期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A robust Poisson multi-Bernoulli filter for multi-target tracking based on arithmetic average fusion 被引量:3
1
作者 Zhenzhen SU Hongbing JI +1 位作者 Cong TIAN Yongquan ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第2期179-190,共12页
The coalescence and missed detection are two key challenges in Multi-Target Tracking(MTT).To balance the tracking accuracy and real-time performance,the existing Random Finite Set(RFS)based filters are generally diffi... The coalescence and missed detection are two key challenges in Multi-Target Tracking(MTT).To balance the tracking accuracy and real-time performance,the existing Random Finite Set(RFS)based filters are generally difficult to handle the above problems simultaneously,such as the Track-Oriented marginal Multi-Bernoulli/Poisson(TOMB/P)and Measurement-Oriented marginal Multi-Bernoulli/Poisson(MOMB/P)filters.Based on the Arithmetic Average(AA)fusion rule,this paper proposes a novel fusion framework for the Poisson Multi-Bernoulli(PMB)filter,which integrates both the advantages of the TOMB/P filter in dealing with missed detection and the advantages of the MOMB/P filter in dealing with coalescence.In order to fuse the different PMB distributions,the Bernoulli components in different Multi-Bernoulli(MB)distributions are associated with each other by Kullback-Leibler Divergence(KLD)minimization.Moreover,an adaptive AA fusion rule is designed on the basis of the exponential fusion weights,which utilizes the TOMB/P and MOMB/P updates to solve these difficulties in MTT.Finally,by comparing with the TOMB/P and MOMB/P filters,the performance of the proposed filter in terms of accuracy and efficiency is demonstrated in three challenging scenarios. 展开更多
关键词 Arithmetic average fusion Kullback-Leibler divergence Poisson multi-Bernoulli filter Random finite set Target tracking
原文传递
Improved evidential fuzzy c-means method 被引量:4
2
作者 JIANG Wen YANG Tian +2 位作者 SHOU Yehang TANG Yongchuan HU Weiwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第1期187-195,共9页
Dempster-Shafer evidence theory(DS theory) is widely used in brain magnetic resonance imaging(MRI) segmentation,due to its efficient combination of the evidence from different sources. In this paper, an improved MRI s... Dempster-Shafer evidence theory(DS theory) is widely used in brain magnetic resonance imaging(MRI) segmentation,due to its efficient combination of the evidence from different sources. In this paper, an improved MRI segmentation method,which is based on fuzzy c-means(FCM) and DS theory, is proposed. Firstly, the average fusion method is used to reduce the uncertainty and the conflict information in the pictures. Then, the neighborhood information and the different influences of spatial location of neighborhood pixels are taken into consideration to handle the spatial information. Finally, the segmentation and the sensor data fusion are achieved by using the DS theory. The simulated images and the MRI images illustrate that our proposed method is more effective in image segmentation. 展开更多
关键词 average fusion spatial information Dempster-Shafer evidence theory(DS theory) fuzzy c-means(FCM) magnetic resonance imaging(MRI) image segmentation
下载PDF
Review:Recent advances in multisensor multitarge11racking using random finite set 被引量:15
3
作者 Kai DA Tiancheng LI +2 位作者 Yongfeng ZHU Hongqi FAN Qiang FU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2021年第1期5-24,共20页
In this study,we provide an overview of recent advances in multisensor multitarget tracking based on the random finite set(RFS)approach.The fusion that plays a fundamental role in multisensor filtering is classified i... In this study,we provide an overview of recent advances in multisensor multitarget tracking based on the random finite set(RFS)approach.The fusion that plays a fundamental role in multisensor filtering is classified into data-level multitarget measurement fusion and estimate-level multitarget density fusion,which share and fuse local measurements and posterior densities between sensors,respectively.Important properties of each fusion rule including the optimality and sub-optimality are presented.In particulax,two robust multitarget density-averaging approaches,arithmetic-and geometric-average fusion,are addressed in detail for various RFSs.Relevant research topics and remaining challenges are highlighted. 展开更多
关键词 Multitarget tracking Multisensor fusion average fusion Random finite set Optimal fusion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部