realize online control and optimal production and to increase facilily output by increasing heating and cooling rates of coils without producing higher thermal stress.展开更多
基金financially supported by the General Program of the National Natural Science Foundation of China (No. 52274326)the Fundamental Research Funds for the Central Universities (No. N2425031)+3 种基金Seventh Batch of Ten Thousand Talents Plan (No. ZX20220553)China Baowu Low Carbon Metallurgy Innovation Foundation (No. BWLCF202109)The key technology research and development and application of digital transformation throughout the iron and steel production process (No. 2023JH2/101800058)Liaoning Province Science and Technology Plan Joint Program (Key Research and Development Program Project)
文摘The prediction and control of furnace heat indicators are of great importance for improving the heat levels and conditions of the complex and difficult-to-operate hour-class delay blast furnace(BF)system.In this work,a prediction and feedback model of furnace heat indicators based on the fusion of data-driven and BF ironmaking processes was proposed.The data on raw and fuel materials,process op-eration,smelting state,and slag and iron discharge during the whole BF process comprised 171 variables with 9223 groups of data and were comprehensively analyzed.A novel method for the delay analysis of furnace heat indicators was established.The extracted delay variables were found to play an important role in modeling.The method that combined the genetic algorithm and stacking efficiently im-proved performance compared with the traditional machine learning algorithm in improving the hit ratio of the furnace heat prediction model.The hit ratio for predicting the temperature of hot metal in the error range of±10℃ was 92.4%,and that for the chemical heat of hot metal in the error range of±0.1wt%was 93.3%.On the basis of the furnace heat prediction model and expert experience,a feedback model of furnace heat operation was established to obtain quantitative operation suggestions for stabilizing BF heat levels.These sugges-tions were highly accepted by BF operators.Finally,the comprehensive and dynamic model proposed in this work was successfully ap-plied in a practical BF system.It improved the BF temperature level remarkably,increasing the furnace temperature stability rate from 54.9%to 84.9%.This improvement achieved considerable economic benefits.
文摘Estimating the residual heat of blast furnace slag flushing in China,classifying and introducing the current proposed methods of slag flushing waste heat utilization,and listing existing cases.In order to better save energy and water in the slag flushing process of blast furnaces,an ideal comprehensive cascade utilization system scheme for annual recovery of waste heat is proposed.Based on the measured waste heat data of a steel plant,design calculations are carried out to further analyze the economic feasibility of the new scheme and provide reference for its promotion and application.
文摘A three-dimension full-size numerical simulation of the effect of air distribution on turbulent flow and combustion in a tubular heating furnace was carried out. A standard k –ε turbulent model, a simplified PDF combustion model and a discrete ordinate transfer radiation model were used. The hybrid grid combining a structured and a non-structured grid was generated without any simplification of the complicated geometric configuration around the burner. It was found that the multistage combustion could reduce and control the peak value of temperature. At the same time, it was concluded that the amount of primary air had little effect on the global distribution of velocity and temperature in the furnace, but a great effect on that around the burner. It is recommended that 45% - 65% of the total amount of air be taken in in primary air inlets in the furnace. All the results are important to optimize the combustion progress.
文摘This article studies the transient heat conduction in a slab when passing through various sections of the furnace, and focuses on the thickness of the scale layer formed on the slab. The transient heat conduction behavior of a slab in various sections of the heating furnace is analyzed using the Laplace transformation method, including the pre-heating zone, the first heating zone, the second heating zone, and the soaking zone. The heating pattern of the furnace is then modified to reduce fuel consumption. The simulation results show that the scale layer formed on the slab significantly influences the quality of the hot rolled coil formed, and how the furnace parameters affect the efficiency of the furnace and the quality of the coil.
基金Project(50876116) supported by the National Natural Science Foundation of ChinaProject(2007CK3077) supported by Innovative Program of Hunan Science and Technology AgencyProject(1343-77225) supported by the Graduate School of Central South University
文摘In order to investigate Joule heating power,a three-dimensional finite element model(FEM) was developed to predict Joule heating power in the channels of double-loop inductor. The simulated results were compared with experimental data from low load trials for a 400 kW inductor. The results,such as power factor and Joule heating power,show reasonable correlation with experimental data,and Joule heating rate reaches the maximum at the corners and the minimum at the centre of the cross-section area. With increasing relative permeability of iron core,length of coils,current frequency and resistivity of metal melt,the power factor and Joule heating power change. It is concluded that current frequency,the resistivity and length of the coil play a critical role in determining the power factor and Joule heating power,whereas relative permeability of the magnetic core shows no significant influence on them.
基金This work was supported by the youth backbone teachers training program of Henan colleges and universities under Grant No.2016ggjs-287the project of science and technology of Henan province under Grant No.172102210124the Key Scientific Research projects in Colleges and Universities in Henan(Grant No.18B460003).
文摘The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the pure time delay and nonlinear time-varying.Proposed one kind optimized variable method of PID controller based on the genetic algorithm with improved BP network that better realized the completely automatic intelligent control of the entire thermal process than the classics critical purporting(Z-N)method.A heating furnace for the object was simulated with MATLAB,simulation results show that the control system has the quicker response characteristic,the better dynamic characteristic and the quite stronger robustness,which has some promotional value for the control of industrial furnace.
文摘A finite-time stabilization controller for the heating furnace temperature control system is proposed.Based on the extended Lyapunov finite-time stability theory and power integral method,a finite-time stable condition of the heating furnace temperature control system is given.The temperature of the heating furnace is directed by the finite-time stabilization controller to make it stable in finite time.And the quality and quantity of slabs is improved.The simulation example is presented to illustrate the applicability of the developed results.
文摘The technical .wtors of castables innovation of matin iron trough in blust furnaces of WISCO in recent ten years were analyed, and corrosion process of dense corundum, sub-white corundum and brown corundum aggregates in the castables for the main iron trough was researched. It is regarded tha.t there is no inevitable relation between castables properties and service life, and it must be considered that whether the normal technical in- dex in. the stan&trd can be used as judgment basis. Based on the improvement of matrix, the service hfe (once throughput of hot metal ) of castables used in main iron trough increases from 90 000 tons to 140 000 - 180 000 tons ; the properties of different raw materials are Jidly applied, and structure improvement of iron trough and progress of material technique are very important reasons.
文摘Based on thermal value theory, the aim of this paper is to deduce the theoretical formulas for evaluating the energy effective utilization degree in technological pyrological processes exemplified by metallurgical heating furnaces. Heat transfer models for continuous heating furnaces, batch-type heating furnaces, and regenerative heating furnaces are established, respectively. By analyzing the movement path of injected infinitesimal heat attached on steel or gas, thermal value equations of continuous, batch-type, and regenerative heating furnaces are derived. Then the influences of such factors as hot charging, gas preheating and intake time of heat on energy effective utilization degree are discussed by thermal value equations. The results show that thermal value rises with hot charging and air preheating for continuous heating furnaces, with shorter intake time when heat is attached on steel or longer intake time when heat is attached on gas for batch-type heating furnaces and that with more heat supply at early heating stage or less at late stage for regenerative heating furnaces.
文摘Natural gas should be heated and throttled for the purpose of purification and transportation at the first gas production factory of the Changqing field. The safe use and heat-transfer efficiency of a heating-furnace affect the safe and smooth production of natural gas directly. At gas collecting stations now, no measures of anticorrosion have been adopted in heating furnaces which erode and scale badly. In order to solve the corrosive problem of heating-furnaces, prolong operating life of heating-furnaces, assure safe and smooth production of natural gas, the mechanism and influencing factors of corrosion of the heating-furnace were analyzed and some corresponding measures were brought forward based on a field investigation of usage behavior and present operational status of heating-furnaces at the first gas production factory. The results show that the corrosive ion and soluble CO2 and O2 in water erode metal badly at the condition of being heated. Corrosion of a heating-furnace are mostly oxygen corrosion, corrosive ion corrosion, acid corrosion, iron encrustation corrosion, dry and wet interface corrosion, caustic corrosion, etc; The influencing factors of corrosion mainly include soluble O2 and CO2 in water, pH value, heat loading, corrosive ion, soluble solid (salinity) and non-flowing character of water, etc.
文摘The heat transfer analysis was performed for an industrial ladle furnace (LF) with a capacity of 55-57 t in Turkey. The heat losses by conduction, convection and radiation from outer and bottom surfaces, top and electrodes of LF were determined in detail. Finally, some suggestions about decreasing heat losses were presented.
文摘A multi-fluid blast furnace model was simply introduced and was used to simulate several innovative ironmaking operations. The simulation results show that injecting hydrogen bearing materials, especially injecting natural gas and plastics, the hydrogen reduction is enhanced, and the furnace performance is improved simultaneously. Total heat input shows obvious decrease due to the decrease of heat consumption in direct reduction, solution loss and silicon transfer reactions. If carbon composite agglomerates are charged into the furnace, the temperature of thermal reserve zone will obviously decrease, and the reduction of iron-bearing burden materials will be retarded. However, the efficiency of blast furnace is improved just due to the decrease in heat requirements for solution loss, sinter reduction, and silicon transfer reactions, and less heat loss through top gas and furnace wall. Finally, the model is used to investigate the performance of blast furnace under the condition of top gas recycling together with plastics injection, cold oxygen blasting and carbon composite agglomerate charging. The lower furnace temperature, extremely accelerated reduction rate, drastically decreased CO2 emission and remarkably enhanced heat efficiency were obtained by using the innovative operations, and the blast furnace operation with superhigh efficiency can be realized.
基金financially supported by the National Natural Science Foundation of China (No. 61271303)the Fundamental Research Funds for the Central Universities of China (No. FRF-TP-12-029A)
文摘The campaign life of blast furnace (BF) hearths has become the limiting factor for safety and high efficiency production of modern BFs. However, the early warning mechanism of hearth security has not been clear. In this article, based on heat transfer calculations, heat flux and erosion monitoring, the features of heat flux and erosion were analyzed and compared among different types of hearths. The primary detecting elements, mathematical models, evaluating standards, and warning methods were discussed. A novel early warning mechanism with the three-level quantificational standards was proposed for BF hearth security.
基金supported by the Applied Basic Research Key Project of Yunnan Province (No.2007E0014Z)
文摘Possibility of combustible gas production from municipal solid waste (MSW) using hot blast furnace (BF) slag has been studied.The objective of this work is to generate combustible gas from MSW using heated BF slag.In this experiment,the thermal stability of the MSW was analyzed by thermogravimetric analysis,and effects of temperature,gasifying agent (air,N2,steam) and BF slag on the gas products were investigated at 600?900 ?C.The thermogravimetric analysis indicates that the weight loss of MSW includes four stages:evaporation of the moisture,combustion of volatile materials,burning of carbon residue and burnout of ash.The contents of the combustible gas increase with increasing temperature,and the lower calorific value (LCV) increases rapidly at 600?900 ?C.It is found that volume fraction of CO,H2 and CH4 at different atmospheres increases in the order N2〈air〈steam.It is believed that BF slag acts as the catalyst and the heat carrier,which promotes the gasification reactivity of MSW.
基金Project(2006AA03Z523) supported by the National High-Tech Research and Development Program of ChinaProject(08C26224302178) supported by the Innovation Foundation of Central South University,China
文摘To predict three-dimensional temperature distribution of molten aluminum and its influencing factors inside an industrial aluminum holding furnace,a fluid-solid coupled method was presented.The fluid-solid coupled mathematics models of aluminum holding furnace in the premixed combustion processing were established based on mass conservation,moment conservation,momentum conservation,energy conservation and chemistry species conservation.Computational results agree well with the test data of the typical condition.The maximum combustion temperature is 1 850 K.The average temperature of the molten aluminum is 1 158 K,and the maximum temperature difference is about 240 K.The average temperature increases 0.3 ℃ while the temperature of combustion air increases 1 ℃.The optimal excess air ratio is 1.25-1.30.
文摘The physical and mathematical model of temperature field for blast furnace stave coolers was established. The computation results show that the heat resistance of 2-6 mm water scale within the cooling pipe is about 7%-20% of the total heat resistance of cooling stave body, as for drilling duct type, the heat resistance of 2-6 mm water scale is about 88%-98% of the total heat resistance. Using drilling duct or full cast pipe can eliminate gas clearance and coating layer between pipes and cast iron body and reduce the heat resistance of the cooler sharply and improve the coefficient of heat transfer to a great extent. The water velocity within coolers can be kept at the 1evel of 0.5- 1 .5 m/s, the higher water velocity can not decrease the hot surface temperature, but can increase energy consumption for cooling water.
文摘A mathematical model describing the flow field, heat transfer and the electromagnetic phenomenon in a DC electric arc furnace has been developed. First the governing equations in the arc plasma region are solved and the calculated results of heat transfer, current density and shear stresses on the anode surface are used as boundary conditions in a model of molten bath. Then a two-dimensional time-dependent model is used to describe the flow field and electromagnetic phenomenon in the molten bath. Moreover, the effect of bottom electrode diameter on the circulation of molten bath is studied.
基金financially supported by the National Key R&D Program of China (No.2018YFC1900500)the National Natural Science Foundation of China (No.51961020)+1 种基金the Key Technology Research and Industrialization Application Demonstration Project of the Renewable Multi-energy Complementary (No.2018IB020)the Academician Workstation of Kefa Cen (No.2018IC085)。
文摘The preparation of functional material titanium carbide by the carbothermal reduction of Ti-bearing blast furnace slag with microwave heating is an effective method for valuable metals recovery;it can alleviate the environmental pressure caused by slag stocking.The dynamic dielectric parameters of Ti-bearing blast furnace slag/pulverized coal mixture under high-temperature heating are measured by the cylindrical resonant cavity perturbation method.Combining the transient dipole and large π bond delocalization polarization phenomena, the interaction mechanism of the microwave macroscopic non-thermal effect on the titanium carbide synthesis reaction was revealed.The material thickness range during microwave heating was optimized by the joint analysis of penetration depth and reflection loss, which is of great significance to the design of the microwave reactor for the carbothermal reduction of Ti-bearing blast furnace slag.
文摘A radiative heat transfer mathematical model for a one-dimensional long furnace was set up in a through-type roller-hearth furnace (TTRHF) in compact strip production (CSP). To accurately predict the heat exchange in the furnace, modeling of the complex gas energy-balance equation in volume zones was considered, and the heat transfer model of heating slabs and wall lines was coupled with the radiative heat transfer model to identify the surface zonal temperature. With numerical simulation, the temperature fields of gas, slabs, and wall lines in the furnace under one typical working condition were carefully accounted and analyzed. The fundamental theory for analyzing the thermal process in TI'RI-IF was provided.
基金This work was supported by the Anhui Provincial Science Foundation of China(No.2003KJ014ZD).
文摘The mathematical model has been estublished for the simulation of steel coil's heat transfer during annealing thermal process in HPH (high performance hydrogen) furnace. The equivalent radial thermal conductivity is adopted by statistical analysis regression approach through the combination of a large quantity of production data collected in practice and theoretical analyses. The effect of the number of coils on circulating flow gas is considered for calculating the convection heat transfer coefficient, The temperature within the coil is predicted with the developed model during the annealing cycle including heating process and cooling process. The good consistently between the predicted results and the experimental data has demonstrated that the mathematical model established and the parameters identified by this paper are scientifically feasible and the effective method of calculation for coil equivalent radial heat transfer coefficient and circulating gas flow has been identified successfully, which largely enhances the operability and feasibility of the mathematic- model. This model provides a theoretical basis and an effective means to conduct studies on the impact that foresaid factors may imposed on the steel coil's temperature field, to analyze the stress within coils, to realize online control and optimal production and to increase facilily output by increasing heating and cooling rates of coils without producing higher thermal stress.