In a study comparing grain filling and yield in a large-and a small-grain-size wheat cultivar under two planting patterns and two irrigation regimes,plastic-covered ridge and furrow planting with sprinkler irrigation ...In a study comparing grain filling and yield in a large-and a small-grain-size wheat cultivar under two planting patterns and two irrigation regimes,plastic-covered ridge and furrow planting with sprinkler irrigation increased grain filling and yield in both cultivars.The largest contributors to grain yield were an extended active grain-filling period in Shuangda 1 and an increased mean grain-filling rate in XN538.展开更多
In order to solve the problem that dry-land foxtail millet production completely relies on rainwater with the characteristics of low instable yield, manual thinning and weeding, high labor intensity, and labor and tim...In order to solve the problem that dry-land foxtail millet production completely relies on rainwater with the characteristics of low instable yield, manual thinning and weeding, high labor intensity, and labor and time saving, Millet Research Institute of Hebei Academy of Agriculture and Forestry Sciences integrated furrow sowing beside plastic film covering micro-ridges, simplified cultivation and mechanized production, forming the simplified foxtail millet cultivation technique adopting furrow sowing beside plastic film covering micro-ridges. This study introduced the technique points of the simplified foxtail millet cultivation technique adopting furrow sowing beside plastic film covering micro-ridges, including preparation before sowing,sowing, attached agricultural machines, field management, harvest and residual film recovery.展开更多
Dry direct-seeded rice grown in raised beds is becoming an important practice in the wheat–rice rotation system in China.However,little information has been available on the effect of various irrigation regimes on gr...Dry direct-seeded rice grown in raised beds is becoming an important practice in the wheat–rice rotation system in China.However,little information has been available on the effect of various irrigation regimes on grain yield,water productivity(WP),nitrogen use efficiency(NUE),and greenhouse gas emission in this practice.This study investigated the question using two rice cultivars in 2015 and 2016 grown in soil with wheat straw incorporated into it.Rice seeds were directly seeded into raised beds,which were maintained under aerobic conditions during the early seedling period.Three irrigation regimes:continuous flooding(CF),alternate wetting and drying(AWD),and furrow irrigation(FI),were applied from 4.5-leaf-stage to maturity.Compared with CF,both AWD and FI significantly increased grain yield,WP,and internal NUE,with greater increases under the FI regime.The two cultivars showed the same tendency in both years.Both AWD and FI markedly increased soil redox potential,root and shoot biomass,root oxidation activity,leaf photosynthetic NUE,and harvest index and markedly decreased global warming potential,owing to substantial reduction in seasonalThe results demonstrate that adoption of either AWD or FI could increase grain yield and resource-use efficiency and reduce environmental risks in dry direct-seeded rice grown on raised beds with wheat straw incorporation in the wheat–rice rotation system.展开更多
Furrow irrigation when combined with plastic mulch on ridge is one of the current uppermost wa- ter-saving irrigation technologies for arid regions. The present paper studies the dynamics of soil water-salt trans- por...Furrow irrigation when combined with plastic mulch on ridge is one of the current uppermost wa- ter-saving irrigation technologies for arid regions. The present paper studies the dynamics of soil water-salt trans- portation and its spatial distribution characteristics under irrigation with saline water in a maize field experiment. The mathematical relationships for soil salinity, irrigation amount and water salinity are also established to evaluate the contribution of the irrigation amount and the salinity of saline water to soil salt accumulation. The result showed that irrigation with water of high salinity could effectively increase soil water content, but the increment is limited com- paring with the influence from irrigation amount. The soil water content in furrows was higher than that in ridges at the same soil layers, with increments of 12.87% and 13.70% for MMF9 (the treatment with the highest water salinity and the largest amount of irrigation water) and MMF1 (the treatment with the lowest water salinity and the least amount of irrigation water) on 27 June, respectively. The increment for MMF9 was gradually reduced while that for MMF1 increased along with growth stages, the values for 17 August being 2.40% and 19.92%, respectively. Soil water content in the ridge for MMF9 reduced gradually from the surface layer to deeper layers while the surface soil water content for MMF1 was smaller than the contents below 20 cm at the early growing stage. Soil salinities for the treatments with the same amount of irrigation water but different water salinity increased with the water salinity. When water salinity was 6.04 dS/m, the less water resulted in more salt accumulation in topsoil and less in deep layers. When water salinity was 2.89 dS/m, however, the less water resulted in less salt accumulation in topsoil and salinity remained basically stable in deep layers. The salt accumulation in the ridge surface was much smaller than that in the furrow bottom under this technology, which was quite different from traditional furrow irrigation. The soil salinities for MMF7, MMF8 and MMF9 in the ridge surface were 0.191, 0.355 and 0.427 dS/m, respectively, whereas those in the furrow bottom were 0.316, 0.521 and 0.631 dS/m, respectively. The result of correlation analysis indicated that compared with irrigation amount, the irrigation water salinity was still the main factor influ- encing soil salinity in furrow irrigation with plastic mulch on ridge.展开更多
Mechanical hill wet-seeded rice machine is beneficial for establishing and growing uniform rows of seedlings.However,there is limited knowledge regarding the effects of the establishment of furrows on growth,lodging a...Mechanical hill wet-seeded rice machine is beneficial for establishing and growing uniform rows of seedlings.However,there is limited knowledge regarding the effects of the establishment of furrows on growth,lodging and yield,and their relationships with root traits.In this study,field experiments were conducted during 2012 and 2013 using two super rice varieties(hybrid rice Peizataifeng and inbred rice Yuxiangyouzhan)under three furrow establishment treatments(T1,both water and seed furrows were established by the machine;T2,only seed furrows were established by the machine;and T3,neither water nor seed furrows were established by the machine).Lodging index,lodging-related traits,grain yield,above-ground dry weight and root traits were measured.The results showed that the lodging index was significantly affected by the treatments with furrows(T1 and T2).The strongest lodging resistance was detected in the mechanical hill wet-seeded rice with furrow treatment(T1)in both 2012 and 2013.Lodging resistance was strongly related to the breaking resistance.No significant difference was found in grain yield or dry weight of the mechanical hill wet-seeded rice.Therefore,the mechanical hill wet-seeded rice with furrow treatment increased rice lodging resistance,which was related to root traits.展开更多
Quantitative information on the fate and efficiency of nitrogen (N) fertilizer applied to coarse textured calcareous soils in arid farming systems is scarce but, as systems intensify, is essential to support sustain...Quantitative information on the fate and efficiency of nitrogen (N) fertilizer applied to coarse textured calcareous soils in arid farming systems is scarce but, as systems intensify, is essential to support sustainable ag- ronomic management decisions. A mesh house study was undertaken to trace the fate of N fertilizer applied to cotton (Gossypium hirsutum L. cv., Huiyuan701) growing on a reconstructed profile (0-100 cm) of a calcareous (〉15% CaCQ) sandy loam soil. Two irrigation methods (drip irrigation, DI; and furrow irrigation, FI) and four N ap- plication rates (0, 240, 360 and 480 kg/hm2, abbreviated as No, N240, N360, and N480, respectively) were applied. 15N-labelled urea fertilizer was applied in a split application. DI enhanced the biomass of whole plant and all parts of the plant, except for root; more fertilizer N was taken up and mostly stored in vegetative parts; N utilization efficiency (NUE) was significantly greater than in FI. N utilization efficiency (NUE) decreased from 52.59% in N240 to 36.44% in N480. N residue in soil and plant N uptake increased with increased N dosage, but recovery rate decreased consis- tently both in DI and Fl. Plant N uptake and soil N residue were greater in DI than in FI. N residue mainly stayed within 0-40 cm depth in DI but within 40-80 cm depth in Ft. FI showed 17.89% of N leached out, but no N leaching occurred in DI. N recovery rate in the soil-plant system was 75.82% in DI, which was markedly greater than the 55.97% in FI. DI exhibited greater NUE, greater residual N in the soil profile and therefore greater N recovery rate than in FI; also, N distribution in soil profile shallowed in DI, resulting in a reduced risk of N leaching compared to FI; and enhanced shoot growth and reduced root growth in DI is beneficial for more economic yield formation. Com- pared to furrow irrigation, drip irrigation is an irrigation method where N movement favors the prevention of N from being lost in the plant-soil system and benefits a more efficient use of N.展开更多
Field experiments were conducted for two years to investigate the benefits of alternate furrow irrigation on fruit yield, quality and water use efficiency of grape (Vitis vinifera L. cv. Rizamat) in the arid region ...Field experiments were conducted for two years to investigate the benefits of alternate furrow irrigation on fruit yield, quality and water use efficiency of grape (Vitis vinifera L. cv. Rizamat) in the arid region of Northwest China. Two irrigation treatments were included, i.e., conventional furrow irrigation (CFI, two root-zones were simultaneously irrigated during the consecutive irrigation) and alternate partial root-zone furrow irrigation (AFI, two root-zones were alternatively irrigated during the consecutive irrigation). Results indicate that AFI maintained similar photosynthetic rate (Pn) but with a reduced transpiration rate when compared to CFI. As a consequence, AFI improved water use efficiency based on evapotranspiration (WUEEr, fruit yield over water consumed) and irrigation (WUE~, fruit yield over water irrigated) by 30.0 and 34.5%, respectively in 2005, and by 12.7 and 17.7%, respectively in 2006. AFI also increased the edible percentage of berry by 2.91-4.79% significantly in both years. Vitamin C (Vc) content content of berry was increased by 25.6-37.5%, and tritrated acidity (TA) was reduced by 9.5-18.1% in AFI. This resulted in an increased total soluble solid content (TSS) to TA ratio (TSS/TA) by 11.5-16.7% when compared to CFI in both years. Our results indicate that alternate furrow irrigation is a practical way to improve grape fruit quality and water use efficiency for irrigated crops in arid areas.展开更多
[Objective] Aiming at chilling damage of maize in lowland of western Liaoning, the powerful evidences of resisting chilling damage of maize were provided from tillage method perspective.[Method] The depths of plough l...[Objective] Aiming at chilling damage of maize in lowland of western Liaoning, the powerful evidences of resisting chilling damage of maize were provided from tillage method perspective.[Method] The depths of plough layers, sunshine effects in seedling stage, resistances to frost damage, microclimatic effects such as soil moisture, root system in filling stage, growth periods and grain weights of maize planted on ridge and in furrow were comparatively observed. The random arrangement was adopted in comparative observation with 4 replications.[Result] The daily mean ground temperature and effective accumulated temperature of plough layer of maize planted on ridge were relatively high. In addition, the seedling stage and mature stage of maize planted on ridge were in advance, the soil moisture, root growth and seed plumpness of maize planted on ridge were good. [Conclusion] The ridge planting in lowland of western Liaoning could improve in 0-20 cm plough layer where root grew, besides that this method could also improve maize growth and development.展开更多
Maize is widely planted throughout the world and has the highest yield of all the cereal crops. The arid region of North- west China has become the largest base for seed-maize production, but water shortage is the bot...Maize is widely planted throughout the world and has the highest yield of all the cereal crops. The arid region of North- west China has become the largest base for seed-maize production, but water shortage is the bottleneck for its long-term sustainability. Investigating the transpiration of seed-maize plants will offer valuable information for suitable planting and irrigation strategies in this arid area. In this study, stem flow was measured using a heat balance method under alternate furrow irrigation and double-row ridge planting. Meteorological factors, soil water content (e), soil temperature (Ts) and leaf area (LA) were also monitored during 2012 and 2013. The diurnal stem flow and seasonal dynamics of maize plants in the zones of south side female parent (SFP), north side female parent (NFP) and male parent (MP) were investigated. The order of stem flow rate was: SFP〉MP〉NFP. The relationships between stem flow and influential factors during three growth stages at different time scales were analyzed. On an hourly scale, solar radiation (Rs) was the main driving factor of stem flow. The influence of air temperature (Ta) during the maturity stage was significantly higher than in other periods. On a daily scale, Rs was the main driving factor of stem flow during the heading stage. During the filling growth stage, the main driving factor of NFP and MP stem flow was RH and Ts, respectively. However, during the maturity stage, the environ- mental factors had no significant influence on seed-maize stem flow. For different seed-maize plants, the main influential factors were different in each of the three growing seasons. Therefore, we identified them to accurately model the FP and MP stem flow and applied precision irrigation under alternate partial root-zone furrow irrigation to analyze major factors affecting stem flow in different scales.展开更多
Stagnating yield and declining input use efficiency in irrigated wheat of the Indo-Gangetic Plain (IGP) coupled with diminishing availability of water for agriculture is a major concern of food security in South Asia....Stagnating yield and declining input use efficiency in irrigated wheat of the Indo-Gangetic Plain (IGP) coupled with diminishing availability of water for agriculture is a major concern of food security in South Asia. The objective of our study was to establish an understanding of how wheat yield and input use efficiency can be improved and how land leveling and crop establishment practices can be modified to be more efficient in water use through layering of precision-conservation crop management techniques. The “precision land leveling with raised bed” planting can be used to improve crop yield, water and nutrient use efficiency over the existing “traditional land leveling with flat” planting practices. We conducted a field experiment during 2002-2004 at Modipuram, India to quantify the benefits of alternate land leveling (precision land leveling) and crop establishment (furrow irrigated raised bed planting) techniques alone or in combination (layering precision-conservation) in terms of crop yield, water savings, and nutrient use efficiency of wheat production in IGP. The wheat yield was about 16.6% higher with nearly 50% less irrigation water with layering precision land leveling and raised bed planting compared to traditional practices (traditional land leveling with flat planting). The agronomic (AE) and uptake efficiency (UE) of N, P and K were significantly improved under precision land leveling with raised bed planting technique compared to other practices.展开更多
Although plastic-covered ridge and furrow planting(RF) has been reported to produce substantial increases in the grain weight of winter wheat,the underlying mechanism is not yet understood.The present study used two...Although plastic-covered ridge and furrow planting(RF) has been reported to produce substantial increases in the grain weight of winter wheat,the underlying mechanism is not yet understood.The present study used two cultivars,Xinong 538 and Zhoumai 18,and RF and traditional flatten planting(TF,control) with the objective of investigating the effect of RF on wheat grain filling and the possible relationship of hormonal changes in the wheat grains under RF to grain filling.The results indicated that RF significantly increased the grain weight,although the effects on grain filling were different: RF significantly increased the grain-filling rate and grain weight of inferior grains,whereas RF had no significant effect on grainfilling rate and grain weight of superior grains.The final grain weight of inferior grains under RF was 39.1 and 50.7 mg for Xinong 538 and Zhoumai 18,respectively,3.6 and 3.4 mg higher than the values under TF.However,the final grain weight of superior grains under RF was only 0.6 and 0.8 mg higher than under TF for Xinong 538 and Zhoumai 18,respectively.RF significantly decreased the ethylene and gibberellic acid content in the inferior grains and increased the indole-3-acetic acid,abscisic acid and zeatin + zeatin riboside content in the inferior grains;however,no significant difference between RF and TF was observed for the hormonal content in the superior grains.Based on these results,we concluded that RF significantly modulated hormonal changes in the inferior grains and,thus,affected the grain filling and grain weight of the inferior grains;in contrast,RF had no significant effect on grain filling,grain weight and hormonal changes in the superior wheat grains.展开更多
Sustainable irrigation method is now essential for adaptation and adoption in the areas where water resources are limited. Therefore, a field experiment was conducted to test the performance of alternate wetting and d...Sustainable irrigation method is now essential for adaptation and adoption in the areas where water resources are limited. Therefore, a field experiment was conducted to test the performance of alternate wetting and drying furrow irrigation(AWDFI) on crop growth, yield, water use efficiency(WUE), fruit quality and profitability analysis of tomato. The experiment was laid out in randomized complete block design with six treatments replicated thrice during the dry seasons of 2013-2014 and 2014-2015. Irrigation water was applied through three ways of furrow: AWDFI, fixed wetting and drying furrow irrigation(FWDFI) and traditional(every) furrow irrigation(TFI). Each irrigation method was divided into two levels: irrigation up to 100 and 80% field capacity(FC). Results showed that plant biomass(dry matter) and marketable fruit yield of tomato did not differ significantly between the treatments of AWDFI and TFI, but significant difference was observed in AWDFI and in TFI compared to FWDFI at same irrigation level. AWDFI saved irrigation water by 35 to 38% for the irrigation levels up to 80 and 100% FC, compared to the TFI, respectively. AWDFI improved WUE by around 37 to 40% compared to TFI when irrigated with 100 and 80% FC, respectively. Fruit quality(total soluble solids and pulp) was found greater in AWDFI than in TFI. Net return from AWDFI technique was found nearly similar compared to TFI and more than FWDFI. The benefit cost ratio was viewed higher in AWDFI than in TFI and FWDFI by 2.8, 8.7 and 11, 10.4% when irrigation water was applied up to 100 and 80% FC, respectively. Unit production cost was obtained lower in AWDFI compared to TFI and FWDFI. However, AWDFI is a useful water-saving furrow irrigation technique which may resolve as an alternative choice compared with TFI in the areas where available water and supply methods are limited to irrigation.展开更多
The rational usage of low productive cryogenic landscapes in the North-Eastern part of Russia is impossible without carrying out special engineering preparation\. The preventing from negativethat often has destructive...The rational usage of low productive cryogenic landscapes in the North-Eastern part of Russia is impossible without carrying out special engineering preparation\. The preventing from negativethat often has destructive cryogenic processesin the area of ice-covered permafrost soils, provided by its thawing into the marginally necessary depth in thewhole area. The simplest and the most effective engineering method of faulting as anage-old stock (reserve)of surplus moisture in the form of ice from the upper parts of permafrost soils is the creation of continuous furrows net on the wholesurface. This method also raises the fertility of soils, reducesacidity, and raises microbiological activity and the degree of internal structure decaying. Thermophysical calculations and the results of the field study in the experimental firing grounds are the availableevidences of this methodwhich raises thethermal stability of cryogenic landscapes while mastering of global climate changes in different parts of cryolithozone.展开更多
Even though annual rainfall is high in the Delta region of Mississippi, only 30% occurs during the months in which the major crops are produced, making irrigation often necessary to meet crop water needs and to avoid ...Even though annual rainfall is high in the Delta region of Mississippi, only 30% occurs during the months in which the major crops are produced, making irrigation often necessary to meet crop water needs and to avoid risk of yield and profitability loss. Approximately, 65% of the farmland in this region is irrigated. The shallow Mississippi River Valley Alluvial Aquifer is the major source of water for irrigation and for aquaculture in the predominant catfish industry. This groundwater is being heavily used as row-crop irrigation has increased tremendously. Water level in this aquifer has declined significantly over the past twenty five years, with overdraft of approximately 370 million cubic meters of water per year. Moreover, the common irrigation practices in the Delta re-gion of Mississippi do not use water efficiently, further depleting the ground water and making ir-rigation more expensive to producers due to increasing energy prices. Irrigation experts in the re-gion have tested and verified various methods and tools that increase irrigation efficiency. This article presents a review of the current status of the irrigation practices in the Delta region of Mis-sissippi, and the improved methods and tools that are available to increase irrigation efficiency and to reduce energy costs for producers in the region as well as to stop the overdraft of the declining aquifer, ensuring its sustainable use.展开更多
The fully mulched ridge–furrow(FMRF) system has been widely used on the semi-arid Loess Plateau of China due to its high maize(Zea mays L.) productivity and rainfall use efficiency. However, high outputs under this s...The fully mulched ridge–furrow(FMRF) system has been widely used on the semi-arid Loess Plateau of China due to its high maize(Zea mays L.) productivity and rainfall use efficiency. However, high outputs under this system led to a depletion of soil moisture and soil nutrients, which reduces its sustainability in the long run. Therefore, it is necessary to optimize the system for the sustainable development of agriculture. The development, yield-increasing mechanisms,negative impacts, optimization, and their relations in the FMRF system are reviewed in this paper. We suggest using grain and forage maize varieties instead of regular maize;mulching plastic film in autumn or leaving the mulch after maize harvesting until the next spring, and then removing the old film and mulching new film;combining reduced/notillage with straw return;utilizing crop rotation or intercropping with winter canola(Brassica campestris L.), millet(Setaria italica), or oilseed flax(Linum usitatissimum L.);reducing nitrogen fertilizer and partially replacing chemical fertilizer with organic fertilizer;using biodegradable or weather-resistant film;and implementing mechanized production. These integrations help to establish an environmentally friendly, high quality, and sustainable agricultural system, promote highquality development of dryland farming, and create new opportunities for agricultural development in the semi-arid Loess Plateau.展开更多
Abstract: This paper presented the results from the study of irrigation erosion of irrigated lands in southern Ka- zakhstan. The main purpose of the work is the conservation of the fertility of irrigated soils, and t...Abstract: This paper presented the results from the study of irrigation erosion of irrigated lands in southern Ka- zakhstan. The main purpose of the work is the conservation of the fertility of irrigated soils, and then the soils of the upper, middle and lower sections of the slopes at the experimental site were studied. Based on field investigations, authors studied the water resistance of aggregates of gray-brown soils and light gray soils before and after irrigation and qualitative indicators of changes in physical and chemical properties of structured soils in irrigation were de- termined by conventional methods of soil research. The results indicated that the changes in the physical properties of soils by using polymeric compounds created a fundamentally new opportunity to control water erosion of soils.展开更多
The ridge and furrow rainfall harvesting(RFRH) system is used for dryland crop production in northwest of China.To determine the effects of RFRH using different mulching materials on corn growth and water use effici...The ridge and furrow rainfall harvesting(RFRH) system is used for dryland crop production in northwest of China.To determine the effects of RFRH using different mulching materials on corn growth and water use efficiency(WUE),a field experiment was conducted during 2008-2010 at the Heyang Dryland Experimental Station,China.Four treatments were used in the study.Furrows received uncovered mulching in all RFRH treatments whereas ridges were mulched with plastic film(PF),biodegradable film(BF) or liquid film(LF).A conventional flat field without mulching was used as the control(CK).The results indicated that the average soil water storage at depths of 0-200 cm were 8.2 and 7.3%,respectively higher with PF and BF than with CK.However,LF improved soil water storage during the early growth stage of the crop.Compared with CK,the corn yields with PF and BF were increased by 20.4 and 19.4%,respectively,and WUE with each treatment increased by 23.3 and 21.7%,respectively.There were no significant differences in corn yield or WUE with the PF and BF treatments.The net income was the highest with PF,followed by BF,and the 3-yr average net incomes with these treatments were increased by 2 559 and 2 430 CNY ha-1,respectively,compared with CK.BF and PF had similar effects in enhancing the soil water content,crop yield and net income.Therefore,it can be concluded that biodegradable film may be a sustainable ecological alternative to plastic film for use in the RFRH system in northwest of China.展开更多
Furrow irrigation with film-mulched agricultural beds is being promoted in the arid region of northwest China because it improves water utilization. Two-dimensional infiltration patterns under film-mulched furrows can...Furrow irrigation with film-mulched agricultural beds is being promoted in the arid region of northwest China because it improves water utilization. Two-dimensional infiltration patterns under film-mulched furrows can provide guidelines and criteria for irrigation design and operation. Our objective was to investigate soil water dynamics during ponding irrigation infiltration of mulched furrows in a cross-sectional ridge-furrow configuration, using laboratory experiments and mathematical simulations. Six experimental treatments, with two soil types (silt loam and sandy loam), were investigated to monitor the wetting patterns and soil water distribution in a cuboid soil chamber. Irrigation of mulched furrows clearly increased water lateral infiltration on ridge shoulders and ridges, due to enhancement of capillary driving force. Increases to both initial soil water content (SWC) and irrigation water level resulted in increased wetted soil volume. Empirical regression equations accurately estimated the wetted lateral distance (Rl) and downward distance (Rd) with elapsed time in a variably wetted soil medium. Optimization of model parameters followed by the Inverse approach resulted in satisfactory agreement between observed and predicted cumulative infiltration and SWC. On the basis of model calibration, HYDRUS-2D model can accurately simulate two-dimensional soil water dynamics under irrigation of mulched furrows. There were significant differences in wetting patterns between unmulched and mulched furrow irrigation using HYDRUS-2D simulation. The Rd under the mulched furrows was 32.14% less than the unmulched furrows. Therefore, film-mulched furrows are recommended in a furrow irrigation system.展开更多
One of the main reasons behind reduced cane yield is pathetic method of planting. Planting method and row spacing are the most important yield contributing factors in sugarcane. A field experiment was carried out in o...One of the main reasons behind reduced cane yield is pathetic method of planting. Planting method and row spacing are the most important yield contributing factors in sugarcane. A field experiment was carried out in order to determine quality and yield of sugarcane in various spatial arrangements. Treatments are 180 cm spaced trenches with triple row strips;180 cm spaced trenches with alternate row strips;120 cm spaced trenches with double row strips and 60 cm spaced furrow with single row. Perusal of data revealed that 3.6%, 13.4%, 15%, 15.3% more cane diameter (cm), cane length (cm), stripped cane yield (t·haˉ1</sup>), sugar yield (t·haˉ1</sup>) were obtained from 180 cm spaced trenches with triple row strips as compared to conventional planting method i.e. 60 cm spaced furrows. While the number of millable canes mˉ2</sup>, polarity %, cane juice purity %, cane juice %, commercial cane sugar % and cane sugar recovery % remained non-significant by different planting techniques.展开更多
基金supported by the National Key Research and Development Program of China(2017YFD0300202-2)the National Natural Science Foundation of China(31871567)the Young Scholar of Tang(2017)。
文摘In a study comparing grain filling and yield in a large-and a small-grain-size wheat cultivar under two planting patterns and two irrigation regimes,plastic-covered ridge and furrow planting with sprinkler irrigation increased grain filling and yield in both cultivars.The largest contributors to grain yield were an extended active grain-filling period in Shuangda 1 and an increased mean grain-filling rate in XN538.
基金Supported by the National Key Technology Research and Development Program(2014BAD07B01-02)Science and Technology Demonstration Project of Bohai Granary in Hebei ProvinceSpecial Fund of Agro-scientific Research in Public Interest(201303133-1-6)~~
文摘In order to solve the problem that dry-land foxtail millet production completely relies on rainwater with the characteristics of low instable yield, manual thinning and weeding, high labor intensity, and labor and time saving, Millet Research Institute of Hebei Academy of Agriculture and Forestry Sciences integrated furrow sowing beside plastic film covering micro-ridges, simplified cultivation and mechanized production, forming the simplified foxtail millet cultivation technique adopting furrow sowing beside plastic film covering micro-ridges. This study introduced the technique points of the simplified foxtail millet cultivation technique adopting furrow sowing beside plastic film covering micro-ridges, including preparation before sowing,sowing, attached agricultural machines, field management, harvest and residual film recovery.
基金the National Key Research and Development Program of China (2016YFD0300206-4)the National Natural Science Foundation of China (31461143015, 31471438)+3 种基金the National Key Technology R&D Program of China (2014AA10A605)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD-201501)the Top Talent Supporting Program of Yangzhou University (2015-01)the Hong Kong Research Grant Council (14122415,14160516,14177617,AoE/M-05/12,AoE/M-403/16)
文摘Dry direct-seeded rice grown in raised beds is becoming an important practice in the wheat–rice rotation system in China.However,little information has been available on the effect of various irrigation regimes on grain yield,water productivity(WP),nitrogen use efficiency(NUE),and greenhouse gas emission in this practice.This study investigated the question using two rice cultivars in 2015 and 2016 grown in soil with wheat straw incorporated into it.Rice seeds were directly seeded into raised beds,which were maintained under aerobic conditions during the early seedling period.Three irrigation regimes:continuous flooding(CF),alternate wetting and drying(AWD),and furrow irrigation(FI),were applied from 4.5-leaf-stage to maturity.Compared with CF,both AWD and FI significantly increased grain yield,WP,and internal NUE,with greater increases under the FI regime.The two cultivars showed the same tendency in both years.Both AWD and FI markedly increased soil redox potential,root and shoot biomass,root oxidation activity,leaf photosynthetic NUE,and harvest index and markedly decreased global warming potential,owing to substantial reduction in seasonalThe results demonstrate that adoption of either AWD or FI could increase grain yield and resource-use efficiency and reduce environmental risks in dry direct-seeded rice grown on raised beds with wheat straw incorporation in the wheat–rice rotation system.
基金supported by the National Natural Science Foundation of China (91025002,30970492)the National Key Technology R & D Program (2012BAC08B05)
文摘Furrow irrigation when combined with plastic mulch on ridge is one of the current uppermost wa- ter-saving irrigation technologies for arid regions. The present paper studies the dynamics of soil water-salt trans- portation and its spatial distribution characteristics under irrigation with saline water in a maize field experiment. The mathematical relationships for soil salinity, irrigation amount and water salinity are also established to evaluate the contribution of the irrigation amount and the salinity of saline water to soil salt accumulation. The result showed that irrigation with water of high salinity could effectively increase soil water content, but the increment is limited com- paring with the influence from irrigation amount. The soil water content in furrows was higher than that in ridges at the same soil layers, with increments of 12.87% and 13.70% for MMF9 (the treatment with the highest water salinity and the largest amount of irrigation water) and MMF1 (the treatment with the lowest water salinity and the least amount of irrigation water) on 27 June, respectively. The increment for MMF9 was gradually reduced while that for MMF1 increased along with growth stages, the values for 17 August being 2.40% and 19.92%, respectively. Soil water content in the ridge for MMF9 reduced gradually from the surface layer to deeper layers while the surface soil water content for MMF1 was smaller than the contents below 20 cm at the early growing stage. Soil salinities for the treatments with the same amount of irrigation water but different water salinity increased with the water salinity. When water salinity was 6.04 dS/m, the less water resulted in more salt accumulation in topsoil and less in deep layers. When water salinity was 2.89 dS/m, however, the less water resulted in less salt accumulation in topsoil and salinity remained basically stable in deep layers. The salt accumulation in the ridge surface was much smaller than that in the furrow bottom under this technology, which was quite different from traditional furrow irrigation. The soil salinities for MMF7, MMF8 and MMF9 in the ridge surface were 0.191, 0.355 and 0.427 dS/m, respectively, whereas those in the furrow bottom were 0.316, 0.521 and 0.631 dS/m, respectively. The result of correlation analysis indicated that compared with irrigation amount, the irrigation water salinity was still the main factor influ- encing soil salinity in furrow irrigation with plastic mulch on ridge.
基金the Guangdong Basic and Applied Basic Research Foundation(Grant No.2020B1515020034)the National Postdoctoral Program for Innovative Talents(Grant No.BX201700083)+3 种基金the Commonweal Project(Grant No.201203059)the Key Research and Development Program of Guangdong(Grant No.2019B020221003)the National Key Research and Development Program of China(Grant No.2018YFD0100800)as well as the China Agriculture Research System(Grant No.CARS-01-41).
文摘Mechanical hill wet-seeded rice machine is beneficial for establishing and growing uniform rows of seedlings.However,there is limited knowledge regarding the effects of the establishment of furrows on growth,lodging and yield,and their relationships with root traits.In this study,field experiments were conducted during 2012 and 2013 using two super rice varieties(hybrid rice Peizataifeng and inbred rice Yuxiangyouzhan)under three furrow establishment treatments(T1,both water and seed furrows were established by the machine;T2,only seed furrows were established by the machine;and T3,neither water nor seed furrows were established by the machine).Lodging index,lodging-related traits,grain yield,above-ground dry weight and root traits were measured.The results showed that the lodging index was significantly affected by the treatments with furrows(T1 and T2).The strongest lodging resistance was detected in the mechanical hill wet-seeded rice with furrow treatment(T1)in both 2012 and 2013.Lodging resistance was strongly related to the breaking resistance.No significant difference was found in grain yield or dry weight of the mechanical hill wet-seeded rice.Therefore,the mechanical hill wet-seeded rice with furrow treatment increased rice lodging resistance,which was related to root traits.
基金financed by the Special Fund for Agro-scientific Research in the Public Interest (201103003)the National Natural Science Foundation of China (31060276)the National High Technology Research and Development Program of China (2011AA100508)
文摘Quantitative information on the fate and efficiency of nitrogen (N) fertilizer applied to coarse textured calcareous soils in arid farming systems is scarce but, as systems intensify, is essential to support sustainable ag- ronomic management decisions. A mesh house study was undertaken to trace the fate of N fertilizer applied to cotton (Gossypium hirsutum L. cv., Huiyuan701) growing on a reconstructed profile (0-100 cm) of a calcareous (〉15% CaCQ) sandy loam soil. Two irrigation methods (drip irrigation, DI; and furrow irrigation, FI) and four N ap- plication rates (0, 240, 360 and 480 kg/hm2, abbreviated as No, N240, N360, and N480, respectively) were applied. 15N-labelled urea fertilizer was applied in a split application. DI enhanced the biomass of whole plant and all parts of the plant, except for root; more fertilizer N was taken up and mostly stored in vegetative parts; N utilization efficiency (NUE) was significantly greater than in FI. N utilization efficiency (NUE) decreased from 52.59% in N240 to 36.44% in N480. N residue in soil and plant N uptake increased with increased N dosage, but recovery rate decreased consis- tently both in DI and Fl. Plant N uptake and soil N residue were greater in DI than in FI. N residue mainly stayed within 0-40 cm depth in DI but within 40-80 cm depth in Ft. FI showed 17.89% of N leached out, but no N leaching occurred in DI. N recovery rate in the soil-plant system was 75.82% in DI, which was markedly greater than the 55.97% in FI. DI exhibited greater NUE, greater residual N in the soil profile and therefore greater N recovery rate than in FI; also, N distribution in soil profile shallowed in DI, resulting in a reduced risk of N leaching compared to FI; and enhanced shoot growth and reduced root growth in DI is beneficial for more economic yield formation. Com- pared to furrow irrigation, drip irrigation is an irrigation method where N movement favors the prevention of N from being lost in the plant-soil system and benefits a more efficient use of N.
基金grants from the National Natural Science Foundation of China (51222905, 51079147 and 50939005)the National High-Tech R&D Program of China(863 Program, 2011AA100502)+1 种基金the Program of New Century Excellent Talents in University, Ministry of Education of China (NCET-11-0479)Hong Kong Research Grants Council, China (HKBU 262307)
文摘Field experiments were conducted for two years to investigate the benefits of alternate furrow irrigation on fruit yield, quality and water use efficiency of grape (Vitis vinifera L. cv. Rizamat) in the arid region of Northwest China. Two irrigation treatments were included, i.e., conventional furrow irrigation (CFI, two root-zones were simultaneously irrigated during the consecutive irrigation) and alternate partial root-zone furrow irrigation (AFI, two root-zones were alternatively irrigated during the consecutive irrigation). Results indicate that AFI maintained similar photosynthetic rate (Pn) but with a reduced transpiration rate when compared to CFI. As a consequence, AFI improved water use efficiency based on evapotranspiration (WUEEr, fruit yield over water consumed) and irrigation (WUE~, fruit yield over water irrigated) by 30.0 and 34.5%, respectively in 2005, and by 12.7 and 17.7%, respectively in 2006. AFI also increased the edible percentage of berry by 2.91-4.79% significantly in both years. Vitamin C (Vc) content content of berry was increased by 25.6-37.5%, and tritrated acidity (TA) was reduced by 9.5-18.1% in AFI. This resulted in an increased total soluble solid content (TSS) to TA ratio (TSS/TA) by 11.5-16.7% when compared to CFI in both years. Our results indicate that alternate furrow irrigation is a practical way to improve grape fruit quality and water use efficiency for irrigated crops in arid areas.
文摘[Objective] Aiming at chilling damage of maize in lowland of western Liaoning, the powerful evidences of resisting chilling damage of maize were provided from tillage method perspective.[Method] The depths of plough layers, sunshine effects in seedling stage, resistances to frost damage, microclimatic effects such as soil moisture, root system in filling stage, growth periods and grain weights of maize planted on ridge and in furrow were comparatively observed. The random arrangement was adopted in comparative observation with 4 replications.[Result] The daily mean ground temperature and effective accumulated temperature of plough layer of maize planted on ridge were relatively high. In addition, the seedling stage and mature stage of maize planted on ridge were in advance, the soil moisture, root growth and seed plumpness of maize planted on ridge were good. [Conclusion] The ridge planting in lowland of western Liaoning could improve in 0-20 cm plough layer where root grew, besides that this method could also improve maize growth and development.
基金grants from the National Natural Science Foundation of China (51222905, 51321001, 51439006)the National High-Tech R&D Program of China (863 Program, 2011AA100505)+1 种基金the Ministry of Water Resources of China (201201003)the Program for New Century Excellent Talents in University, Ministry of Education, China (NCET11-0479)
文摘Maize is widely planted throughout the world and has the highest yield of all the cereal crops. The arid region of North- west China has become the largest base for seed-maize production, but water shortage is the bottleneck for its long-term sustainability. Investigating the transpiration of seed-maize plants will offer valuable information for suitable planting and irrigation strategies in this arid area. In this study, stem flow was measured using a heat balance method under alternate furrow irrigation and double-row ridge planting. Meteorological factors, soil water content (e), soil temperature (Ts) and leaf area (LA) were also monitored during 2012 and 2013. The diurnal stem flow and seasonal dynamics of maize plants in the zones of south side female parent (SFP), north side female parent (NFP) and male parent (MP) were investigated. The order of stem flow rate was: SFP〉MP〉NFP. The relationships between stem flow and influential factors during three growth stages at different time scales were analyzed. On an hourly scale, solar radiation (Rs) was the main driving factor of stem flow. The influence of air temperature (Ta) during the maturity stage was significantly higher than in other periods. On a daily scale, Rs was the main driving factor of stem flow during the heading stage. During the filling growth stage, the main driving factor of NFP and MP stem flow was RH and Ts, respectively. However, during the maturity stage, the environ- mental factors had no significant influence on seed-maize stem flow. For different seed-maize plants, the main influential factors were different in each of the three growing seasons. Therefore, we identified them to accurately model the FP and MP stem flow and applied precision irrigation under alternate partial root-zone furrow irrigation to analyze major factors affecting stem flow in different scales.
文摘Stagnating yield and declining input use efficiency in irrigated wheat of the Indo-Gangetic Plain (IGP) coupled with diminishing availability of water for agriculture is a major concern of food security in South Asia. The objective of our study was to establish an understanding of how wheat yield and input use efficiency can be improved and how land leveling and crop establishment practices can be modified to be more efficient in water use through layering of precision-conservation crop management techniques. The “precision land leveling with raised bed” planting can be used to improve crop yield, water and nutrient use efficiency over the existing “traditional land leveling with flat” planting practices. We conducted a field experiment during 2002-2004 at Modipuram, India to quantify the benefits of alternate land leveling (precision land leveling) and crop establishment (furrow irrigated raised bed planting) techniques alone or in combination (layering precision-conservation) in terms of crop yield, water savings, and nutrient use efficiency of wheat production in IGP. The wheat yield was about 16.6% higher with nearly 50% less irrigation water with layering precision land leveling and raised bed planting compared to traditional practices (traditional land leveling with flat planting). The agronomic (AE) and uptake efficiency (UE) of N, P and K were significantly improved under precision land leveling with raised bed planting technique compared to other practices.
基金supported by the National Natural Science Foundation of China (31070375, 31171506)
文摘Although plastic-covered ridge and furrow planting(RF) has been reported to produce substantial increases in the grain weight of winter wheat,the underlying mechanism is not yet understood.The present study used two cultivars,Xinong 538 and Zhoumai 18,and RF and traditional flatten planting(TF,control) with the objective of investigating the effect of RF on wheat grain filling and the possible relationship of hormonal changes in the wheat grains under RF to grain filling.The results indicated that RF significantly increased the grain weight,although the effects on grain filling were different: RF significantly increased the grain-filling rate and grain weight of inferior grains,whereas RF had no significant effect on grainfilling rate and grain weight of superior grains.The final grain weight of inferior grains under RF was 39.1 and 50.7 mg for Xinong 538 and Zhoumai 18,respectively,3.6 and 3.4 mg higher than the values under TF.However,the final grain weight of superior grains under RF was only 0.6 and 0.8 mg higher than under TF for Xinong 538 and Zhoumai 18,respectively.RF significantly decreased the ethylene and gibberellic acid content in the inferior grains and increased the indole-3-acetic acid,abscisic acid and zeatin + zeatin riboside content in the inferior grains;however,no significant difference between RF and TF was observed for the hormonal content in the superior grains.Based on these results,we concluded that RF significantly modulated hormonal changes in the inferior grains and,thus,affected the grain filling and grain weight of the inferior grains;in contrast,RF had no significant effect on grain filling,grain weight and hormonal changes in the superior wheat grains.
基金Bangladesh Agricultural Research Institute (BARI), Ministry of Agriculture, Bangladesh for providing fund and facilities for sustainable irrigation and water management practices
文摘Sustainable irrigation method is now essential for adaptation and adoption in the areas where water resources are limited. Therefore, a field experiment was conducted to test the performance of alternate wetting and drying furrow irrigation(AWDFI) on crop growth, yield, water use efficiency(WUE), fruit quality and profitability analysis of tomato. The experiment was laid out in randomized complete block design with six treatments replicated thrice during the dry seasons of 2013-2014 and 2014-2015. Irrigation water was applied through three ways of furrow: AWDFI, fixed wetting and drying furrow irrigation(FWDFI) and traditional(every) furrow irrigation(TFI). Each irrigation method was divided into two levels: irrigation up to 100 and 80% field capacity(FC). Results showed that plant biomass(dry matter) and marketable fruit yield of tomato did not differ significantly between the treatments of AWDFI and TFI, but significant difference was observed in AWDFI and in TFI compared to FWDFI at same irrigation level. AWDFI saved irrigation water by 35 to 38% for the irrigation levels up to 80 and 100% FC, compared to the TFI, respectively. AWDFI improved WUE by around 37 to 40% compared to TFI when irrigated with 100 and 80% FC, respectively. Fruit quality(total soluble solids and pulp) was found greater in AWDFI than in TFI. Net return from AWDFI technique was found nearly similar compared to TFI and more than FWDFI. The benefit cost ratio was viewed higher in AWDFI than in TFI and FWDFI by 2.8, 8.7 and 11, 10.4% when irrigation water was applied up to 100 and 80% FC, respectively. Unit production cost was obtained lower in AWDFI compared to TFI and FWDFI. However, AWDFI is a useful water-saving furrow irrigation technique which may resolve as an alternative choice compared with TFI in the areas where available water and supply methods are limited to irrigation.
文摘The rational usage of low productive cryogenic landscapes in the North-Eastern part of Russia is impossible without carrying out special engineering preparation\. The preventing from negativethat often has destructive cryogenic processesin the area of ice-covered permafrost soils, provided by its thawing into the marginally necessary depth in thewhole area. The simplest and the most effective engineering method of faulting as anage-old stock (reserve)of surplus moisture in the form of ice from the upper parts of permafrost soils is the creation of continuous furrows net on the wholesurface. This method also raises the fertility of soils, reducesacidity, and raises microbiological activity and the degree of internal structure decaying. Thermophysical calculations and the results of the field study in the experimental firing grounds are the availableevidences of this methodwhich raises thethermal stability of cryogenic landscapes while mastering of global climate changes in different parts of cryolithozone.
文摘Even though annual rainfall is high in the Delta region of Mississippi, only 30% occurs during the months in which the major crops are produced, making irrigation often necessary to meet crop water needs and to avoid risk of yield and profitability loss. Approximately, 65% of the farmland in this region is irrigated. The shallow Mississippi River Valley Alluvial Aquifer is the major source of water for irrigation and for aquaculture in the predominant catfish industry. This groundwater is being heavily used as row-crop irrigation has increased tremendously. Water level in this aquifer has declined significantly over the past twenty five years, with overdraft of approximately 370 million cubic meters of water per year. Moreover, the common irrigation practices in the Delta re-gion of Mississippi do not use water efficiently, further depleting the ground water and making ir-rigation more expensive to producers due to increasing energy prices. Irrigation experts in the re-gion have tested and verified various methods and tools that increase irrigation efficiency. This article presents a review of the current status of the irrigation practices in the Delta region of Mis-sissippi, and the improved methods and tools that are available to increase irrigation efficiency and to reduce energy costs for producers in the region as well as to stop the overdraft of the declining aquifer, ensuring its sustainable use.
基金supported by the Major Special Research projects in Gansu Province, China (22ZD6NA009)the National Key R&D Program of China (2022YFD1900300)+4 种基金the State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, China (GSCS-2022-Z02)the Fostering Foundation for the Excellent Ph.D. Dissertation of Gansu Agricultural University, China (YB2020002)the Innovation Star Project for Excellent Graduate Student of Department of Education of Gansu Province, China (2021CXZX-369)the Young Instructor Fund Project of Gansu Agricultural University, China (GAU-QDFC-2020-03)the Science and Technology Project of Gansu Province, China (20JR5RA033)。
文摘The fully mulched ridge–furrow(FMRF) system has been widely used on the semi-arid Loess Plateau of China due to its high maize(Zea mays L.) productivity and rainfall use efficiency. However, high outputs under this system led to a depletion of soil moisture and soil nutrients, which reduces its sustainability in the long run. Therefore, it is necessary to optimize the system for the sustainable development of agriculture. The development, yield-increasing mechanisms,negative impacts, optimization, and their relations in the FMRF system are reviewed in this paper. We suggest using grain and forage maize varieties instead of regular maize;mulching plastic film in autumn or leaving the mulch after maize harvesting until the next spring, and then removing the old film and mulching new film;combining reduced/notillage with straw return;utilizing crop rotation or intercropping with winter canola(Brassica campestris L.), millet(Setaria italica), or oilseed flax(Linum usitatissimum L.);reducing nitrogen fertilizer and partially replacing chemical fertilizer with organic fertilizer;using biodegradable or weather-resistant film;and implementing mechanized production. These integrations help to establish an environmentally friendly, high quality, and sustainable agricultural system, promote highquality development of dryland farming, and create new opportunities for agricultural development in the semi-arid Loess Plateau.
基金supported by the International Science & Technology Cooperation Program of China(2010DFA92720)the Department of Ecology in Kazakh Research Institute of Soil Science and Agrochemistry named after Uspanov, Almaty, Kazakhstan
文摘Abstract: This paper presented the results from the study of irrigation erosion of irrigated lands in southern Ka- zakhstan. The main purpose of the work is the conservation of the fertility of irrigated soils, and then the soils of the upper, middle and lower sections of the slopes at the experimental site were studied. Based on field investigations, authors studied the water resistance of aggregates of gray-brown soils and light gray soils before and after irrigation and qualitative indicators of changes in physical and chemical properties of structured soils in irrigation were de- termined by conventional methods of soil research. The results indicated that the changes in the physical properties of soils by using polymeric compounds created a fundamentally new opportunity to control water erosion of soils.
基金supported by the Key Technologies R&D Program of China during the 11th Five-Year Plan period (2006BAD29B03)the 111 Project (B12007)the Shaanxi Technology Project, China (2010K02-08-2)
文摘The ridge and furrow rainfall harvesting(RFRH) system is used for dryland crop production in northwest of China.To determine the effects of RFRH using different mulching materials on corn growth and water use efficiency(WUE),a field experiment was conducted during 2008-2010 at the Heyang Dryland Experimental Station,China.Four treatments were used in the study.Furrows received uncovered mulching in all RFRH treatments whereas ridges were mulched with plastic film(PF),biodegradable film(BF) or liquid film(LF).A conventional flat field without mulching was used as the control(CK).The results indicated that the average soil water storage at depths of 0-200 cm were 8.2 and 7.3%,respectively higher with PF and BF than with CK.However,LF improved soil water storage during the early growth stage of the crop.Compared with CK,the corn yields with PF and BF were increased by 20.4 and 19.4%,respectively,and WUE with each treatment increased by 23.3 and 21.7%,respectively.There were no significant differences in corn yield or WUE with the PF and BF treatments.The net income was the highest with PF,followed by BF,and the 3-yr average net incomes with these treatments were increased by 2 559 and 2 430 CNY ha-1,respectively,compared with CK.BF and PF had similar effects in enhancing the soil water content,crop yield and net income.Therefore,it can be concluded that biodegradable film may be a sustainable ecological alternative to plastic film for use in the RFRH system in northwest of China.
基金supported by National Natural Science Foundation of China (NO. 41401036)China Postdoctoral Science Foundation (NO. 2015T81070, 2014M560818)West Light Foundation of the Chinese Academy of Sciences
文摘Furrow irrigation with film-mulched agricultural beds is being promoted in the arid region of northwest China because it improves water utilization. Two-dimensional infiltration patterns under film-mulched furrows can provide guidelines and criteria for irrigation design and operation. Our objective was to investigate soil water dynamics during ponding irrigation infiltration of mulched furrows in a cross-sectional ridge-furrow configuration, using laboratory experiments and mathematical simulations. Six experimental treatments, with two soil types (silt loam and sandy loam), were investigated to monitor the wetting patterns and soil water distribution in a cuboid soil chamber. Irrigation of mulched furrows clearly increased water lateral infiltration on ridge shoulders and ridges, due to enhancement of capillary driving force. Increases to both initial soil water content (SWC) and irrigation water level resulted in increased wetted soil volume. Empirical regression equations accurately estimated the wetted lateral distance (Rl) and downward distance (Rd) with elapsed time in a variably wetted soil medium. Optimization of model parameters followed by the Inverse approach resulted in satisfactory agreement between observed and predicted cumulative infiltration and SWC. On the basis of model calibration, HYDRUS-2D model can accurately simulate two-dimensional soil water dynamics under irrigation of mulched furrows. There were significant differences in wetting patterns between unmulched and mulched furrow irrigation using HYDRUS-2D simulation. The Rd under the mulched furrows was 32.14% less than the unmulched furrows. Therefore, film-mulched furrows are recommended in a furrow irrigation system.
文摘One of the main reasons behind reduced cane yield is pathetic method of planting. Planting method and row spacing are the most important yield contributing factors in sugarcane. A field experiment was carried out in order to determine quality and yield of sugarcane in various spatial arrangements. Treatments are 180 cm spaced trenches with triple row strips;180 cm spaced trenches with alternate row strips;120 cm spaced trenches with double row strips and 60 cm spaced furrow with single row. Perusal of data revealed that 3.6%, 13.4%, 15%, 15.3% more cane diameter (cm), cane length (cm), stripped cane yield (t·haˉ1</sup>), sugar yield (t·haˉ1</sup>) were obtained from 180 cm spaced trenches with triple row strips as compared to conventional planting method i.e. 60 cm spaced furrows. While the number of millable canes mˉ2</sup>, polarity %, cane juice purity %, cane juice %, commercial cane sugar % and cane sugar recovery % remained non-significant by different planting techniques.