Liquid carboxyl-terminated poly(butadiene-co-acrylonitrile)(CTBN)-epoxy resin(EP) prepolymers were prepared with different contents of CTBN.The chemical reactions between EP and CTBN were characterized by Fourie...Liquid carboxyl-terminated poly(butadiene-co-acrylonitrile)(CTBN)-epoxy resin(EP) prepolymers were prepared with different contents of CTBN.The chemical reactions between EP and CTBN were characterized by Fourier ransform infrared(FTIR) spectroscopy and gel permeation chromatography(GPC).The scanning electron micrograph(SEM) and dynamic mechanical analysis(DMA) of curing films showed phase separation,and the rubber particles were finely dispersed in the epoxy matrix.Mechanical properties analysis of curing films showed that impact strength and elongation at break increased significantly upon the addition of CTBN,indicating good toughness of the modified epoxy resins.Thermogravimetric analysis(TGA) showed that the incorporation of CTBN had little effect on the thermal stability of EP.Fusion-bonded-epoxy(FBE) powder coatings modified with CTBN-EP prepolymers were prepared.The experimental results demonstrate the ability of CTBN-EP prepolymers,toughening technology to dramatically enhance the flexibility and impact resistance of FBE coatings without compromising other key properties such as corrosion protection.展开更多
A novel kind of waterborne epoxy coating pigmented by nano-sized aluminium powders on high strength steel was formulated. Several coatings with different pigment volume content (PVC) were prepared. The coating morphol...A novel kind of waterborne epoxy coating pigmented by nano-sized aluminium powders on high strength steel was formulated. Several coatings with different pigment volume content (PVC) were prepared. The coating morphology was observed using scanning electron microscopy (SEM), and the electrochemical properties were investigated by electrochemical impedance spectroscopy (EIS). Immersion test and neutral salt spray test were also conducted to investigate the corrosion resistance of the coating. It is demonstrated that the critical pigment volume content (CPVC) value is between 30% and 40%. The coating with PVC of 30% exhibits good corrosion resistance in 3.5% (mass fraction) NaCl solution.展开更多
Epoxy resin powder coating has been successfully applied on the corrosion protection of magnesium lithium alloys.However,poor wear resistance and microcracks formed during the solidification have limited it extensive ...Epoxy resin powder coating has been successfully applied on the corrosion protection of magnesium lithium alloys.However,poor wear resistance and microcracks formed during the solidification have limited it extensive application.There are limited approaches to exploit such anti-corrosion and mechanical properties of magnesium lithium alloys.Herein,the epoxy resin powder coating with polydopamine modified molybdenum disulfide(MoS_(2)@PDA-EP powder coating with 0,0.1,0.2,0.5,1.0 wt.%loading)was well prepared by melt extrusion to investigate its anticorrosion performance and wear resistance.The results revealed that the addition of MoS_(2)@PDA enhanced the adhesion strength between coatings and alloys,wear resistance and corrosion protection of the powder coatings.Among them,the optimum was obtained by 0.2 wt.%MoS_(2)@PDA-EP powder coating which could be attributed to well dispersion and efficient adhesion with coating matrix.To conclude,MoS_(2)@PDA-EP powder coating is meaningfully beneficial for the anticorrosive and wear performance improvement of magnesium lithium alloys.展开更多
Epoxy/graphene nanoplatelets(GNPs) powder coatings were fabricated using ultrasonic predispersion of GNPs and melt-blend extrusion method. The isothermal curing kinetics of epoxy/GNPs powder coating were monitored b...Epoxy/graphene nanoplatelets(GNPs) powder coatings were fabricated using ultrasonic predispersion of GNPs and melt-blend extrusion method. The isothermal curing kinetics of epoxy/GNPs powder coating were monitored by means of real-time Fourier transform infrared spectroscopy(FT-IR) with a heating cell. The mechanical properties of the epoxy/GNPs cured coatings had been investigated, by evaluating their fracture surfaces with field-emission scanning electron microscopy(FE-SEM) after three-point-bending tests. The thermal stability of the epoxy/GNPs cured coatings was studied by thermo-gravimetric analysis(TGA). The isothermal curing kinetics result showed that the GNPs would not affect the autocatalytic reaction mechanism, but the loading of GNPs below 1.0 wt % additive played a prompting role in the curing of the epoxy/GNPs powder coatings. The fracture strain, fracture toughness and impact resistance of the epoxy/GNPs cured coatings increased dramatically at low levels of GNPs loading(1 wt %), indicating that the GNPs could improve the toughness of the epoxy/GNPs powder coatings. Furthermore, from FE-SEM studies of the fracture surfaces, the possible toughening mechanisms of the epoxy/GNPs cured coatings were proposed. TGA result showed that the incorporation of GNPs improved the thermal stability of the cured coatings. Hence, the GNPs modified epoxy can be an efficient approach to toughen epoxy powder coating along with improving their thermal stability.展开更多
Silicon powders possess good thermal stability and rub resistance and can be used as the filler of high temperature wear-resistant coating;it can possess good wettability and dispersibility in the organic polymer by s...Silicon powders possess good thermal stability and rub resistance and can be used as the filler of high temperature wear-resistant coating;it can possess good wettability and dispersibility in the organic polymer by surface modification of silane coupling agent. Organic silicon has good thermal stability, which can modify the frangibility and thermal stability of epoxy resin. A certain proportion of modified silica powder, curing agent and additives were dispersed to modified epoxy resin can compound wear-resistant coating. The results show that: the modification effect can be the best if the dosage of silane coupling agent is 1.5% of silicon powder. If the methyl triethoxy silane is 50 phr and modified silica powder is 200 phr, then various performances of coating tend to be the best.展开更多
The influence of the direction and magnitude of direct(DC)stray current on the disbonding performance of epoxy powder coating was studied by using electrochemical impedance spectroscopy and scanning electron microscop...The influence of the direction and magnitude of direct(DC)stray current on the disbonding performance of epoxy powder coating was studied by using electrochemical impedance spectroscopy and scanning electron microscopy technology.The results show that the application of DC stray current could accelerate the anodic dissolution.The peeling degree of the coating increases as the magnitude of positive DC stray current interference increases in the range of 2–8V.With 16V positive stray current disturbance,the degree of coating disbonding decreases.With the application of negative stray current,the coating peeling becomes more serious,and the degree of peeling increases as the DC stray current increases.展开更多
In this study, production and mechanical properties of polymer composite materials obtained by using Al2O3, SiO2, MgO and TiO2 hard ceramic fillers were studied. Epoxy resin was used as the matrix material, and four d...In this study, production and mechanical properties of polymer composite materials obtained by using Al2O3, SiO2, MgO and TiO2 hard ceramic fillers were studied. Epoxy resin was used as the matrix material, and four different ceramic powders were mechanically mixed into the resin at 3% and 5% as reinforcement. The mechanical properties of the polymer composite materials were then characterized. For this purpose, flexural modulus and flexural strength of composite materials were determined by using three point bending test and impact toughness of the materials were determined by Charpy impact test. In addition, the hardness values of the samples were determined by Shore D hardness test.展开更多
By means of testing the shear strength with single lap joint, measuring electrical resistivity for cured products and the curing strain with strain gauges, the effect of cure parameters on the properties of HT1012 con...By means of testing the shear strength with single lap joint, measuring electrical resistivity for cured products and the curing strain with strain gauges, the effect of cure parameters on the properties of HT1012 conductive adhesive filled with copper powder was investigated, and the residual stress in the conductive adhesives was also estimated. The experimental results show that the properties such as shear strength of the adhesives, electrical resistivity of products as well as the residual stress of cured HT 1012 copperfitted conductive adhesive were evidently affected by curing temperature and time. The diagrams of scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) were also used to determine the properties. The higher mechanical property was achieved under the condition of curing the adhesive 3 h at 60 ℃ as the density of the hydrogen links or linkages existed in the adhesive was relatively higher and the lower electrical resistivity occurred at 80 ℃.展开更多
基金Funded by the National Science and Technology Pillar Program of China(No.2007BAE15B02)
文摘Liquid carboxyl-terminated poly(butadiene-co-acrylonitrile)(CTBN)-epoxy resin(EP) prepolymers were prepared with different contents of CTBN.The chemical reactions between EP and CTBN were characterized by Fourier ransform infrared(FTIR) spectroscopy and gel permeation chromatography(GPC).The scanning electron micrograph(SEM) and dynamic mechanical analysis(DMA) of curing films showed phase separation,and the rubber particles were finely dispersed in the epoxy matrix.Mechanical properties analysis of curing films showed that impact strength and elongation at break increased significantly upon the addition of CTBN,indicating good toughness of the modified epoxy resins.Thermogravimetric analysis(TGA) showed that the incorporation of CTBN had little effect on the thermal stability of EP.Fusion-bonded-epoxy(FBE) powder coatings modified with CTBN-EP prepolymers were prepared.The experimental results demonstrate the ability of CTBN-EP prepolymers,toughening technology to dramatically enhance the flexibility and impact resistance of FBE coatings without compromising other key properties such as corrosion protection.
基金Project(51001007) supported by the National Natural Science Foundation of ChinaProject(2011ZE51057) supported by the Aero Science Foundation of China
文摘A novel kind of waterborne epoxy coating pigmented by nano-sized aluminium powders on high strength steel was formulated. Several coatings with different pigment volume content (PVC) were prepared. The coating morphology was observed using scanning electron microscopy (SEM), and the electrochemical properties were investigated by electrochemical impedance spectroscopy (EIS). Immersion test and neutral salt spray test were also conducted to investigate the corrosion resistance of the coating. It is demonstrated that the critical pigment volume content (CPVC) value is between 30% and 40%. The coating with PVC of 30% exhibits good corrosion resistance in 3.5% (mass fraction) NaCl solution.
基金financial support provided by the National Natural Science Foundation of China(Grant No.U1806225)the National Natural Science Foundation of China(Grant No.51908092)the Joint Funds of the National Natural Science Foundation of China-Guangdong(Grant No.U1801254)。
文摘Epoxy resin powder coating has been successfully applied on the corrosion protection of magnesium lithium alloys.However,poor wear resistance and microcracks formed during the solidification have limited it extensive application.There are limited approaches to exploit such anti-corrosion and mechanical properties of magnesium lithium alloys.Herein,the epoxy resin powder coating with polydopamine modified molybdenum disulfide(MoS_(2)@PDA-EP powder coating with 0,0.1,0.2,0.5,1.0 wt.%loading)was well prepared by melt extrusion to investigate its anticorrosion performance and wear resistance.The results revealed that the addition of MoS_(2)@PDA enhanced the adhesion strength between coatings and alloys,wear resistance and corrosion protection of the powder coatings.Among them,the optimum was obtained by 0.2 wt.%MoS_(2)@PDA-EP powder coating which could be attributed to well dispersion and efficient adhesion with coating matrix.To conclude,MoS_(2)@PDA-EP powder coating is meaningfully beneficial for the anticorrosive and wear performance improvement of magnesium lithium alloys.
基金Funded by the National Natural Science Foundation of China(No.51473104)
文摘Epoxy/graphene nanoplatelets(GNPs) powder coatings were fabricated using ultrasonic predispersion of GNPs and melt-blend extrusion method. The isothermal curing kinetics of epoxy/GNPs powder coating were monitored by means of real-time Fourier transform infrared spectroscopy(FT-IR) with a heating cell. The mechanical properties of the epoxy/GNPs cured coatings had been investigated, by evaluating their fracture surfaces with field-emission scanning electron microscopy(FE-SEM) after three-point-bending tests. The thermal stability of the epoxy/GNPs cured coatings was studied by thermo-gravimetric analysis(TGA). The isothermal curing kinetics result showed that the GNPs would not affect the autocatalytic reaction mechanism, but the loading of GNPs below 1.0 wt % additive played a prompting role in the curing of the epoxy/GNPs powder coatings. The fracture strain, fracture toughness and impact resistance of the epoxy/GNPs cured coatings increased dramatically at low levels of GNPs loading(1 wt %), indicating that the GNPs could improve the toughness of the epoxy/GNPs powder coatings. Furthermore, from FE-SEM studies of the fracture surfaces, the possible toughening mechanisms of the epoxy/GNPs cured coatings were proposed. TGA result showed that the incorporation of GNPs improved the thermal stability of the cured coatings. Hence, the GNPs modified epoxy can be an efficient approach to toughen epoxy powder coating along with improving their thermal stability.
文摘Silicon powders possess good thermal stability and rub resistance and can be used as the filler of high temperature wear-resistant coating;it can possess good wettability and dispersibility in the organic polymer by surface modification of silane coupling agent. Organic silicon has good thermal stability, which can modify the frangibility and thermal stability of epoxy resin. A certain proportion of modified silica powder, curing agent and additives were dispersed to modified epoxy resin can compound wear-resistant coating. The results show that: the modification effect can be the best if the dosage of silane coupling agent is 1.5% of silicon powder. If the methyl triethoxy silane is 50 phr and modified silica powder is 200 phr, then various performances of coating tend to be the best.
基金supported by“Civil Aviation Safety Capacity Building Fund(Construction of safety evaluation system for multibranch complex annular apron pipe network)”“the Fundamental Research Funds for the Central Universities(19CX05007A).”
文摘The influence of the direction and magnitude of direct(DC)stray current on the disbonding performance of epoxy powder coating was studied by using electrochemical impedance spectroscopy and scanning electron microscopy technology.The results show that the application of DC stray current could accelerate the anodic dissolution.The peeling degree of the coating increases as the magnitude of positive DC stray current interference increases in the range of 2–8V.With 16V positive stray current disturbance,the degree of coating disbonding decreases.With the application of negative stray current,the coating peeling becomes more serious,and the degree of peeling increases as the DC stray current increases.
文摘In this study, production and mechanical properties of polymer composite materials obtained by using Al2O3, SiO2, MgO and TiO2 hard ceramic fillers were studied. Epoxy resin was used as the matrix material, and four different ceramic powders were mechanically mixed into the resin at 3% and 5% as reinforcement. The mechanical properties of the polymer composite materials were then characterized. For this purpose, flexural modulus and flexural strength of composite materials were determined by using three point bending test and impact toughness of the materials were determined by Charpy impact test. In addition, the hardness values of the samples were determined by Shore D hardness test.
基金Founded by the Major Research Programs(No.2003Z001)of ScienceTechnology of Hubei Provincial Department of Education,China
文摘By means of testing the shear strength with single lap joint, measuring electrical resistivity for cured products and the curing strain with strain gauges, the effect of cure parameters on the properties of HT1012 conductive adhesive filled with copper powder was investigated, and the residual stress in the conductive adhesives was also estimated. The experimental results show that the properties such as shear strength of the adhesives, electrical resistivity of products as well as the residual stress of cured HT 1012 copperfitted conductive adhesive were evidently affected by curing temperature and time. The diagrams of scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) were also used to determine the properties. The higher mechanical property was achieved under the condition of curing the adhesive 3 h at 60 ℃ as the density of the hydrogen links or linkages existed in the adhesive was relatively higher and the lower electrical resistivity occurred at 80 ℃.