The design,modeling,and simulation of a micro electrical switch for fuze are presented.It consists of springemass system with zigzag slot in mass,latching and electrical connection mechanism and movement-limit mechani...The design,modeling,and simulation of a micro electrical switch for fuze are presented.It consists of springemass system with zigzag slot in mass,latching and electrical connection mechanism and movement-limit mechanism.The switch keeps off-state until it is subjected to an acceleration when fuze is launched normally.The acceleration is simulated as half-sine pulse with specific amplitude and duration.The dynamics model of the switch is studied.Based on zigzag slot in mass,the methods used for recognizing acceleration load are established and analyzed according to the dynamics theory.Two typical half-sine accelerations are loaded on the switch in simulation.The simulation results are in accordance with those of theoretical analysis.The inertial response characteristics of the switch can ensure that the fuze power supply and circuit are connected safely and reliably.展开更多
为研究扫频波对连续波Doppler引信的效应规律及作用机理,开展了典型引信扫频波辐照效应试验,结合现有文献研究结论,提出了普适的扫频波辐照下连续波Doppler引信效应规律及作用机理。试验结果表明:扫频波辐照下引信会意外发火,引信临界...为研究扫频波对连续波Doppler引信的效应规律及作用机理,开展了典型引信扫频波辐照效应试验,结合现有文献研究结论,提出了普适的扫频波辐照下连续波Doppler引信效应规律及作用机理。试验结果表明:扫频波辐照下引信会意外发火,引信临界干扰电场强度与扫频频段有关;扫频步长、频点驻留时间与引信是否意外发火密切相关,受试引信意外发火时要求扫频步长≥7 k Hz,频点驻留时间≤483 ms;扫频参数不会影响受试引信临界干扰电场强度。扫频波辐照下连续波Doppler引信意外发火原因为:扫频波频率变化导致引信自差机振荡状态发生跳变,引起高频电路输出电压波动,从而推动执行级误动作。展开更多
文摘The design,modeling,and simulation of a micro electrical switch for fuze are presented.It consists of springemass system with zigzag slot in mass,latching and electrical connection mechanism and movement-limit mechanism.The switch keeps off-state until it is subjected to an acceleration when fuze is launched normally.The acceleration is simulated as half-sine pulse with specific amplitude and duration.The dynamics model of the switch is studied.Based on zigzag slot in mass,the methods used for recognizing acceleration load are established and analyzed according to the dynamics theory.Two typical half-sine accelerations are loaded on the switch in simulation.The simulation results are in accordance with those of theoretical analysis.The inertial response characteristics of the switch can ensure that the fuze power supply and circuit are connected safely and reliably.
文摘为研究扫频波对连续波Doppler引信的效应规律及作用机理,开展了典型引信扫频波辐照效应试验,结合现有文献研究结论,提出了普适的扫频波辐照下连续波Doppler引信效应规律及作用机理。试验结果表明:扫频波辐照下引信会意外发火,引信临界干扰电场强度与扫频频段有关;扫频步长、频点驻留时间与引信是否意外发火密切相关,受试引信意外发火时要求扫频步长≥7 k Hz,频点驻留时间≤483 ms;扫频参数不会影响受试引信临界干扰电场强度。扫频波辐照下连续波Doppler引信意外发火原因为:扫频波频率变化导致引信自差机振荡状态发生跳变,引起高频电路输出电压波动,从而推动执行级误动作。