期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Grain-filling strategies of wheat of contrasting grain sizes under various planting patterns and irrigation levels
1
作者 Zimeng Liang Jingyi Feng +4 位作者 Jiayu Li Yangyang Tang Tiankang He Vinay Nangia Yang Liu 《The Crop Journal》 SCIE CSCD 2024年第3期897-906,共10页
In a study comparing grain filling and yield in a large-and a small-grain-size wheat cultivar under two planting patterns and two irrigation regimes,plastic-covered ridge and furrow planting with sprinkler irrigation ... In a study comparing grain filling and yield in a large-and a small-grain-size wheat cultivar under two planting patterns and two irrigation regimes,plastic-covered ridge and furrow planting with sprinkler irrigation increased grain filling and yield in both cultivars.The largest contributors to grain yield were an extended active grain-filling period in Shuangda 1 and an increased mean grain-filling rate in XN538. 展开更多
关键词 Plastic-covered ridge and furrow cultivation Sprinkler irrigation WHEAT Grain size Grain filling
下载PDF
Asymmetric Ridge–Furrow and Film Cover Improves Plant Morphological Traits and Light Utilization in Rain-Fed Maize 被引量:3
2
作者 Wanlin DONG Hang YU +6 位作者 Lizhen ZHANG Ruonan WANG Qi WANG Qingwu XUE Zhihua PAN Zhigang SUN Xuebiao PAN 《Journal of Meteorological Research》 SCIE CSCD 2018年第5期829-838,共10页
Light is one of the most important natural resources for plant growth. Light interception (LI) and use efficiency (LUE) are often affected by the structure of canopy caused by growing pattern and agronomy manageme... Light is one of the most important natural resources for plant growth. Light interception (LI) and use efficiency (LUE) are often affected by the structure of canopy caused by growing pattern and agronomy managements. Agro-nomy practices, such as the ridge-furrow system and plastic film cover, might affect the leaf morphology and then light transmission within the canopy, thus change light extinction coefficient (k), and LI and LUE. The objective of this study is to quantify LI and LUE in rain-fed maize (Zea Mays L.), a major cropping system in Northeast China, under different combinations of ridge-furrow and film covering ratios. The tested ridge-furrow system (DRF: "double ridges and furrows") was asymmetric and alternated with wide ridge (0.70 m in width and 0.15 m in height), narrow furrow (0.10 m), narrow ridge (0.40 m in width and 0.20 m in height), and narrow furrow (0.10 m). Field ex-periments were conducted in 2013 and 2014 in Jilin Province, Northeast China. Four treatments were tested: no ridges and plastic film cover (control, NRF), ridges without film cover (DRF0), ridges with 58% film cover (DRF58), and ridges with 100% film cover (DRFl00). DRF0 significantly increased LI by 9% compared with NRF, while film cover showed a marginal improvement. Specific leaf area in DRF experiments with film cover was significantly lower than in NRF, and leaf angle was 16% higher than in NRF, resulting in a 4% reduction in k. LUE of maize was not increased by DRF0, but was significantly enhanced by covering film in other DRF experiments, especially by 22% in DRF100. The increase of LUE by film cover was due to a greater biomass production and a lower assimilation portioning to vegetative organs, which caused a higher harvest index. The results could help farmers to optimize maize managements, especially in the region with decreased solar radiation under climate change. 展开更多
关键词 light interception light use efficiency film mulching plant morphology ridge and furrow cultivation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部