Fused deposition modeling (FDM) has become widely used for personal/ desktop cost-effective printers. This work presents an investigational platform, which is used to study the surface roughness quality, and dimension...Fused deposition modeling (FDM) has become widely used for personal/ desktop cost-effective printers. This work presents an investigational platform, which is used to study the surface roughness quality, and dimensional accuracy of 100% infill density printed parts fabricated by a personal/desktop cost-effective FDM 3D printer using different types of thermoplastic filament materials namely, PLA, PLA+, ABS and ABS+. Varieties of experiments were conducted after the fabricated parts were naturally cooled down for at least three hours to room temperature. During printing work, the nozzle diameter, layer height, nozzle temperature and printing speed were set at 0.3 mm, 0.1 mm, 220°C and 30 mm/s, respectively. According to the experimentally obtained data results over 10 mm scanned profile and 90°measuring direction (perpendicular to building direction), PLA+ thermoplastic filament material shows an excellent surface behaviour and is found to be more accurate while ABS does exhibit high surface roughness, waviness and primary behaviour. Both PLA and ABS+ show good surface performance.展开更多
Recently,low-cost desktop three-dimensional(3D)printers,employing the fused deposition modeling(FDM)technique,have gained widespread popularity.However,most users cannot test the strength of printed parts,and little i...Recently,low-cost desktop three-dimensional(3D)printers,employing the fused deposition modeling(FDM)technique,have gained widespread popularity.However,most users cannot test the strength of printed parts,and little information is available about the mechanical properties of printed high-impact polystyrene(HIPS)parts using desktop 3D printers.In this study,the user-adjustable parameters of desktop 3D printers,such as crisscross raster orientation,layer thickness,and infill density,were tested.The experimental plans were designed using the Box-Behnken method,and tensile,3-point bending,and compression tests were carried out to determine the mechanical responses of the printed HIPS.The prediction models of the process parameters were regressed to produce the optimal combination of process parameters.The experimental results showcase that the crisscross raster orientation has significant effects on the flexural and compression strengths,but not on the tensile strength.With an increase in the layer thickness,the tensile,flexural,and compression strengths first decreased and then increased,reaching their minimum values at approximately 0.16 mm layer thickness.In addition,they all increased with an increase of infill density.It was demonstrated that when the raster orientation,layer thickness,and infill density were 13.08°/–76.92°,0.09 mm,and 80%,respectively,the comprehensive mechanical properties of the printed HIPS were optimal.Our results can help end-users of desktop 3D printers understand the effects of process parameters on the mechanical properties,and offer practical suggestions for setting proper printing parameters for fabricating HIPS parts.展开更多
Fibers are increasingly in demand for a wide range of polymer composite materials.This study^purpose was the development of oil palm fiber(OPF)mixed with the thermoplastic material acrylonitrile butadiene styrene(ABS)...Fibers are increasingly in demand for a wide range of polymer composite materials.This study^purpose was the development of oil palm fiber(OPF)mixed with the thermoplastic material acrylonitrile butadiene styrene(ABS)as a composite filament for fused deposition modeling(FDM).The mechanical properties of this composite filament were then analyzed.OPF is a fiber extracted from empty fruit bunches,which has proved to be an excellent raw material for biocomposites.The cellulose content of OPF is 43%-65%,and the lignin content is 13%-25%.The composite lilament consists of OPF(5%,mass fraction)in the ABS matrix.The fabrication procedure included alkalinizing,drying,and crushing the OPF to develop the composite.The OPF/ABS materials were prepared and completely blended to acquire a mix of 250 g of the material for the composition.Next,the FLD25 filament extrusion machine was used to form the OPF/ABS composite into a wire.This composite filament then was used in an FDM-based 3D printer to print the specimens.Finally,the printed specimens were tested for mechanical properties such as tensile and flexural strength.The results show that the presence of OPF had increased the tensile strength and modulus elasticity by approximately 1.9%and 1.05%,respectively.However,the flexural strength of the OPF/ABS composite had decreased by 90.6%compared with the virgin ABS.Lastly,the most significant outcome of the OPF/ABS composite was its suitability for printing using the FDM method.展开更多
Additive manufacturing(AM),which is also known as three-dimensional(3D)printing,uses computer-aided design to build objects layer by layer.Here,we focus on the recent progress in the development of techniques for 3D p...Additive manufacturing(AM),which is also known as three-dimensional(3D)printing,uses computer-aided design to build objects layer by layer.Here,we focus on the recent progress in the development of techniques for 3D printing of glass,an important optoelectronic material,including fused deposition modeling,selective laser sintering/melting,stereolithography(SLA)and direct ink writing.We compare these 3D printing methods and analyze their benefits and problems for the manufacturing of functional glass objects.In addition,we discuss the technological principles of 3D glass printing and applications of 3D printed glass objects.This review is finalized by a summary of the current achievements and perspectives for the future development of the 3D glass printing technique.展开更多
Biomedicine is one of the fastest growing areas of additive manufacturing.Especially,in the field of in vitro diagnostics(IVD),contributions of 3D printing include i)rapid prototyping and iterative IVD proof-of-concep...Biomedicine is one of the fastest growing areas of additive manufacturing.Especially,in the field of in vitro diagnostics(IVD),contributions of 3D printing include i)rapid prototyping and iterative IVD proof-of-concept designing ranging from materials,devices to system integration;ii)conceptual design simpli-fication and improved practicality of IVD products;iii)shifting the IVD applications from centralized labs to point-of-care testing(POCT).In this review,the latest developments of 3D printing and its advantages in IVD applications are summarized.A series of 3D-printed objects for IVD applications,including single-function modules,multi-function devices which integrate several single-function modules for specific an-alytical applications such as sample pre-treatment and chemo-/bio-sensing,and all-in-one systems which integrate multi-function devices and the instrument operating them,are analyzed from the perspective of functional integration.The current and potential commercial applications of 3D-printed objects in the IVD field are highlighted.The features of 3D printing,especially rapid prototyping and low start-up,en-able the easy fabrication of bespoke modules,devices and systems for a range of analytical applications,and broadens the commercial IVD prospects.展开更多
文摘Fused deposition modeling (FDM) has become widely used for personal/ desktop cost-effective printers. This work presents an investigational platform, which is used to study the surface roughness quality, and dimensional accuracy of 100% infill density printed parts fabricated by a personal/desktop cost-effective FDM 3D printer using different types of thermoplastic filament materials namely, PLA, PLA+, ABS and ABS+. Varieties of experiments were conducted after the fabricated parts were naturally cooled down for at least three hours to room temperature. During printing work, the nozzle diameter, layer height, nozzle temperature and printing speed were set at 0.3 mm, 0.1 mm, 220°C and 30 mm/s, respectively. According to the experimentally obtained data results over 10 mm scanned profile and 90°measuring direction (perpendicular to building direction), PLA+ thermoplastic filament material shows an excellent surface behaviour and is found to be more accurate while ABS does exhibit high surface roughness, waviness and primary behaviour. Both PLA and ABS+ show good surface performance.
基金supported by the National Natural Science Foundation of China(Grant No.51975097)the National Key Research and Development Project(Grant No.2020YFA0713702).
文摘Recently,low-cost desktop three-dimensional(3D)printers,employing the fused deposition modeling(FDM)technique,have gained widespread popularity.However,most users cannot test the strength of printed parts,and little information is available about the mechanical properties of printed high-impact polystyrene(HIPS)parts using desktop 3D printers.In this study,the user-adjustable parameters of desktop 3D printers,such as crisscross raster orientation,layer thickness,and infill density,were tested.The experimental plans were designed using the Box-Behnken method,and tensile,3-point bending,and compression tests were carried out to determine the mechanical responses of the printed HIPS.The prediction models of the process parameters were regressed to produce the optimal combination of process parameters.The experimental results showcase that the crisscross raster orientation has significant effects on the flexural and compression strengths,but not on the tensile strength.With an increase in the layer thickness,the tensile,flexural,and compression strengths first decreased and then increased,reaching their minimum values at approximately 0.16 mm layer thickness.In addition,they all increased with an increase of infill density.It was demonstrated that when the raster orientation,layer thickness,and infill density were 13.08°/–76.92°,0.09 mm,and 80%,respectively,the comprehensive mechanical properties of the printed HIPS were optimal.Our results can help end-users of desktop 3D printers understand the effects of process parameters on the mechanical properties,and offer practical suggestions for setting proper printing parameters for fabricating HIPS parts.
基金The authors are thankful to the Faculty of Mechanical and Manufacturing Engineering Technology,Universiti Teknikal Malaysia Melaka for providing the facilities of laboratory and supporting for this research work.
文摘Fibers are increasingly in demand for a wide range of polymer composite materials.This study^purpose was the development of oil palm fiber(OPF)mixed with the thermoplastic material acrylonitrile butadiene styrene(ABS)as a composite filament for fused deposition modeling(FDM).The mechanical properties of this composite filament were then analyzed.OPF is a fiber extracted from empty fruit bunches,which has proved to be an excellent raw material for biocomposites.The cellulose content of OPF is 43%-65%,and the lignin content is 13%-25%.The composite lilament consists of OPF(5%,mass fraction)in the ABS matrix.The fabrication procedure included alkalinizing,drying,and crushing the OPF to develop the composite.The OPF/ABS materials were prepared and completely blended to acquire a mix of 250 g of the material for the composition.Next,the FLD25 filament extrusion machine was used to form the OPF/ABS composite into a wire.This composite filament then was used in an FDM-based 3D printer to print the specimens.Finally,the printed specimens were tested for mechanical properties such as tensile and flexural strength.The results show that the presence of OPF had increased the tensile strength and modulus elasticity by approximately 1.9%and 1.05%,respectively.However,the flexural strength of the OPF/ABS composite had decreased by 90.6%compared with the virgin ABS.Lastly,the most significant outcome of the OPF/ABS composite was its suitability for printing using the FDM method.
基金This work was financially supported by the National Key R&D Program of China(No.2018YFB1107200)the National Natural Science Foundation of China(Grant No.51772270)+1 种基金the Open Project Program of Wuhan National Laboratory for Optoelectronics(No.2018-WNLOKF005)State Key Laboratory of High Field Laser Physics,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences.
文摘Additive manufacturing(AM),which is also known as three-dimensional(3D)printing,uses computer-aided design to build objects layer by layer.Here,we focus on the recent progress in the development of techniques for 3D printing of glass,an important optoelectronic material,including fused deposition modeling,selective laser sintering/melting,stereolithography(SLA)and direct ink writing.We compare these 3D printing methods and analyze their benefits and problems for the manufacturing of functional glass objects.In addition,we discuss the technological principles of 3D glass printing and applications of 3D printed glass objects.This review is finalized by a summary of the current achievements and perspectives for the future development of the 3D glass printing technique.
基金supported by the National Nat-ural Science Foundation of China(No.51975597)the Guang-dong Natural Science Foundation(No.2020A1515010661)+2 种基金the Sci-ence and Technology Project of Guangzhou(No.201803020026)the General Program of Shenzhen Innovation Funding(Nos.JCYJ20170818164246179 and JCYJ20170307140752183)the Fundamental Research Funds for the Central Universities(No.20lgzd27).
文摘Biomedicine is one of the fastest growing areas of additive manufacturing.Especially,in the field of in vitro diagnostics(IVD),contributions of 3D printing include i)rapid prototyping and iterative IVD proof-of-concept designing ranging from materials,devices to system integration;ii)conceptual design simpli-fication and improved practicality of IVD products;iii)shifting the IVD applications from centralized labs to point-of-care testing(POCT).In this review,the latest developments of 3D printing and its advantages in IVD applications are summarized.A series of 3D-printed objects for IVD applications,including single-function modules,multi-function devices which integrate several single-function modules for specific an-alytical applications such as sample pre-treatment and chemo-/bio-sensing,and all-in-one systems which integrate multi-function devices and the instrument operating them,are analyzed from the perspective of functional integration.The current and potential commercial applications of 3D-printed objects in the IVD field are highlighted.The features of 3D printing,especially rapid prototyping and low start-up,en-able the easy fabrication of bespoke modules,devices and systems for a range of analytical applications,and broadens the commercial IVD prospects.