From the standpoint of chemical structures,the organic backbones of energetic materials can be classified into aromatic rings,nonaromatic rings,and open chains.Although the category of aromatic energetic compounds exh...From the standpoint of chemical structures,the organic backbones of energetic materials can be classified into aromatic rings,nonaromatic rings,and open chains.Although the category of aromatic energetic compounds exhibits several advantages in the regulation of energetic properties,the nonaromatic heterocycles,assembling nitramino explosophores with simple alkyl bridges,still have prevailed in benchmark materials.The methylene bridge plays a pivotal role in the constructions of the classic nonaromatic heterocycle-based energetic compounds,e.g.,hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX)and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine(HMX),whereas ethylene bridge is the core moiety of state-of-the-art explosive 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20).In this context,it is of great interest to employ simple and practical bridges to assemble aromatic and nonaromatic nitrogen-rich heterocycles,thereby expanding the structural diversity of energetic materials,e.g.,bridged and fused nitrogen-rich poly-heterocycles.Furthermore,alkyl-bridged poly-heterocycles highlight the potential for the open chain type of energetic materials.In this review,the development of alkyl bridges in linking nitrogen-rich heterocycles is presented,and the perspective of the newly constructed energetic backbones is summarized for the future design of advanced energetic materials.展开更多
The employment of natural fibres in fused deposition modeling has raised much attention from researchers in finding a suitable formulation for the natural fibre composite filaments.Moreover,selection of suitable natur...The employment of natural fibres in fused deposition modeling has raised much attention from researchers in finding a suitable formulation for the natural fibre composite filaments.Moreover,selection of suitable natural fibres for fused deposition modeling should be performed before the development of the composites.It could not be performed without identifying selection criteria that comprehend both materials and fused deposition modeling process requirements.Therefore,in this study,integration of the Analytic Hierarchy Process(AHP)/Analytic Network Process(ANP)has been introduced in selecting the natural fibres based in different clusters of selection concurrently.The selection process has been performed based on the interdependency among the selection criteria.Pairwise comparison matrices are constructed based on AHP’s hierarchical model and super matrices are constructed based on the ANP’s network model.As a result,flax fibre has ranked at the top of the selection by scored 19.5%from the overall evaluation.Flax fibre has excellent material properties and been found in various natural fibre composite applications.Further investigation is needed to study the compatibility of this fibre to be reinforced with a thermoplastic polymer matrix to develop a resultant natural fibre composite filament for fused deposition modeling.展开更多
The existing research about ductile grinding of fused silica glass was mainly focused on how to carry out ductile regime material removal for generating very "smoothed" surface and investigate the machining-induced ...The existing research about ductile grinding of fused silica glass was mainly focused on how to carry out ductile regime material removal for generating very "smoothed" surface and investigate the machining-induced damage in the grinding in order to reduce or eliminate the subsurface damage.The brittle/ductile transition behavior of optical glass materials and the wear of diamond wheel are the most important factors for ductile grinding of optical glass.In this paper,the critical brittle/ductile depth,the influence factors on brittle/ductile transition behavior,the wear of diamond grits in diamond grinding of ultra pure fused silica(UPFS) are investigated by means of micro/nano indentation technique,as well as single grit diamond grinding on an ultra-stiff machine tool,Tetraform "C".The single grit grinding processes are in-process monitored using acoustic emission(AE) and force dynamometer simultaneously.The wear of diamond grits,morphology and subsurface integrity of the machined groves are examined with atomic force microscope(AFM) and scanning electron microscope(SEM).The critical brittle/ductile depth of more than 0.5 μm is achieved.When compared to the using roof-like grits,by using pyramidal diamonds leads to higher critical depths of scratch with identical grinding parameters.However,the influence of grit shapes on the critical depth is not significant as supposed.The grinding force increased linearly with depth of cut in the ductile removal regime,but in brittle removal regime,there are large fluctuations instead of forces increase.The SEM photographs of the cross-section profile show that the median cracks dominate the crack patterns beneath the single grooves.Furthermore,The SEM photographs show multi worn patterns of diamond grits,indicating an inhomogeneous wear mechanism of diamond grits in grinding of fused silica with diamond grinding wheels.The proposed research provides the basal technical theory for improving the ultra-precision grinding of UPFS.展开更多
Fused deposition modeling(FDM) is one of the latest rapid prototyping techniques in which parts can be manufactured at a fast pace and are manufactured with a high accuracy. This research work is carried out to study ...Fused deposition modeling(FDM) is one of the latest rapid prototyping techniques in which parts can be manufactured at a fast pace and are manufactured with a high accuracy. This research work is carried out to study the friction and wear behavior of parts made of newly developed Nylon6-Fe composite material by FDM. This work also involves the comparison of the friction and wear characteristics of the Nylon6-Fe composite with the existing acrylonitrile butadiene styrene(ABS) filament of the FDM machine. This Is carried out on the pin on disk setup by varying the load(5, 10, 15 and 20 N) and speed(200 and 300 r/min). It is concluded that the newly developed composite is highly wear resistant and can be used in industrial applications where wear resistance is of paramount importance. Morphology of the surface in contact with the Nylon6-Fe composite and ABS is also carried out.展开更多
In order to get ultra-smooth fused silica surface without subsurface damage efficiently, the atmospheric pressure plasma processing( APPP) method has been developed. It is based on chemical reaction between active rad...In order to get ultra-smooth fused silica surface without subsurface damage efficiently, the atmospheric pressure plasma processing( APPP) method has been developed. It is based on chemical reaction between active radicals excited by plasma and workpiece surface atoms,so the subsurface damage caused by contact stress can be avoided and atomic-level precision can be ensured. In this paper,based on the spectral quantitative analysis theory,the influence laws on material removal rate by the key factors of APPP including the flow rate of reaction gases,the input power,the processing distance and time are discussed. In addition,the results that APPP can remove the damaged surface layer and do not introduce secondary damage are proved via the nanoindentation technology.展开更多
The laser ablation technique, coupled with the use of quadrupole ICPMS equipment, proved a powerful tool for determination of trace elements in minerals. At the University of S?o Paulo, the technique was implemented f...The laser ablation technique, coupled with the use of quadrupole ICPMS equipment, proved a powerful tool for determination of trace elements in minerals. At the University of S?o Paulo, the technique was implemented for the study of minerals such as olivines, pyroxenes and biotites. The main problem to be tackled is the availability of proper multi-element reference materials usually prepared synthetically as glasses with various compositions by NIST and fused rock glasses by the Max Planck Institute (MPI) and USGS (basalts, andesite, quartz diorite, komatiites). The best tested ones are the NIST glasses, with good homogeneity and reliable compositional data for over 40 elements. Results are here presented that test additional RM’s. NIST 612 and 610 were used for calibration purposes. The best results were obtained for rock glasses USGS basalts BHVO-2G, BIR- 1G and BCR-2G (better homogeneity and recommended values). Our contribution tests especially the MPI komatiites glasses GOR-128 and GOR-132G, basalts KL-2G and ML-3BG, andesite StHs-6/ 80G and quartz diorite T-1G, discussing homogeneity issues and providing new data. There is a need for additional preparation of reliable reference materials.展开更多
In recent years,the introduction of fused rings own high density and low sensitivity has promoted the development of energetic materials.However,the development of energetic compounds containing fused and bridged ring...In recent years,the introduction of fused rings own high density and low sensitivity has promoted the development of energetic materials.However,the development of energetic compounds containing fused and bridged rings by introducing multiple nitrogen heterocycles at different sites of fused rings is still difficult to progress,which seriously limits the emergence of advanced energetic compounds.In this study,a series of energetic materials choosing different nitrogen rich heterocycles at the vacancies of the fused ring,i.e.,neutral compound 5,6 and their ionic derivatives(compounds 7-12)were designed and synthesized.Compounds 5 and 6 were further confirmed by single crystal X-ray diffraction,while the crystal analysis and theoretical calculations were carried out to explore the relationship between crystal structure and physicochemical properties.All of the newly synthesized compounds(5-12)are insensitive to mechanical stimulation(IS>40 J;FS≥342 N)and they own the high detonation velocity(D:8322-9075 m/s).Notably,hydrazine salt 11 own the higher detonation velocity(9075 m/s)and powder density(1.83 g/cm^(3)),but exhibits lower sensitivity(IS>40 J)than the classical energetic compound RDX(8795 m/s,1.80 g/cm^(3),7.5 J).It is obvious that the combination of 5,6-fused triazolo-triazine and nitropyrazole-tetrazole may be a new energetic skeleton for synthesising the heterocyclic compounds with balanced energy-stability.展开更多
To improve the thermal shock resistance(TSR)of MgO-Al-C materials,three silicon-based raw materials with low expansion coefficients(Si,fused quartz,and SiC)were introduced to the materials,and their effects on the pro...To improve the thermal shock resistance(TSR)of MgO-Al-C materials,three silicon-based raw materials with low expansion coefficients(Si,fused quartz,and SiC)were introduced to the materials,and their effects on the properties of the materials were studied by XRD and SEM.The results show that:(1)the conversion of Si to SiC,SiO2 and forsterite at high temperatures improves the hot modulus of rupture(HMOR),TSR and oxidation resistance of the materials,and the optimal Si addition is 6 mass%;(2)fused quartz improves the TSR of the materials,but its high temperature softening and crystal transformation are not conducive to the HMOR and oxidation resistance of the materials,and the optimal addition is 2 mass%;(3)the SiC addition improves the TSR,HMOR and oxidation resistance of the materials;however,when the SiC addition exceeds 10 mass%,there are more micro-cracks in the materials,decreasing the TSR and oxidation resistance.展开更多
In recent years, additive manufacturing (AM), known as “3D printing”, has experienced exceptional growth thanks to the development of mechatronics and materials science. Fused filament deposition (FDM) manufacturing...In recent years, additive manufacturing (AM), known as “3D printing”, has experienced exceptional growth thanks to the development of mechatronics and materials science. Fused filament deposition (FDM) manufacturing is the most widely used technique in the field of AM, due to low operating and material costs. However, the materials commonly used for this technology are virgin thermoplastics. It is worth noting a considerable amount of waste exists due to failed print and disposable prototypes. In this regard, using green and sustainable materials is essential to limit the impact on the environment. The recycled, bio-based, and blended recycled materials are therefore a potential approach for 3D printing. In contrast, the lack of understanding of the mechanism of interlayer adhesion and the degradation of materials for FDM printing has posed a major challenge for these green materials. This paper provides an overview of the FDM technique and material requirements for 3D printing filaments. The main objective is to highlight the advantages and disadvantages of using recycled, bio-based, and blended materials based on thermoplastics for 3D printing filaments. In this work, solutions to improve the mechanical properties of 3D printing parts before, during, and after the printing process are pointed out. This paper provides an overview on choosing which materials and solutions depend on the specific application purposes. Moreover, research gaps and opportunities are mentioned in the discussion and conclusions sections of this study.展开更多
In order to investigate corrosive phenomena of fused-cast Al_2O_3-ZrO_2-SiO_2(AZS) refractory materials by molten glass,two types of fused-cast AZS refractory bricks were taken as the interests of the research to stud...In order to investigate corrosive phenomena of fused-cast Al_2O_3-ZrO_2-SiO_2(AZS) refractory materials by molten glass,two types of fused-cast AZS refractory bricks were taken as the interests of the research to study static corrosion rates(mm/d) of the two type materials by molten soda-lime-silica glass at different temperatures(1400,1450 and 1500 *C) and for different isothermal periods(0.5,1.0 and 1.5 d).It was shown that static corrosion rate of each AZS material by molten glass at the triple point developed with raising temperature but slightly decreased with enhancing isothermal period.Based on chemical compositions,microstructures,and corrosive morphologies of AZS refractory materials,the relation between them and static corrosion rates of AZS refractory materials by molten glass was analyzed.展开更多
Recently,there has been an investigation of polishing processes that has considered new ultra-precision polishing technology for micro parts and optical parts such as those with aspheric and complex shapes.One suitabl...Recently,there has been an investigation of polishing processes that has considered new ultra-precision polishing technology for micro parts and optical parts such as those with aspheric and complex shapes.One suitable means of polishing complex shapes is to use a jet of abrasive fluid.However,aerodynamic disturbances and radial spreading are generated by the unstable polishing process of the jet on the surface of the workpiece when it is being polished.A method of jet stabilization has been proposed in which the original nozzle form of a jet of magnetorheological(MR)fluid contains abrasive particles that are magnetized using a magnetic.This paper details the design of an MR jet polishing system that uses an electromagnet,a nozzle,and a hydraulic unit to stabilize a slurry jet based on MR fluid, Second,for silica glass,the polishing spot and section profile are analyzed and the effect of the MR fluid jet polishing process is evaluated.The results of the experiment show that the removal profile is W-shaped and that,in this case,a stable can be proof of a distance of several tens of millimeters from the nozzle.Such results show the possibility of applying the proposed polishing method using MR fluids in ultra-precision micro and optical parts production processes. MR jet polishing shows great potential for use as a new type of precision surface polishing technology.In particular,this is a highly valuable process for the polishing of complex shapes such as micro parts,concaves parts,and cavities.展开更多
基金National Natural Science Foundation of China(Grant Nos.22075023,22205022,and 22235003)to provide fund for conducting experiments。
文摘From the standpoint of chemical structures,the organic backbones of energetic materials can be classified into aromatic rings,nonaromatic rings,and open chains.Although the category of aromatic energetic compounds exhibits several advantages in the regulation of energetic properties,the nonaromatic heterocycles,assembling nitramino explosophores with simple alkyl bridges,still have prevailed in benchmark materials.The methylene bridge plays a pivotal role in the constructions of the classic nonaromatic heterocycle-based energetic compounds,e.g.,hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX)and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine(HMX),whereas ethylene bridge is the core moiety of state-of-the-art explosive 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20).In this context,it is of great interest to employ simple and practical bridges to assemble aromatic and nonaromatic nitrogen-rich heterocycles,thereby expanding the structural diversity of energetic materials,e.g.,bridged and fused nitrogen-rich poly-heterocycles.Furthermore,alkyl-bridged poly-heterocycles highlight the potential for the open chain type of energetic materials.In this review,the development of alkyl bridges in linking nitrogen-rich heterocycles is presented,and the perspective of the newly constructed energetic backbones is summarized for the future design of advanced energetic materials.
基金Mastura M.T.received financial support from the Ministry of Higher Education Malaysia(https://www.mohe.gov.my/en/services/research/mygrants)Universiti Teknikal Malaysia Melaka through the Fundamental Research Grant Scheme(FRGS/1/2020/FTKMP-CARE/F00456).
文摘The employment of natural fibres in fused deposition modeling has raised much attention from researchers in finding a suitable formulation for the natural fibre composite filaments.Moreover,selection of suitable natural fibres for fused deposition modeling should be performed before the development of the composites.It could not be performed without identifying selection criteria that comprehend both materials and fused deposition modeling process requirements.Therefore,in this study,integration of the Analytic Hierarchy Process(AHP)/Analytic Network Process(ANP)has been introduced in selecting the natural fibres based in different clusters of selection concurrently.The selection process has been performed based on the interdependency among the selection criteria.Pairwise comparison matrices are constructed based on AHP’s hierarchical model and super matrices are constructed based on the ANP’s network model.As a result,flax fibre has ranked at the top of the selection by scored 19.5%from the overall evaluation.Flax fibre has excellent material properties and been found in various natural fibre composite applications.Further investigation is needed to study the compatibility of this fibre to be reinforced with a thermoplastic polymer matrix to develop a resultant natural fibre composite filament for fused deposition modeling.
基金supported by National Key Science and Technology Projects of China (Grant No. 2009ZX04001-101, Grant No. 2009ZX01001-151)New Century Excellent Talents in University,China (GrantNo. NCET-07-0246)National Natural Science Foundation of China(Grant No. 50675051)
文摘The existing research about ductile grinding of fused silica glass was mainly focused on how to carry out ductile regime material removal for generating very "smoothed" surface and investigate the machining-induced damage in the grinding in order to reduce or eliminate the subsurface damage.The brittle/ductile transition behavior of optical glass materials and the wear of diamond wheel are the most important factors for ductile grinding of optical glass.In this paper,the critical brittle/ductile depth,the influence factors on brittle/ductile transition behavior,the wear of diamond grits in diamond grinding of ultra pure fused silica(UPFS) are investigated by means of micro/nano indentation technique,as well as single grit diamond grinding on an ultra-stiff machine tool,Tetraform "C".The single grit grinding processes are in-process monitored using acoustic emission(AE) and force dynamometer simultaneously.The wear of diamond grits,morphology and subsurface integrity of the machined groves are examined with atomic force microscope(AFM) and scanning electron microscope(SEM).The critical brittle/ductile depth of more than 0.5 μm is achieved.When compared to the using roof-like grits,by using pyramidal diamonds leads to higher critical depths of scratch with identical grinding parameters.However,the influence of grit shapes on the critical depth is not significant as supposed.The grinding force increased linearly with depth of cut in the ductile removal regime,but in brittle removal regime,there are large fluctuations instead of forces increase.The SEM photographs of the cross-section profile show that the median cracks dominate the crack patterns beneath the single grooves.Furthermore,The SEM photographs show multi worn patterns of diamond grits,indicating an inhomogeneous wear mechanism of diamond grits in grinding of fused silica with diamond grinding wheels.The proposed research provides the basal technical theory for improving the ultra-precision grinding of UPFS.
基金PTU Jalandhar,Manufacturing Research Lab GNDEC,Ludhiana and DST GOI for financial support
文摘Fused deposition modeling(FDM) is one of the latest rapid prototyping techniques in which parts can be manufactured at a fast pace and are manufactured with a high accuracy. This research work is carried out to study the friction and wear behavior of parts made of newly developed Nylon6-Fe composite material by FDM. This work also involves the comparison of the friction and wear characteristics of the Nylon6-Fe composite with the existing acrylonitrile butadiene styrene(ABS) filament of the FDM machine. This Is carried out on the pin on disk setup by varying the load(5, 10, 15 and 20 N) and speed(200 and 300 r/min). It is concluded that the newly developed composite is highly wear resistant and can be used in industrial applications where wear resistance is of paramount importance. Morphology of the surface in contact with the Nylon6-Fe composite and ABS is also carried out.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51175123 and 51105112)
文摘In order to get ultra-smooth fused silica surface without subsurface damage efficiently, the atmospheric pressure plasma processing( APPP) method has been developed. It is based on chemical reaction between active radicals excited by plasma and workpiece surface atoms,so the subsurface damage caused by contact stress can be avoided and atomic-level precision can be ensured. In this paper,based on the spectral quantitative analysis theory,the influence laws on material removal rate by the key factors of APPP including the flow rate of reaction gases,the input power,the processing distance and time are discussed. In addition,the results that APPP can remove the damaged surface layer and do not introduce secondary damage are proved via the nanoindentation technology.
文摘The laser ablation technique, coupled with the use of quadrupole ICPMS equipment, proved a powerful tool for determination of trace elements in minerals. At the University of S?o Paulo, the technique was implemented for the study of minerals such as olivines, pyroxenes and biotites. The main problem to be tackled is the availability of proper multi-element reference materials usually prepared synthetically as glasses with various compositions by NIST and fused rock glasses by the Max Planck Institute (MPI) and USGS (basalts, andesite, quartz diorite, komatiites). The best tested ones are the NIST glasses, with good homogeneity and reliable compositional data for over 40 elements. Results are here presented that test additional RM’s. NIST 612 and 610 were used for calibration purposes. The best results were obtained for rock glasses USGS basalts BHVO-2G, BIR- 1G and BCR-2G (better homogeneity and recommended values). Our contribution tests especially the MPI komatiites glasses GOR-128 and GOR-132G, basalts KL-2G and ML-3BG, andesite StHs-6/ 80G and quartz diorite T-1G, discussing homogeneity issues and providing new data. There is a need for additional preparation of reliable reference materials.
基金supported by the National Natural Science Foundation of China(Grant No.21875110,22075143)the Science Challenge Projectthe Qing Lan Project for the grant。
文摘In recent years,the introduction of fused rings own high density and low sensitivity has promoted the development of energetic materials.However,the development of energetic compounds containing fused and bridged rings by introducing multiple nitrogen heterocycles at different sites of fused rings is still difficult to progress,which seriously limits the emergence of advanced energetic compounds.In this study,a series of energetic materials choosing different nitrogen rich heterocycles at the vacancies of the fused ring,i.e.,neutral compound 5,6 and their ionic derivatives(compounds 7-12)were designed and synthesized.Compounds 5 and 6 were further confirmed by single crystal X-ray diffraction,while the crystal analysis and theoretical calculations were carried out to explore the relationship between crystal structure and physicochemical properties.All of the newly synthesized compounds(5-12)are insensitive to mechanical stimulation(IS>40 J;FS≥342 N)and they own the high detonation velocity(D:8322-9075 m/s).Notably,hydrazine salt 11 own the higher detonation velocity(9075 m/s)and powder density(1.83 g/cm^(3)),but exhibits lower sensitivity(IS>40 J)than the classical energetic compound RDX(8795 m/s,1.80 g/cm^(3),7.5 J).It is obvious that the combination of 5,6-fused triazolo-triazine and nitropyrazole-tetrazole may be a new energetic skeleton for synthesising the heterocyclic compounds with balanced energy-stability.
基金the Scientific and Technological Research Project of the Henan Provincial Department of Science and Technology(No.212102210579).
文摘To improve the thermal shock resistance(TSR)of MgO-Al-C materials,three silicon-based raw materials with low expansion coefficients(Si,fused quartz,and SiC)were introduced to the materials,and their effects on the properties of the materials were studied by XRD and SEM.The results show that:(1)the conversion of Si to SiC,SiO2 and forsterite at high temperatures improves the hot modulus of rupture(HMOR),TSR and oxidation resistance of the materials,and the optimal Si addition is 6 mass%;(2)fused quartz improves the TSR of the materials,but its high temperature softening and crystal transformation are not conducive to the HMOR and oxidation resistance of the materials,and the optimal addition is 2 mass%;(3)the SiC addition improves the TSR,HMOR and oxidation resistance of the materials;however,when the SiC addition exceeds 10 mass%,there are more micro-cracks in the materials,decreasing the TSR and oxidation resistance.
文摘In recent years, additive manufacturing (AM), known as “3D printing”, has experienced exceptional growth thanks to the development of mechatronics and materials science. Fused filament deposition (FDM) manufacturing is the most widely used technique in the field of AM, due to low operating and material costs. However, the materials commonly used for this technology are virgin thermoplastics. It is worth noting a considerable amount of waste exists due to failed print and disposable prototypes. In this regard, using green and sustainable materials is essential to limit the impact on the environment. The recycled, bio-based, and blended recycled materials are therefore a potential approach for 3D printing. In contrast, the lack of understanding of the mechanism of interlayer adhesion and the degradation of materials for FDM printing has posed a major challenge for these green materials. This paper provides an overview of the FDM technique and material requirements for 3D printing filaments. The main objective is to highlight the advantages and disadvantages of using recycled, bio-based, and blended materials based on thermoplastics for 3D printing filaments. In this work, solutions to improve the mechanical properties of 3D printing parts before, during, and after the printing process are pointed out. This paper provides an overview on choosing which materials and solutions depend on the specific application purposes. Moreover, research gaps and opportunities are mentioned in the discussion and conclusions sections of this study.
基金financial support by National Natural Science Foundation of China(51172221,51472227)Major Program of Scientific Instrument and Equipment Development of China(2011YQ140145)+1 种基金National High Technology Research and Development Program of China(863 Program,2015AA034204)Project of Science and Technology Department of Guangdong Province(2015B010919007)
文摘In order to investigate corrosive phenomena of fused-cast Al_2O_3-ZrO_2-SiO_2(AZS) refractory materials by molten glass,two types of fused-cast AZS refractory bricks were taken as the interests of the research to study static corrosion rates(mm/d) of the two type materials by molten soda-lime-silica glass at different temperatures(1400,1450 and 1500 *C) and for different isothermal periods(0.5,1.0 and 1.5 d).It was shown that static corrosion rate of each AZS material by molten glass at the triple point developed with raising temperature but slightly decreased with enhancing isothermal period.Based on chemical compositions,microstructures,and corrosive morphologies of AZS refractory materials,the relation between them and static corrosion rates of AZS refractory materials by molten glass was analyzed.
基金Item Sponsored by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of EducationScience and Technology[No.2009-0074199+1 种基金2012R1A1A2008399]the Ministry of Knowledge Economy (MKE) and Korea Institute for Advancement of Technology (KIAT) through the Workforce Development Program in Strategic Technology
文摘Recently,there has been an investigation of polishing processes that has considered new ultra-precision polishing technology for micro parts and optical parts such as those with aspheric and complex shapes.One suitable means of polishing complex shapes is to use a jet of abrasive fluid.However,aerodynamic disturbances and radial spreading are generated by the unstable polishing process of the jet on the surface of the workpiece when it is being polished.A method of jet stabilization has been proposed in which the original nozzle form of a jet of magnetorheological(MR)fluid contains abrasive particles that are magnetized using a magnetic.This paper details the design of an MR jet polishing system that uses an electromagnet,a nozzle,and a hydraulic unit to stabilize a slurry jet based on MR fluid, Second,for silica glass,the polishing spot and section profile are analyzed and the effect of the MR fluid jet polishing process is evaluated.The results of the experiment show that the removal profile is W-shaped and that,in this case,a stable can be proof of a distance of several tens of millimeters from the nozzle.Such results show the possibility of applying the proposed polishing method using MR fluids in ultra-precision micro and optical parts production processes. MR jet polishing shows great potential for use as a new type of precision surface polishing technology.In particular,this is a highly valuable process for the polishing of complex shapes such as micro parts,concaves parts,and cavities.