期刊文献+
共找到706篇文章
< 1 2 36 >
每页显示 20 50 100
Security Implications of Edge Computing in Cloud Networks 被引量:1
1
作者 Sina Ahmadi 《Journal of Computer and Communications》 2024年第2期26-46,共21页
Security issues in cloud networks and edge computing have become very common. This research focuses on analyzing such issues and developing the best solutions. A detailed literature review has been conducted in this r... Security issues in cloud networks and edge computing have become very common. This research focuses on analyzing such issues and developing the best solutions. A detailed literature review has been conducted in this regard. The findings have shown that many challenges are linked to edge computing, such as privacy concerns, security breaches, high costs, low efficiency, etc. Therefore, there is a need to implement proper security measures to overcome these issues. Using emerging trends, like machine learning, encryption, artificial intelligence, real-time monitoring, etc., can help mitigate security issues. They can also develop a secure and safe future in cloud computing. It was concluded that the security implications of edge computing can easily be covered with the help of new technologies and techniques. 展开更多
关键词 edge computing cloud Networks Artificial Intelligence Machine Learning cloud Security
下载PDF
Quantum-Edge Cloud Computing for IoT: Bridging the Gap between Cloud, Edge, and Quantum Technologies
2
作者 Shahanaz Akter Md. Khairul Islam Bhuiyan +3 位作者 Md. Bahauddin Badhon Habib Md. Hasan Fatema Akter Mohammad Nahid Ul Islam 《Advances in Internet of Things》 2024年第4期99-120,共22页
The rapid expansion of the Internet of Things (IoT) has driven the need for advanced computational frameworks capable of handling the complex data processing and security challenges that modern IoT applications demand... The rapid expansion of the Internet of Things (IoT) has driven the need for advanced computational frameworks capable of handling the complex data processing and security challenges that modern IoT applications demand. However, traditional cloud computing frameworks face significant latency, scalability, and security issues. Quantum-Edge Cloud Computing (QECC) offers an innovative solution by integrating the computational power of quantum computing with the low-latency advantages of edge computing and the scalability of cloud computing resources. This study is grounded in an extensive literature review, performance improvements, and metrics data from Bangladesh, focusing on smart city infrastructure, healthcare monitoring, and the industrial IoT sector. The discussion covers vital elements, including integrating quantum cryptography to enhance data security, the critical role of edge computing in reducing response times, and cloud computing’s ability to support large-scale IoT networks with its extensive resources. Through case studies such as the application of quantum sensors in autonomous vehicles, the practical impact of QECC is demonstrated. Additionally, the paper outlines future research opportunities, including developing quantum-resistant encryption techniques and optimizing quantum algorithms for edge computing. The convergence of these technologies in QECC has the potential to overcome the current limitations of IoT frameworks, setting a new standard for future IoT applications. 展开更多
关键词 Quantum-edge cloud computing (QECC) Internet of Things (IoT) Low Latency Quantum computing (QC) Scalable cloud Services
下载PDF
Energy-Optimal and Delay-Bounded Computation Offloading in Mobile Edge Computing with Heterogeneous Clouds 被引量:24
3
作者 Tianchu Zhao Sheng Zhou +3 位作者 Linqi Song Zhiyuan Jiang Xueying Guo Zhisheng Niu 《China Communications》 SCIE CSCD 2020年第5期191-210,共20页
By Mobile Edge Computing(MEC), computation-intensive tasks are offloaded from mobile devices to cloud servers, and thus the energy consumption of mobile devices can be notably reduced. In this paper, we study task off... By Mobile Edge Computing(MEC), computation-intensive tasks are offloaded from mobile devices to cloud servers, and thus the energy consumption of mobile devices can be notably reduced. In this paper, we study task offloading in multi-user MEC systems with heterogeneous clouds, including edge clouds and remote clouds. Tasks are forwarded from mobile devices to edge clouds via wireless channels, and they can be further forwarded to remote clouds via the Internet. Our objective is to minimize the total energy consumption of multiple mobile devices, subject to bounded-delay requirements of tasks. Based on dynamic programming, we propose an algorithm that minimizes the energy consumption, by jointly allocating bandwidth and computational resources to mobile devices. The algorithm is of pseudo-polynomial complexity. To further reduce the complexity, we propose an approximation algorithm with energy discretization, and its total energy consumption is proved to be within a bounded gap from the optimum. Simulation results show that, nearly 82.7% energy of mobile devices can be saved by task offloading compared with mobile device execution. 展开更多
关键词 mobile edge computing heterogeneous clouds energy saving delay bounds dynamic programming
下载PDF
A PSO Improved with Imbalanced Mutation and Task Rescheduling for Task Offloading in End-Edge-Cloud Computing
4
作者 Kaili Shao Hui Fu +1 位作者 Ying Song Bo Wang 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期2259-2274,共16页
To serve various tasks requested by various end devices with different requirements,end-edge-cloud(E2C)has attracted more and more attention from specialists in both academia and industry,by combining both benefits of... To serve various tasks requested by various end devices with different requirements,end-edge-cloud(E2C)has attracted more and more attention from specialists in both academia and industry,by combining both benefits of edge and cloud computing.But nowadays,E2C still suffers from low service quality and resource efficiency,due to the geographical distribution of edge resources and the high dynamic of network topology and user mobility.To address these issues,this paper focuses on task offloading,which makes decisions that which resources are allocated to tasks for their processing.This paper first formulates the problem into binary non-linear programming and then proposes a particle swarm optimization(PSO)-based algorithm to solve the problem.The proposed algorithm exploits an imbalance mutation operator and a task rescheduling approach to improve the performance of PSO.The proposed algorithm concerns the resource heterogeneity by correlating the probability that a computing node is decided to process a task with its capacity,by the imbalance mutation.The task rescheduling approach improves the acceptance ratio for a task offloading solution,by reassigning rejected tasks to computing nodes with available resources.Extensive simulated experiments are conducted.And the results show that the proposed offloading algorithm has an 8.93%–37.0%higher acceptance ratio than ten of the classical and up-to-date algorithms,and verify the effectiveness of the imbalanced mutation and the task rescheduling. 展开更多
关键词 cloud computing edge computing edge cloud task scheduling task offloading particle swarm optimization
下载PDF
Computation Offloading and Scheduling in Edge-Fog Cloud Computing
5
作者 Dadmehr Rahbari Mohsen Nickray 《Journal of Electronic & Information Systems》 2019年第1期26-36,共11页
Resource allocation and task scheduling in the Cloud environment faces many challenges,such as time delay,energy consumption,and security.Also,executing computation tasks of mobile applications on mobile devices(MDs)r... Resource allocation and task scheduling in the Cloud environment faces many challenges,such as time delay,energy consumption,and security.Also,executing computation tasks of mobile applications on mobile devices(MDs)requires a lot of resources,so they can offload to the Cloud.But Cloud is far from MDs and has challenges as high delay and power consumption.Edge computing with processing near the Internet of Things(IoT)devices have been able to reduce the delay to some extent,but the problem is distancing itself from the Cloud.The fog computing(FC),with the placement of sensors and Cloud,increase the speed and reduce the energy consumption.Thus,FC is suitable for IoT applications.In this article,we review the resource allocation and task scheduling methods in Cloud,Edge and Fog environments,such as traditional,heuristic,and meta-heuristics.We also categorize the researches related to task offloading in Mobile Cloud Computing(MCC),Mobile Edge Computing(MEC),and Mobile Fog Computing(MFC).Our categorization criteria include the issue,proposed strategy,objectives,framework,and test environment. 展开更多
关键词 cloud computing edge computing FOG computing ofFLOADING SCHEDULING
下载PDF
Intelligent Task Offloading and Collaborative Computation in Multi-UAV-Enabled Mobile Edge Computing 被引量:6
6
作者 Jingming Xia Peng Wang +1 位作者 Bin Li Zesong Fei 《China Communications》 SCIE CSCD 2022年第4期244-256,共13页
This article establishes a three-tier mobile edge computing(MEC) network, which takes into account the cooperation between unmanned aerial vehicles(UAVs). In this MEC network, we aim to minimize the processing delay o... This article establishes a three-tier mobile edge computing(MEC) network, which takes into account the cooperation between unmanned aerial vehicles(UAVs). In this MEC network, we aim to minimize the processing delay of tasks by jointly optimizing the deployment of UAVs and offloading decisions,while meeting the computing capacity constraint of UAVs. However, the resulting optimization problem is nonconvex, which cannot be solved by general optimization tools in an effective and efficient way. To this end, we propose a two-layer optimization algorithm to tackle the non-convexity of the problem by capitalizing on alternating optimization. In the upper level algorithm, we rely on differential evolution(DE) learning algorithm to solve the deployment of the UAVs. In the lower level algorithm, we exploit distributed deep neural network(DDNN) to generate offloading decisions. Numerical results demonstrate that the two-layer optimization algorithm can effectively obtain the near-optimal deployment of UAVs and offloading strategy with low complexity. 展开更多
关键词 mobile edge computing MULTI-UAV collaborative cloud and edge computing deep neural network differential evolution
下载PDF
Key Technologies and Application of Edge Computing 被引量:3
7
作者 TU Yaofeng DONG Zhenjiang YANG Hongzhang 《ZTE Communications》 2017年第2期26-34,共9页
Cloud computing faces a series of challenges,such as insufficient bandwidth,unsatisfactory real-time,privacy protection,and energy consumption.To overcome the challenges,edge computing emerges.Edge computing refers to... Cloud computing faces a series of challenges,such as insufficient bandwidth,unsatisfactory real-time,privacy protection,and energy consumption.To overcome the challenges,edge computing emerges.Edge computing refers to a process where the open platform that converges the core capabilities of networks,computing,storage,and applications provides intelligent services at the network edge near the source of the objects or data to meet the critical requirements for agile connection,real-time services,data optimization,application intelligence,security and privacy protection of industry digitization.Edge computing consists of three elements:edge,computing,and intelligence.Edge computing and the Internet of Things(IoT)mutually create,and edge computing and cloud computing complement each other.In the architecture of edge computing,resources are distributed to the edge nodes,and therefore the storage system is near users while the computation function is near data.In this way,the stress on the backbone network can be lessened.With this architecture,the existing key technologies for computation,networks,and storage will change significantly.ZTE’s edge computing solutions can ensure the service quality of operators and greatly enhance the experience of mobile users. 展开更多
关键词 edge computing cloud computing IOT
下载PDF
A Transparent and User-Centric Approach to Unify Resource Management and Code Scheduling of Local,Edge,and Cloud
8
作者 ZHOU Yuezhi ZHANG Di ZHANG Yaoxue 《ZTE Communications》 2017年第4期3-11,共9页
Recently, several novel computing paradigms are proposed, e.g., fog computing and edge computing. In such more decentralized computing paradigms, the location and resource for code execution and data storage of end ap... Recently, several novel computing paradigms are proposed, e.g., fog computing and edge computing. In such more decentralized computing paradigms, the location and resource for code execution and data storage of end applications could also be optionally distributed among different places or machines. In this paper, we position that this situation requires a new transparent and usercentric approach to unify the resource management and code scheduling from the perspective of end users. We elaborate our vision and propose a software-defined code scheduling framework. The proposed framework allows the code execution or data storage of end applications to be adaptively done at appropriate machines under the help of a performance and capacity monitoring facility, intelligently improving application performance for end users. A pilot system and preliminary results show the advantage of the framework and thus the advocated vision for end users. 展开更多
关键词 cloud computing fog computing edge computing mobile edge computing resource management and code scheduling
下载PDF
Improved Harris Hawks Optimization Algorithm Based Data Placement Strategy for Integrated Cloud and Edge Computing
9
作者 V.Nivethitha G.Aghila 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期887-904,共18页
Cloud computing is considered to facilitate a more cost-effective way to deploy scientific workflows.The individual tasks of a scientific work-flow necessitate a diversified number of large states that are spatially l... Cloud computing is considered to facilitate a more cost-effective way to deploy scientific workflows.The individual tasks of a scientific work-flow necessitate a diversified number of large states that are spatially located in different datacenters,thereby resulting in huge delays during data transmis-sion.Edge computing minimizes the delays in data transmission and supports the fixed storage strategy for scientific workflow private datasets.Therefore,this fixed storage strategy creates huge amount of bottleneck in its storage capacity.At this juncture,integrating the merits of cloud computing and edge computing during the process of rationalizing the data placement of scientific workflows and optimizing the energy and time incurred in data transmission across different datacentres remains a challenge.In this paper,Adaptive Cooperative Foraging and Dispersed Foraging Strategies-Improved Harris Hawks Optimization Algorithm(ACF-DFS-HHOA)is proposed for optimizing the energy and data transmission time in the event of placing data for a specific scientific workflow.This ACF-DFS-HHOA considered the factors influencing transmission delay and energy consumption of data centers into account during the process of rationalizing the data placement of scientific workflows.The adaptive cooperative and dispersed foraging strategy is included in HHOA to guide the position updates that improve population diversity and effectively prevent the algorithm from being trapped into local optimality points.The experimental results of ACF-DFS-HHOA confirmed its predominance in minimizing energy and data transmission time incurred during workflow execution. 展开更多
关键词 edge computing cloud computing scientific workflow data placement energy of datacenters data transmission time
下载PDF
Edge Cloud Selection in Mobile Edge Computing(MEC)-Aided Applications for Industrial Internet of Things(IIoT)Services
10
作者 Dae-Young Kim SoYeon Lee +1 位作者 MinSeung Kim Seokhoon Kim 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期2049-2060,共12页
In many IIoT architectures,various devices connect to the edge cloud via gateway systems.For data processing,numerous data are delivered to the edge cloud.Delivering data to an appropriate edge cloud is critical to im... In many IIoT architectures,various devices connect to the edge cloud via gateway systems.For data processing,numerous data are delivered to the edge cloud.Delivering data to an appropriate edge cloud is critical to improve IIoT service efficiency.There are two types of costs for this kind of IoT network:a communication cost and a computing cost.For service efficiency,the communication cost of data transmission should be minimized,and the computing cost in the edge cloud should be also minimized.Therefore,in this paper,the communication cost for data transmission is defined as the delay factor,and the computing cost in the edge cloud is defined as the waiting time of the computing intensity.The proposed method selects an edge cloud that minimizes the total cost of the communication and computing costs.That is,a device chooses a routing path to the selected edge cloud based on the costs.The proposed method controls the data flows in a mesh-structured network and appropriately distributes the data processing load.The performance of the proposed method is validated through extensive computer simulation.When the transition probability from good to bad is 0.3 and the transition probability from bad to good is 0.7 in wireless and edge cloud states,the proposed method reduced both the average delay and the service pause counts to about 25%of the existing method. 展开更多
关键词 Industrial Internet of Things(IIoT)network IIoT service mobile edge computing(MEC) edge cloud selection MEC-aided application
下载PDF
Computing Power Network:The Architecture of Convergence of Computing and Networking towards 6G Requirement 被引量:32
11
作者 Xiongyan Tang Chang Cao +4 位作者 Youxiang Wang Shuai Zhang Ying Liu Mingxuan Li Tao He 《China Communications》 SCIE CSCD 2021年第2期175-185,共11页
In 6G era,service forms in which computing power acts as the core will be ubiquitous in the network.At the same time,the collaboration among edge computing,cloud computing and network is needed to support edge computi... In 6G era,service forms in which computing power acts as the core will be ubiquitous in the network.At the same time,the collaboration among edge computing,cloud computing and network is needed to support edge computing service with strong demand for computing power,so as to realize the optimization of resource utilization.Based on this,the article discusses the research background,key techniques and main application scenarios of computing power network.Through the demonstration,it can be concluded that the technical solution of computing power network can effectively meet the multi-level deployment and flexible scheduling needs of the future 6G business for computing,storage and network,and adapt to the integration needs of computing power and network in various scenarios,such as user oriented,government enterprise oriented,computing power open and so on. 展开更多
关键词 6G edge computing cloud computing convergence of cloud and network computing power network
下载PDF
On Cost Aware Cloudlet Placement for Mobile Edge Computing 被引量:6
12
作者 Qiang Fan Nirwan Ansari 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第4期926-937,共12页
As accessing computing resources from the remote cloud inherently incurs high end-to-end(E2E)delay for mobile users,cloudlets,which are deployed at the edge of a network,can potentially mitigate this problem.Although ... As accessing computing resources from the remote cloud inherently incurs high end-to-end(E2E)delay for mobile users,cloudlets,which are deployed at the edge of a network,can potentially mitigate this problem.Although some research works focus on allocating workloads among cloudlets,the cloudlet placement aiming to minimize the deployment cost(i.e.,consisting of both the cloudlet cost and average E2E delay cost)has not been addressed effectively so far.The locations and number of cloudlets have a crucial impact on both the cloudlet cost in the network and average E2E delay of users.Therefore,in this paper,we propose the Cost Aware cloudlet PlAcement in moBiLe Edge computing(CAPABLE)strategy,where both the cloudlet cost and average E2E delay are considered in the cloudlet placement.To solve this problem,a Lagrangian heuristic algorithm is developed to achieve the suboptimal solution.After cloudlets are placed in the network,we also design a workload allocation scheme to minimize the E2E delay between users and their cloudlets by considering the user mobility.The performance of CAPABLE has been validated by extensive simulations. 展开更多
关键词 cloudLET PLACEMENT MOBILE cloud computing MOBILE edge computing
下载PDF
When Edge Computing Meets IoT Systems: Analysis of Case Studies 被引量:5
13
作者 Fabio Arena Giovanni Pau 《China Communications》 SCIE CSCD 2020年第10期50-63,共14页
On a macroscopic level,an edge computing architecture looks like a distributed and decentralized IT(Information Technology)architecture.More in detail,it could be defined as a mesh network of micro data centers capabl... On a macroscopic level,an edge computing architecture looks like a distributed and decentralized IT(Information Technology)architecture.More in detail,it could be defined as a mesh network of micro data centers capable of processing and storing critical data locally,and to transmit all data received and/or processed to a central data center or a cloud storage repository.This network topology,also taking advantage of the availability on the market of cost-effective small form factor(SFF)electronic components and systems decreasing,brings the essential components of processing,storage,and networking closer to the sources that generate the data.The typical use case is that of Internet of Things(IoT)devices and implementations,which often face latency problems,lack of bandwidth,reliability,which cannot be addressed through the conventional cloud model.In this context,the edge computing architecture can reduce the size of data to be sent to the cloud,processing critical data,sensitive to latency,at the point of origin,via a smart device,or sending it to an intermediate server,located nearby.The aim of this paper is to report some of the main aspects and significant features of edge computing and analyzing several popular case studies. 展开更多
关键词 edge computing fog computing cloud computing ANALYSIS internet of things
下载PDF
A Novel Anonymous Authentication Scheme Based on Edge Computing in Internet of Vehicles 被引量:3
14
作者 Xiaoliang Wang Xinhui She +2 位作者 Liang Bai Yang Qing Frank Jiang 《Computers, Materials & Continua》 SCIE EI 2021年第6期3349-3361,共13页
The vehicular cloud computing is an emerging technology that changes vehicle communication and underlying trafc management applications.However,cloud computing has disadvantages such as high delay,low privacy and high... The vehicular cloud computing is an emerging technology that changes vehicle communication and underlying trafc management applications.However,cloud computing has disadvantages such as high delay,low privacy and high communication cost,which can not meet the needs of realtime interactive information of Internet of vehicles.Ensuring security and privacy in Internet of Vehicles is also regarded as one of its most important challenges.Therefore,in order to ensure the user information security and improve the real-time of vehicle information interaction,this paper proposes an anonymous authentication scheme based on edge computing.In this scheme,the concept of edge computing is introduced into the Internet of vehicles,which makes full use of the redundant computing power and storage capacity of idle edge equipment.The edge vehicle nodes are determined by simple algorithm of dening distance and resources,and the improved RSA encryption algorithm is used to encrypt the user information.The improved RSA algorithm encrypts the user information by reencrypting the encryption parameters.Compared with the traditional RSA algorithm,it can resist more attacks,so it is used to ensure the security of user information.It can not only protect the privacy of vehicles,but also avoid anonymous abuse.Simulation results show that the proposed scheme has lower computational complexity and communication overhead than the traditional anonymous scheme. 展开更多
关键词 cloud computing anonymous authentication edge computing anonymity abuse
下载PDF
Efficient and Cost-Effective Vehicle Detection in Foggy Weather for Edge/Fog-Enabled Traffic Surveillance and Collision Avoidance Systems
15
作者 Naeem Raza Muhammad Asif Habib +3 位作者 Mudassar Ahmad Qaisar Abbas Mutlaq BAldajani Muhammad Ahsan Latif 《Computers, Materials & Continua》 SCIE EI 2024年第10期911-931,共21页
Vision-based vehicle detection in adverse weather conditions such as fog,haze,and mist is a challenging research area in the fields of autonomous vehicles,collision avoidance,and Internet of Things(IoT)-enabled edge/f... Vision-based vehicle detection in adverse weather conditions such as fog,haze,and mist is a challenging research area in the fields of autonomous vehicles,collision avoidance,and Internet of Things(IoT)-enabled edge/fog computing traffic surveillance and monitoring systems.Efficient and cost-effective vehicle detection at high accuracy and speed in foggy weather is essential to avoiding road traffic collisions in real-time.To evaluate vision-based vehicle detection performance in foggy weather conditions,state-of-the-art Vehicle Detection in Adverse Weather Nature(DAWN)and Foggy Driving(FD)datasets are self-annotated using the YOLO LABEL tool and customized to four vehicle detection classes:cars,buses,motorcycles,and trucks.The state-of-the-art single-stage deep learning algorithms YOLO-V5,and YOLO-V8 are considered for the task of vehicle detection.Furthermore,YOLO-V5s is enhanced by introducing attention modules Convolutional Block Attention Module(CBAM),Normalized-based Attention Module(NAM),and Simple Attention Module(SimAM)after the SPPF module as well as YOLO-V5l with BiFPN.Their vehicle detection accuracy parameters and running speed is validated on cloud(Google Colab)and edge(local)systems.The mAP50 score of YOLO-V5n is 72.60%,YOLOV5s is 75.20%,YOLO-V5m is 73.40%,and YOLO-V5l is 77.30%;and YOLO-V8n is 60.20%,YOLO-V8s is 73.50%,YOLO-V8m is 73.80%,and YOLO-V8l is 72.60%on DAWN dataset.The mAP50 score of YOLO-V5n is 43.90%,YOLO-V5s is 40.10%,YOLO-V5m is 49.70%,and YOLO-V5l is 57.30%;and YOLO-V8n is 41.60%,YOLO-V8s is 46.90%,YOLO-V8m is 42.90%,and YOLO-V8l is 44.80%on FD dataset.The vehicle detection speed of YOLOV5n is 59 Frame Per Seconds(FPS),YOLO-V5s is 47 FPS,YOLO-V5m is 38 FPS,and YOLO-V5l is 30 FPS;and YOLO-V8n is 185 FPS,YOLO-V8s is 109 FPS,YOLO-V8m is 72 FPS,and YOLO-V8l is 63 FPS on DAWN dataset.The vehicle detection speed of YOLO-V5n is 26 FPS,YOLO-V5s is 24 FPS,YOLO-V5m is 22 FPS,and YOLO-V5l is 17 FPS;and YOLO-V8n is 313 FPS,YOLO-V8s is 182 FPS,YOLO-V8m is 99 FPS,and YOLO-V8l is 60 FPS on FD dataset.YOLO-V5s,YOLO-V5s variants and YOLO-V5l_BiFPN,and YOLO-V8 algorithms are efficient and cost-effective solution for real-time vision-based vehicle detection in foggy weather. 展开更多
关键词 Vehicle detection YOLO-V5 YOLO-V5s variants YOLO-V8 DAWN dataset foggy driving dataset IoT cloud/edge/fog computing
下载PDF
Enhancing the robustness of object detection via 6G vehicular edge computing 被引量:1
16
作者 Chen Chen Guorun Yao +2 位作者 Chenyu Wang Sotirios Goudos Shaohua Wan 《Digital Communications and Networks》 SCIE CSCD 2022年第6期923-931,共9页
Academic and industrial communities have been paying significant attention to the 6th Generation (6G) wireless communication systems after the commercial deployment of 5G cellular communications. Among the emerging te... Academic and industrial communities have been paying significant attention to the 6th Generation (6G) wireless communication systems after the commercial deployment of 5G cellular communications. Among the emerging technologies, Vehicular Edge Computing (VEC) can provide essential assurance for the robustness of Artificial Intelligence (AI) algorithms to be used in the 6G systems. Therefore, in this paper, a strategy for enhancing the robustness of AI model deployment using 6G-VEC is proposed, taking the object detection task as an example. This strategy includes two stages: model stabilization and model adaptation. In the former, the state-of-the-art methods are appended to the model to improve its robustness. In the latter, two targeted compression methods are implemented, namely model parameter pruning and knowledge distillation, which result in a trade-off between model performance and runtime resources. Numerical results indicate that the proposed strategy can be smoothly deployed in the onboard edge terminals, where the introduced trade-off outperforms the other strategies available. 展开更多
关键词 6G Vehicular edge computing Object detection Feature fusion Model compression Model deployment
下载PDF
Modelling Mobile-X Architecture for Offloading in Mobile Edge Computing 被引量:1
17
作者 G.Pandiyan E.Sasikala 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期617-632,共16页
Mobile Edge Computing(MEC)assists clouds to handle enormous tasks from mobile devices in close proximity.The edge servers are not allocated efficiently according to the dynamic nature of the network.It leads to process... Mobile Edge Computing(MEC)assists clouds to handle enormous tasks from mobile devices in close proximity.The edge servers are not allocated efficiently according to the dynamic nature of the network.It leads to processing delay,and the tasks are dropped due to time limitations.The researchersfind it difficult and complex to determine the offloading decision because of uncertain load dynamic condition over the edge nodes.The challenge relies on the offload-ing decision on selection of edge nodes for offloading in a centralized manner.This study focuses on minimizing task-processing time while simultaneously increasing the success rate of service provided by edge servers.Initially,a task-offloading problem needs to be formulated based on the communication and pro-cessing.Then offloading decision problem is solved by deep analysis on taskflow in the network and feedback from the devices on edge services.The significance of the model is improved with the modelling of Deep Mobile-X architecture and bi-directional Long Short Term Memory(b-LSTM).The simulation is done in the Edgecloudsim environment,and the outcomes show the significance of the proposed idea.The processing time of the anticipated model is 6.6 s.The following perfor-mance metrics,improved server utilization,the ratio of the dropped task,and number of offloading tasks are evaluated and compared with existing learning approaches.The proposed model shows a better trade-off compared to existing approaches. 展开更多
关键词 Mobile edge computing cloud offloading delay task drop reinforcement learning mobile-X architecture
下载PDF
An Edge Computing Algorithm Based on Multi-Level Star Sensor Cloud
18
作者 Siyu Ren Shi Qiu Keyang Cheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1643-1659,共17页
Star sensors are an important means of autonomous navigation and access to space information for satellites.They have been widely deployed in the aerospace field.To satisfy the requirements for high resolution,timelin... Star sensors are an important means of autonomous navigation and access to space information for satellites.They have been widely deployed in the aerospace field.To satisfy the requirements for high resolution,timeliness,and confidentiality of star images,we propose an edge computing algorithm based on the star sensor cloud.Multiple sensors cooperate with each other to forma sensor cloud,which in turn extends the performance of a single sensor.The research on the data obtained by the star sensor has very important research and application values.First,a star point extraction model is proposed based on the fuzzy set model by analyzing the star image composition,which can reduce the amount of data computation.Then,a mappingmodel between content and space is constructed to achieve low-rank image representation and efficient computation.Finally,the data collected by the wireless sensor is delivered to the edge server,and a differentmethod is used to achieve privacy protection.Only a small amount of core data is stored in edge servers and local servers,and other data is transmitted to the cloud.Experiments show that the proposed algorithm can effectively reduce the cost of communication and storage,and has strong privacy. 展开更多
关键词 Star-sensing sensor cloud fuzzy set edge computing mapping
下载PDF
Connected Vehicles Computation Task Offloading Based on Opportunism in Cooperative Edge Computing
19
作者 Duan Xue Yan Guo +1 位作者 Ning Li Xiaoxiang Song 《Computers, Materials & Continua》 SCIE EI 2023年第4期609-631,共23页
The traditional multi-access edge computing (MEC) capacity isoverwhelmed by the increasing demand for vehicles, leading to acute degradationin task offloading performance. There is a tremendous number ofresource-rich ... The traditional multi-access edge computing (MEC) capacity isoverwhelmed by the increasing demand for vehicles, leading to acute degradationin task offloading performance. There is a tremendous number ofresource-rich and idle mobile connected vehicles (CVs) in the traffic network,and vehicles are created as opportunistic ad-hoc edge clouds to alleviatethe resource limitation of MEC by providing opportunistic computing services.On this basis, a novel scalable system framework is proposed in thispaper for computation task offloading in opportunistic CV-assisted MEC.In this framework, opportunistic ad-hoc edge cloud and fixed edge cloudcooperate to form a novel hybrid cloud. Meanwhile, offloading decision andresource allocation of the user CVs must be ascertained. Furthermore, thejoint offloading decision and resource allocation problem is described asa Mixed Integer Nonlinear Programming (MINLP) problem, which optimizesthe task response latency of user CVs under various constraints. Theoriginal problem is decomposed into two subproblems. First, the Lagrangedual method is used to acquire the best resource allocation with the fixedoffloading decision. Then, the satisfaction-driven method based on trial anderror (TE) learning is adopted to optimize the offloading decision. Finally, acomprehensive series of experiments are conducted to demonstrate that oursuggested scheme is more effective than other comparison schemes. 展开更多
关键词 Multi-access edge computing opportunistic ad-hoc edge cloud offloading decision resource allocation TE learning
下载PDF
Latency Aware and Service Delay with Task Scheduling in Mobile Edge Computing
20
作者 Dileep Kumar Sajnani Abdul Rasheed Mahesar +1 位作者 Abdullah Lakhan Irfan Ali Jamali 《Communications and Network》 2018年第4期127-141,共15页
In a traditional Mobile Cloud Computing (MCC), a stream of data produced by mobile users (MUs) is uploaded to the remote cloud for additional processing throughout the Internet. Though, due to long WAN distance it cau... In a traditional Mobile Cloud Computing (MCC), a stream of data produced by mobile users (MUs) is uploaded to the remote cloud for additional processing throughout the Internet. Though, due to long WAN distance it causes high End to End latency. With the intention of minimize the average response time and key constrained Service Delay (network and cloudlet Delay) for mobile users (MUs), offload their workloads to the geographically distributed cloudlets network, we propose the Multi-layer Latency Aware Workload Assignment Strategy (MLAWAS) to allocate MUs workloads into optimal cloudlets, Simulation results demonstrate that MLAWAS earns the minimum average response time as compared with two other existing strategies. 展开更多
关键词 MLAWAS Multilayer LATENCY Aware Workload Assignment Strategy MCC MOBILE cloud computing MEC MOBILE edge computing SERVICE DELAY LATENCY
下载PDF
上一页 1 2 36 下一页 到第
使用帮助 返回顶部