Fused quartz ceramic was prepared using high purity fused quartz powder as starting material,separately introducing 1%,2% and 3% (in mass,the same hereinafter) nano-ZnO or nano-Y203 as additive,molding at 50 MPa,fir...Fused quartz ceramic was prepared using high purity fused quartz powder as starting material,separately introducing 1%,2% and 3% (in mass,the same hereinafter) nano-ZnO or nano-Y203 as additive,molding at 50 MPa,firing in reduction atmosphere at 1 300,1 350 and 1 400 ℃ for 1 h,respectively.Apparent porosity and cold modulus of rupture were tested and fracture morphology was analyzed by SEM.The results show that adding nano-ZnO or nano-Y2O3 obviously improves sintering of fused quartz; adding nano-ZnO enhances modulus of rupture and decreases apparent porosity; the optimum addition of nano-Y2O3 as sintering aid of fused quartz is 2%.展开更多
The isothermal crystallization kinetics of pure fused quartz of blank specimen N- 0 and specimen N- 3 in troduced with 3 mass% nano-Nd2O3 was researched by means of XRD and Avrami equation. The results show that cryst...The isothermal crystallization kinetics of pure fused quartz of blank specimen N- 0 and specimen N- 3 in troduced with 3 mass% nano-Nd2O3 was researched by means of XRD and Avrami equation. The results show that crystallization mechanisms of fused quartz in two specimens are both heterogeneous nucleation type caused by surface structure defects,and the grain growth mode of two specimens are both two-dimensional growth ac companied by one-dimensional and three-dimensiona growths,specimen N- 3 has the higher degree of grain growth in one-dimensional and three-dimensional than specimen N- 0; introducing nano-Nd2O3 can obviously reduce the "active nucleation sites"of glass structure on the fused quartz particles surface,enhance the stability o glass structure,increase the activation energy of fused quartz crystallization from 874 k J · mol- 1to 1 270 k J·mol- 1,and decrease the crystallization rate of fused quartz obviously.展开更多
The growth of GaAs nanowires directly on fused quartz substrates using molecular beam epitaxy via a vapor-liquid-solid mechanism with gold as catalyst is reported. Unlike conventional Au-catalyst MBE growth of nanowir...The growth of GaAs nanowires directly on fused quartz substrates using molecular beam epitaxy via a vapor-liquid-solid mechanism with gold as catalyst is reported. Unlike conventional Au-catalyst MBE growth of nanowires (NWs) on GaAs substrates, zinc blende is found to be the dominant crystal structure for NWs grown on fused-quartz substrates by MBE. Further transmission electron microscopy measurements show that the prepared ZB NWs have the growth direction of [112] and lamellar { 111 } twins extend through the length of NWs. Although there are longitudinal planar defects that extend through NWs, the narrow full width at half maximum of PL implies high crystal quality of NWs grown on fused-quartz substrates.展开更多
The general use of aluminium as an indentation standard for the iteration of contact heights for the determination of ISO-14577 hardness and elastic modulus is challenged because of as yet not appreciated phase-change...The general use of aluminium as an indentation standard for the iteration of contact heights for the determination of ISO-14577 hardness and elastic modulus is challenged because of as yet not appreciated phase-changes in the physical force-depth standard curve that seemed to be secured by claims from 1992. The physical and mathematical analyses with closed formulas avoid the still world-wide standardized energy-law violation by not reserving 33.33% (h2 belief) (or 20% h3/2 physical law) of the loading force and thus energy for all not depth producing events but using 100% for the depth formation is a severe violation of the energy law. The not depth producing part of the indentation work cannot be done with zero energy! Both twinning and structural phase-transition onsets and normalized phase-transition energies are now calculated without iterations but with physically correct closed arithmetic equations. These are reported for Berkovich and cubecorner indentations, including their comparison on geometric grounds and an indentation standard without mechanical twinning is proposed. Characteristic data are reported. This is the first detection of the indentation twinning of aluminium at room temperature and the mechanical twinning of fused quartz is also new. Their disqualification as indentation standards is established. Also, the again found higher load phase-transitions disqualify aluminium and fused quartz as ISO-ASTM 14577 (International Standardization Organization and American Society for Testing and Materials) standards for the contact depth “hc” iterations. The incorrect and still world-wide used black-box values for H- and Er-values (the latter are still falsely called “Young’s moduli” even though they are not directional) and all mechanical properties that depend on them. They lack relation to bulk moduli from compression experiments. Experimentally obtained and so published force vs depth parabolas always follow the linear FN = kh3/2 + Fa equation, where Fa is the axis-cut before and after the phase-transition branches (never “h2” as falsely enforced and used for H, Er and giving incorrectly calculated parameters). The regression slopes k are the precise physical hardness values, which for the first time allow for precise calculation of the mechanical qualities by indentation in relation to the geometry of the indenter tip. Exactly 20% of the applied force and thus energy is not available for the indentation depth. Only these scientific k-values must be used for AI-advises at the expense of falsely iterated indentation hardness H-values. Any incorrect H-ISO-ASTM and also the iterated Er-ISO-ASTM modulus values of technical materials in artificial intelligence will be a disaster for the daily safety. The AI must be told that these are unscientific and must therefore be replaced by physical data. Iterated data (3 and 8 free parameters!) cannot be transformed into physical data. One has to start with real experimental loading curves and an absolute ZerodurR standard that must be calibrated with standard force and standard length to create absolute indentation results. .展开更多
Large-scale and long-time molecular-dynamics simulations are used to investigate the temperature dependences of elastic properties for amorphous SiO2. The elastic moduli increase in a temperature range up to 1600 K an...Large-scale and long-time molecular-dynamics simulations are used to investigate the temperature dependences of elastic properties for amorphous SiO2. The elastic moduli increase in a temperature range up to 1600 K and decrease thereafter. The anomalous behaviour in elasticity is explained by analysing the changes of atomic-scale structure with respect to increment of temperature. The mechanism originates predominantly from distortion of the SiO4 tetrahedra network in low-temperature ranges. At an elevated temperature range, thermal-induced Si-O bond stretching dominates the process and leads to normal temperature dependence of elastic properties.展开更多
To improve the thermal shock resistance(TSR)of MgO-Al-C materials,three silicon-based raw materials with low expansion coefficients(Si,fused quartz,and SiC)were introduced to the materials,and their effects on the pro...To improve the thermal shock resistance(TSR)of MgO-Al-C materials,three silicon-based raw materials with low expansion coefficients(Si,fused quartz,and SiC)were introduced to the materials,and their effects on the properties of the materials were studied by XRD and SEM.The results show that:(1)the conversion of Si to SiC,SiO2 and forsterite at high temperatures improves the hot modulus of rupture(HMOR),TSR and oxidation resistance of the materials,and the optimal Si addition is 6 mass%;(2)fused quartz improves the TSR of the materials,but its high temperature softening and crystal transformation are not conducive to the HMOR and oxidation resistance of the materials,and the optimal addition is 2 mass%;(3)the SiC addition improves the TSR,HMOR and oxidation resistance of the materials;however,when the SiC addition exceeds 10 mass%,there are more micro-cracks in the materials,decreasing the TSR and oxidation resistance.展开更多
基金the financial support of National Natural Science Foundation of China ( 51072046)
文摘Fused quartz ceramic was prepared using high purity fused quartz powder as starting material,separately introducing 1%,2% and 3% (in mass,the same hereinafter) nano-ZnO or nano-Y203 as additive,molding at 50 MPa,firing in reduction atmosphere at 1 300,1 350 and 1 400 ℃ for 1 h,respectively.Apparent porosity and cold modulus of rupture were tested and fracture morphology was analyzed by SEM.The results show that adding nano-ZnO or nano-Y2O3 obviously improves sintering of fused quartz; adding nano-ZnO enhances modulus of rupture and decreases apparent porosity; the optimum addition of nano-Y2O3 as sintering aid of fused quartz is 2%.
文摘The isothermal crystallization kinetics of pure fused quartz of blank specimen N- 0 and specimen N- 3 in troduced with 3 mass% nano-Nd2O3 was researched by means of XRD and Avrami equation. The results show that crystallization mechanisms of fused quartz in two specimens are both heterogeneous nucleation type caused by surface structure defects,and the grain growth mode of two specimens are both two-dimensional growth ac companied by one-dimensional and three-dimensiona growths,specimen N- 3 has the higher degree of grain growth in one-dimensional and three-dimensional than specimen N- 0; introducing nano-Nd2O3 can obviously reduce the "active nucleation sites"of glass structure on the fused quartz particles surface,enhance the stability o glass structure,increase the activation energy of fused quartz crystallization from 874 k J · mol- 1to 1 270 k J·mol- 1,and decrease the crystallization rate of fused quartz obviously.
基金Project supported by the National Natural Science Foundation of China(Nos.11104271,11179042)
文摘The growth of GaAs nanowires directly on fused quartz substrates using molecular beam epitaxy via a vapor-liquid-solid mechanism with gold as catalyst is reported. Unlike conventional Au-catalyst MBE growth of nanowires (NWs) on GaAs substrates, zinc blende is found to be the dominant crystal structure for NWs grown on fused-quartz substrates by MBE. Further transmission electron microscopy measurements show that the prepared ZB NWs have the growth direction of [112] and lamellar { 111 } twins extend through the length of NWs. Although there are longitudinal planar defects that extend through NWs, the narrow full width at half maximum of PL implies high crystal quality of NWs grown on fused-quartz substrates.
文摘The general use of aluminium as an indentation standard for the iteration of contact heights for the determination of ISO-14577 hardness and elastic modulus is challenged because of as yet not appreciated phase-changes in the physical force-depth standard curve that seemed to be secured by claims from 1992. The physical and mathematical analyses with closed formulas avoid the still world-wide standardized energy-law violation by not reserving 33.33% (h2 belief) (or 20% h3/2 physical law) of the loading force and thus energy for all not depth producing events but using 100% for the depth formation is a severe violation of the energy law. The not depth producing part of the indentation work cannot be done with zero energy! Both twinning and structural phase-transition onsets and normalized phase-transition energies are now calculated without iterations but with physically correct closed arithmetic equations. These are reported for Berkovich and cubecorner indentations, including their comparison on geometric grounds and an indentation standard without mechanical twinning is proposed. Characteristic data are reported. This is the first detection of the indentation twinning of aluminium at room temperature and the mechanical twinning of fused quartz is also new. Their disqualification as indentation standards is established. Also, the again found higher load phase-transitions disqualify aluminium and fused quartz as ISO-ASTM 14577 (International Standardization Organization and American Society for Testing and Materials) standards for the contact depth “hc” iterations. The incorrect and still world-wide used black-box values for H- and Er-values (the latter are still falsely called “Young’s moduli” even though they are not directional) and all mechanical properties that depend on them. They lack relation to bulk moduli from compression experiments. Experimentally obtained and so published force vs depth parabolas always follow the linear FN = kh3/2 + Fa equation, where Fa is the axis-cut before and after the phase-transition branches (never “h2” as falsely enforced and used for H, Er and giving incorrectly calculated parameters). The regression slopes k are the precise physical hardness values, which for the first time allow for precise calculation of the mechanical qualities by indentation in relation to the geometry of the indenter tip. Exactly 20% of the applied force and thus energy is not available for the indentation depth. Only these scientific k-values must be used for AI-advises at the expense of falsely iterated indentation hardness H-values. Any incorrect H-ISO-ASTM and also the iterated Er-ISO-ASTM modulus values of technical materials in artificial intelligence will be a disaster for the daily safety. The AI must be told that these are unscientific and must therefore be replaced by physical data. Iterated data (3 and 8 free parameters!) cannot be transformed into physical data. One has to start with real experimental loading curves and an absolute ZerodurR standard that must be calibrated with standard force and standard length to create absolute indentation results. .
基金Supported by the National Natural Science Foundation of China and the National Science Fund for Distinguished Young Scholars under Grant Nos 90403027 and 50772114.
文摘Large-scale and long-time molecular-dynamics simulations are used to investigate the temperature dependences of elastic properties for amorphous SiO2. The elastic moduli increase in a temperature range up to 1600 K and decrease thereafter. The anomalous behaviour in elasticity is explained by analysing the changes of atomic-scale structure with respect to increment of temperature. The mechanism originates predominantly from distortion of the SiO4 tetrahedra network in low-temperature ranges. At an elevated temperature range, thermal-induced Si-O bond stretching dominates the process and leads to normal temperature dependence of elastic properties.
基金the Scientific and Technological Research Project of the Henan Provincial Department of Science and Technology(No.212102210579).
文摘To improve the thermal shock resistance(TSR)of MgO-Al-C materials,three silicon-based raw materials with low expansion coefficients(Si,fused quartz,and SiC)were introduced to the materials,and their effects on the properties of the materials were studied by XRD and SEM.The results show that:(1)the conversion of Si to SiC,SiO2 and forsterite at high temperatures improves the hot modulus of rupture(HMOR),TSR and oxidation resistance of the materials,and the optimal Si addition is 6 mass%;(2)fused quartz improves the TSR of the materials,but its high temperature softening and crystal transformation are not conducive to the HMOR and oxidation resistance of the materials,and the optimal addition is 2 mass%;(3)the SiC addition improves the TSR,HMOR and oxidation resistance of the materials;however,when the SiC addition exceeds 10 mass%,there are more micro-cracks in the materials,decreasing the TSR and oxidation resistance.