In order to analyze the electrostatic field concerned with electrostatic proximity fuze problem using the available finite analysis software package, the technology to model the problem with a scale reduction object a...In order to analyze the electrostatic field concerned with electrostatic proximity fuze problem using the available finite analysis software package, the technology to model the problem with a scale reduction object and boundary was presented. The boundary is determined by the maximum distance the sensor can detect. The object model is obtained by multiplying the terms in Poisson's equation with a scale reduction factor and the real value can be reconstructed with the same reverse process after software calculation. Using the finite element analysis program, the simulation value is close to the theoretical value with a little error. The boundary determination and scale reduction method is suitable to modeling the irregular electrostatic field around air targets, such as airplane, missile and so on, which is based on commonly used personal computer (PC). The technology reduces the calculation and storage cost greatly.展开更多
In order to analyze the load carrying capacity of prestressed concrete box girders, failure behaviors of in-situ deteriorated continuous prestressed concrete box girders under loading are experimentally observed and a...In order to analyze the load carrying capacity of prestressed concrete box girders, failure behaviors of in-situ deteriorated continuous prestressed concrete box girders under loading are experimentally observed and a finite failure analysis method for predicting behaviors of box girders is developed. A degenerated solid shell element is used to simulate box girders and material nonlinearity is considered. Since pre-stressed concrete box girders usually have a large number of curve prestressed tendons, a type of combined element is presented to simulate the prestressed tendons of box girders, and then the number of elements can be significantly reduced. The analytical results are compared with full-scale failure test results. The comparison shows that the presented method can be effectively applied to the failure analysis of in-situ continuous prestressed concrete box girders, and it also shows that the studied old bridge still has enough load carrying capacity.展开更多
Perforation and fracturing are typically associated with the development of coalbed methane wells.As the cement sheath is prone to failure during this process,in this work,the effects of the casing pressure,elastic mo...Perforation and fracturing are typically associated with the development of coalbed methane wells.As the cement sheath is prone to failure during this process,in this work,the effects of the casing pressure,elastic modulus of the cement,elastic modulus of the formation,and casing eccentricity on the resulting stresses are analyzed in the frame of a finite element method.Subsequently,sensitivity response curves of the cement sheath stress are plotted by normalizing all factors.The results show that the maximum circumferential stress and Mises stress of the cement sheath increase with the casing internal pressure,elastic modulus of the cement and casing eccentricity.As the elastic modulus of the formation increases,the maximum circumferential stress of the cement sheath decreases,and its maximum Mises stress increases slightly.The cement sheath undergoes tensile failure during coalbed methane fracturing.The stress sensitivity of the cement sheath to the influential parameters is in the following order:casing internal pressure>elastic modulus of cement sheath>casing eccentricity>elastic modulus of formation.展开更多
Ply-by-ply failure analysis of symmetric and anti-symmetric laminates under uniform sinusoidal transverse dynamic loading is performed for a specified duration.The study investigates the first ply failure load,followe...Ply-by-ply failure analysis of symmetric and anti-symmetric laminates under uniform sinusoidal transverse dynamic loading is performed for a specified duration.The study investigates the first ply failure load,followed by the detection of successive ply failures and their failure modes using various failure theories.Some of the well-established failure theories,mostly used by the researchers,are considered for the failure prediction in laminates.The finite element computational model based on higher order shear deformation displacement field is used for the failure analysis and the complete methodology is computer coded using FORTRAN.The ply-discount stiffness reduction scheme is employed to modify the material properties of the failed lamina.The failure theories used in the analysis are compared according to their ability to predict failure load,failed ply,failure mode and progression of failure.The failure analysis is performed for both the cross-ply and angle-ply laminates with all edges simply supported and clamped.The significance of fibre orientation and stacking sequence in terms of the strength of a laminate and failure progression is also highlighted.展开更多
Based on the study of the characteristics of the cloud, firstly the interference mechanism of the capacitance proximity fuze passing through the cloud has been studied. Analysis shows that the medium property of the c...Based on the study of the characteristics of the cloud, firstly the interference mechanism of the capacitance proximity fuze passing through the cloud has been studied. Analysis shows that the medium property of the cloud only, has little effect on the capacitance proximity fuze. Secondly, the adherence interference of the cloud to capacitance proximity fuze has been studied for the first time in this paper. Then finite element analysis (FEA) method has been used to simulate the adherence interference of the cloud. Simulation result shows that the cloud adherence effect interferes the output of the capacitance fuze greatly. At last, experiments have been made for the study of the cloud interference.展开更多
A numerical calculation method based on the finite element analysis of dynamic characteristics of artillery-fuze system is discussed in detail. Pretension element is used to mesh the couple structure between artillery...A numerical calculation method based on the finite element analysis of dynamic characteristics of artillery-fuze system is discussed in detail. Pretension element is used to mesh the couple structure between artillery and fuze to analyze the change of dynamic characteristics of artillery-fuze system when pre-tightening force varies between artillery and fuze. Numerical calculation of the finite element analysis and actual hammering test of a artillery-fuze system are carried out with the same input to verify the accuracy of numerical calculation. The results show that the finite element model of artillery-fuze system is credible and the calculation accuracy is perfect.展开更多
A three-dimensional cyclic symmetry finite element model of titanium-matrix composites(TMCs) ring was developed to investigate the stress distribution and burst failure. The effects of fiber volume fractions, reinfo...A three-dimensional cyclic symmetry finite element model of titanium-matrix composites(TMCs) ring was developed to investigate the stress distribution and burst failure. The effects of fiber volume fractions, reinforced areas, thermal residual stresses and two different temperatures on stress distribution were studied. The burst speed was obtained through analyzing the hoop tensile stresses under a series of rotating speeds. The results indicate that at the two different temperatures, the influences of fiber volume fractions and reinforced areas on stress level and distribution are different. Some proposals are provided for the structure design of the TMCs ring. With regard to thermal residual stresses, a larger reinforced area is an advisable choice for design of the ring at higher temperature.展开更多
Taking account of the progressive cracking and crushing of the concrete, the full-range nonlinear analysis has been made for a R.C. Structure, from loading to cracking until crushing for some elements. The diagrams sh...Taking account of the progressive cracking and crushing of the concrete, the full-range nonlinear analysis has been made for a R.C. Structure, from loading to cracking until crushing for some elements. The diagrams showing the distribution of the stresses and the horizontal displacements and the pictures showing the cracking and crushing of the concrete are given. This paper also gives the comparison between the results of nonlinear analysis and linear analysis.展开更多
Damage smear method(DSM)is adopted to study trans-scale progressive rock failure process,based on statistical meso-damage model and finite element solver.The statistical approach is utilized to reflect the mesoscopic ...Damage smear method(DSM)is adopted to study trans-scale progressive rock failure process,based on statistical meso-damage model and finite element solver.The statistical approach is utilized to reflect the mesoscopic rock heterogeneity.The constitutive law of representative volume element(RVE)is established according to continuum damage mechanics in which double-damage criterion is considered.The damage evolution and accumulation of RVEs are used to reveal the macroscopic rock failure characteristics.Each single RVE will be represented by one unique element.The initiation,propagation and coalescence of meso-to macro-cracks are captured by smearing failed elements.The above ideas are formulated into the framework of the DSM and programed into self-developed rock failure process analysis(RFPA)software.Two laboratory-scale examples are conducted and the well-known engineering-scale tests,i.e.Atomic Energy of Canada Limited’s(AECL’s)Underground Research Laboratory(URL)tests,are used for verification.It shows that the simulation results match with other experimental results and field observations.展开更多
Mechanical properties of galvannealed (GA) steel sheet used for automotive exposed panel and predicted failure phenomenon of its coating layer were evaluated using finite element method. V-bending test was performed t...Mechanical properties of galvannealed (GA) steel sheet used for automotive exposed panel and predicted failure phenomenon of its coating layer were evaluated using finite element method. V-bending test was performed to understand better the fracture of coating layer of GA steel sheet during plastic deformation. Yield strength of the coating layer was calculated by using a relative difference between hardness of coating layer measured from the nano-indentation test and that of substrate. To measure shearing strength at the interface between substrate and coating layer, shearing test with two specimens attached by an adhesive was carried out. Using the mechanical properties measured, a series of finite element analyses coupled with a failure model was performed. Results reveal that the fracture of coating layer occurs in an irregular manner at the region where compressive deformation is dominant. Meanwhile, a series of vertical cracks perpendicular to material surface are observed at the tensile stressed-region. It is found that 0.26-0.28 of local equivalent plastic strain exists at the coating and substrate at the beginning of failure. The fracture of coating layer depends on ductility of the coating layer considerably as well.展开更多
This paper applies the stochastic finite element method to analyse the statistics of stresses in earth dams and assess the safety and reliability of the dams. Formulations of the stochastic finite element method are b...This paper applies the stochastic finite element method to analyse the statistics of stresses in earth dams and assess the safety and reliability of the dams. Formulations of the stochastic finite element method are briefly reviewed and the procedure for assessing dam's strength and stability is described. As an example, a detailed analysis for an actual dam Nululin dam is performed. A practical method for studying built-dams based on the prototype observation data is described.展开更多
Shell structure is widely used in industrial applications, such as in machinery, aerospace, ship and building fields, as well as containers of pressurized chemicals or liquefied natural gas. Graphite/epoxy composites ...Shell structure is widely used in industrial applications, such as in machinery, aerospace, ship and building fields, as well as containers of pressurized chemicals or liquefied natural gas. Graphite/epoxy composites has advantages of light weight, high strength, corrosion resistance, low expansion, low shrin kage and are often used in the form of composite pressure vessel for various engineering applications. In this study, the stress distributions of composite pressure vessel were analyzed. The finite element code ANSYS was used in analysis, in which the eight-node element SHELL 281 was adopted. The internal pressure 20 MPa, as in container of compressed natural gas, was applied inside the symmetrical cross-ply graphite/epoxy composite pressure vessel. The finite element model was established with suitable mesh size and boundary conditions. The stress distributions are discussed for the composite pressure vessel, especially for the inner two layers at the junction of semis pherical part. The Tsai-Hill criterion was used to assess the failure of composite pressure vessel.展开更多
文摘In order to analyze the electrostatic field concerned with electrostatic proximity fuze problem using the available finite analysis software package, the technology to model the problem with a scale reduction object and boundary was presented. The boundary is determined by the maximum distance the sensor can detect. The object model is obtained by multiplying the terms in Poisson's equation with a scale reduction factor and the real value can be reconstructed with the same reverse process after software calculation. Using the finite element analysis program, the simulation value is close to the theoretical value with a little error. The boundary determination and scale reduction method is suitable to modeling the irregular electrostatic field around air targets, such as airplane, missile and so on, which is based on commonly used personal computer (PC). The technology reduces the calculation and storage cost greatly.
基金Post-Doctoral Innovative Projects of Shandong Province(No.200703072)the National Natural Science Foundation of China(No.50574053)
文摘In order to analyze the load carrying capacity of prestressed concrete box girders, failure behaviors of in-situ deteriorated continuous prestressed concrete box girders under loading are experimentally observed and a finite failure analysis method for predicting behaviors of box girders is developed. A degenerated solid shell element is used to simulate box girders and material nonlinearity is considered. Since pre-stressed concrete box girders usually have a large number of curve prestressed tendons, a type of combined element is presented to simulate the prestressed tendons of box girders, and then the number of elements can be significantly reduced. The analytical results are compared with full-scale failure test results. The comparison shows that the presented method can be effectively applied to the failure analysis of in-situ continuous prestressed concrete box girders, and it also shows that the studied old bridge still has enough load carrying capacity.
基金funded by the Provincial Geological Exploration Fund of Guizhou Province(208-9912-JBN-UTS0).
文摘Perforation and fracturing are typically associated with the development of coalbed methane wells.As the cement sheath is prone to failure during this process,in this work,the effects of the casing pressure,elastic modulus of the cement,elastic modulus of the formation,and casing eccentricity on the resulting stresses are analyzed in the frame of a finite element method.Subsequently,sensitivity response curves of the cement sheath stress are plotted by normalizing all factors.The results show that the maximum circumferential stress and Mises stress of the cement sheath increase with the casing internal pressure,elastic modulus of the cement and casing eccentricity.As the elastic modulus of the formation increases,the maximum circumferential stress of the cement sheath decreases,and its maximum Mises stress increases slightly.The cement sheath undergoes tensile failure during coalbed methane fracturing.The stress sensitivity of the cement sheath to the influential parameters is in the following order:casing internal pressure>elastic modulus of cement sheath>casing eccentricity>elastic modulus of formation.
文摘Ply-by-ply failure analysis of symmetric and anti-symmetric laminates under uniform sinusoidal transverse dynamic loading is performed for a specified duration.The study investigates the first ply failure load,followed by the detection of successive ply failures and their failure modes using various failure theories.Some of the well-established failure theories,mostly used by the researchers,are considered for the failure prediction in laminates.The finite element computational model based on higher order shear deformation displacement field is used for the failure analysis and the complete methodology is computer coded using FORTRAN.The ply-discount stiffness reduction scheme is employed to modify the material properties of the failed lamina.The failure theories used in the analysis are compared according to their ability to predict failure load,failed ply,failure mode and progression of failure.The failure analysis is performed for both the cross-ply and angle-ply laminates with all edges simply supported and clamped.The significance of fibre orientation and stacking sequence in terms of the strength of a laminate and failure progression is also highlighted.
文摘Based on the study of the characteristics of the cloud, firstly the interference mechanism of the capacitance proximity fuze passing through the cloud has been studied. Analysis shows that the medium property of the cloud only, has little effect on the capacitance proximity fuze. Secondly, the adherence interference of the cloud to capacitance proximity fuze has been studied for the first time in this paper. Then finite element analysis (FEA) method has been used to simulate the adherence interference of the cloud. Simulation result shows that the cloud adherence effect interferes the output of the capacitance fuze greatly. At last, experiments have been made for the study of the cloud interference.
基金the Ministerial Level Advanced Research Foundation (5140C9384029389C475)
文摘A numerical calculation method based on the finite element analysis of dynamic characteristics of artillery-fuze system is discussed in detail. Pretension element is used to mesh the couple structure between artillery and fuze to analyze the change of dynamic characteristics of artillery-fuze system when pre-tightening force varies between artillery and fuze. Numerical calculation of the finite element analysis and actual hammering test of a artillery-fuze system are carried out with the same input to verify the accuracy of numerical calculation. The results show that the finite element model of artillery-fuze system is credible and the calculation accuracy is perfect.
基金Projects(51071122,51271147,51201134)supported by the National Natural Science Foundation of ChinaProject(3102014JCQ01023)supported by the Fundamental Research Funds for the Central UniversitiesProject(115-QP-2014)supported by the Research Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University,China
文摘A three-dimensional cyclic symmetry finite element model of titanium-matrix composites(TMCs) ring was developed to investigate the stress distribution and burst failure. The effects of fiber volume fractions, reinforced areas, thermal residual stresses and two different temperatures on stress distribution were studied. The burst speed was obtained through analyzing the hoop tensile stresses under a series of rotating speeds. The results indicate that at the two different temperatures, the influences of fiber volume fractions and reinforced areas on stress level and distribution are different. Some proposals are provided for the structure design of the TMCs ring. With regard to thermal residual stresses, a larger reinforced area is an advisable choice for design of the ring at higher temperature.
文摘Taking account of the progressive cracking and crushing of the concrete, the full-range nonlinear analysis has been made for a R.C. Structure, from loading to cracking until crushing for some elements. The diagrams showing the distribution of the stresses and the horizontal displacements and the pictures showing the cracking and crushing of the concrete are given. This paper also gives the comparison between the results of nonlinear analysis and linear analysis.
基金supported in part by the National Natural Science Foundation of China (Grant Nos.51679028 and 51879034)Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology (Grant No. SKLGDUEK1804)the Fundamental Research Funds for the Central Universities (Grant No.DUT18JC10)
文摘Damage smear method(DSM)is adopted to study trans-scale progressive rock failure process,based on statistical meso-damage model and finite element solver.The statistical approach is utilized to reflect the mesoscopic rock heterogeneity.The constitutive law of representative volume element(RVE)is established according to continuum damage mechanics in which double-damage criterion is considered.The damage evolution and accumulation of RVEs are used to reveal the macroscopic rock failure characteristics.Each single RVE will be represented by one unique element.The initiation,propagation and coalescence of meso-to macro-cracks are captured by smearing failed elements.The above ideas are formulated into the framework of the DSM and programed into self-developed rock failure process analysis(RFPA)software.Two laboratory-scale examples are conducted and the well-known engineering-scale tests,i.e.Atomic Energy of Canada Limited’s(AECL’s)Underground Research Laboratory(URL)tests,are used for verification.It shows that the simulation results match with other experimental results and field observations.
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0074936)
文摘Mechanical properties of galvannealed (GA) steel sheet used for automotive exposed panel and predicted failure phenomenon of its coating layer were evaluated using finite element method. V-bending test was performed to understand better the fracture of coating layer of GA steel sheet during plastic deformation. Yield strength of the coating layer was calculated by using a relative difference between hardness of coating layer measured from the nano-indentation test and that of substrate. To measure shearing strength at the interface between substrate and coating layer, shearing test with two specimens attached by an adhesive was carried out. Using the mechanical properties measured, a series of finite element analyses coupled with a failure model was performed. Results reveal that the fracture of coating layer occurs in an irregular manner at the region where compressive deformation is dominant. Meanwhile, a series of vertical cracks perpendicular to material surface are observed at the tensile stressed-region. It is found that 0.26-0.28 of local equivalent plastic strain exists at the coating and substrate at the beginning of failure. The fracture of coating layer depends on ductility of the coating layer considerably as well.
文摘This paper applies the stochastic finite element method to analyse the statistics of stresses in earth dams and assess the safety and reliability of the dams. Formulations of the stochastic finite element method are briefly reviewed and the procedure for assessing dam's strength and stability is described. As an example, a detailed analysis for an actual dam Nululin dam is performed. A practical method for studying built-dams based on the prototype observation data is described.
文摘Shell structure is widely used in industrial applications, such as in machinery, aerospace, ship and building fields, as well as containers of pressurized chemicals or liquefied natural gas. Graphite/epoxy composites has advantages of light weight, high strength, corrosion resistance, low expansion, low shrin kage and are often used in the form of composite pressure vessel for various engineering applications. In this study, the stress distributions of composite pressure vessel were analyzed. The finite element code ANSYS was used in analysis, in which the eight-node element SHELL 281 was adopted. The internal pressure 20 MPa, as in container of compressed natural gas, was applied inside the symmetrical cross-ply graphite/epoxy composite pressure vessel. The finite element model was established with suitable mesh size and boundary conditions. The stress distributions are discussed for the composite pressure vessel, especially for the inner two layers at the junction of semis pherical part. The Tsai-Hill criterion was used to assess the failure of composite pressure vessel.