期刊文献+
共找到8,233篇文章
< 1 2 250 >
每页显示 20 50 100
Prediction of the undrained shear strength of remolded soil with non-linear regression,fuzzy logic,and artificial neural network
1
作者 YÜNKÜL Kaan KARAÇOR Fatih +1 位作者 GÜRBÜZ Ayhan BUDAK TahsinÖmür 《Journal of Mountain Science》 SCIE CSCD 2024年第9期3108-3122,共15页
This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results... This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results from 230 different remolded soil test settings reported in 21 publications were collected,utilizing six different measurement devices.Although water content,plastic limit,and liquid limit were used as input parameters for fuzzy logic and artificial neural network modeling,liquidity index or water content ratio was considered as an input parameter for non-linear regression analyses.In non-linear regression analyses,12 different regression equations were derived for the prediction of undrained shear strength of remolded soil.Feed-Forward backpropagation and the TANSIG transfer function were used for artificial neural network modeling,while the Mamdani inference system was preferred with trapezoidal and triangular membership functions for fuzzy logic modeling.The experimental results of 914 tests were used for training of the artificial neural network models,196 for validation and 196 for testing.It was observed that the accuracy of the artificial neural network and fuzzy logic modeling was higher than that of the non-linear regression analyses.Furthermore,a simple and reliable regression equation was proposed for assessments of undrained shear strength values with higher coefficients of determination. 展开更多
关键词 Undrained shear strength Liquidity index Water content ratio Non-linear regression Artificial neural networks fuzzy logic
下载PDF
Artificial Neural Network and Fuzzy Logic Based Techniques for Numerical Modeling and Prediction of Aluminum-5%Magnesium Alloy Doped with REM Neodymium
2
作者 Anukwonke Maxwell Chukwuma Chibueze Ikechukwu Godwills +1 位作者 Cynthia C. Nwaeju Osakwe Francis Onyemachi 《International Journal of Nonferrous Metallurgy》 2024年第1期1-19,共19页
In this study, the mechanical properties of aluminum-5%magnesium doped with rare earth metal neodymium were evaluated. Fuzzy logic (FL) and artificial neural network (ANN) were used to model the mechanical properties ... In this study, the mechanical properties of aluminum-5%magnesium doped with rare earth metal neodymium were evaluated. Fuzzy logic (FL) and artificial neural network (ANN) were used to model the mechanical properties of aluminum-5%magnesium (0-0.9 wt%) neodymium. The single input (SI) to the fuzzy logic and artificial neural network models was the percentage weight of neodymium, while the multiple outputs (MO) were average grain size, ultimate tensile strength, yield strength elongation and hardness. The fuzzy logic-based model showed more accurate prediction than the artificial neutral network-based model in terms of the correlation coefficient values (R). 展开更多
关键词 Al-5%Mg Alloy NEODYMIUM Artificial neural network fuzzy Logic Average Grain Size and Mechanical Properties
下载PDF
APPLICATION OF MULTI-SENSOR DATA FUSION BASED ON FUZZY NEURAL NETWORK IN ROTA TING MECHANICAL FAILURE DIAGNOSIS 被引量:1
3
作者 周洁敏 林刚 +1 位作者 宫淑丽 陶云刚 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第1期91-96,共6页
At present, multi-se nsor fusion is widely used in object recognition and classification, since this technique can efficiently improve the accuracy and the ability of fault toleranc e. This paper describes a multi-se... At present, multi-se nsor fusion is widely used in object recognition and classification, since this technique can efficiently improve the accuracy and the ability of fault toleranc e. This paper describes a multi-sensor fusion system, which is model-based and used for rotating mechanical failure diagnosis. In the data fusion process, the fuzzy neural network is selected and used for the data fusion at report level. By comparing the experimental results of fault diagnoses based on fusion data wi th that on original separate data,it is shown that the former is more accurate than the latter. 展开更多
关键词 MULTI-SENSOR data fus ion fuzzy neural network rotating mechanical fault diagnosis grade of members hip
下载PDF
基于BP神经网络的Smith-Fuzzy-PID算法在阀门定位中的应用研究
4
作者 谢涛 周邵萍 +1 位作者 王佳硕 裴梓敬 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期770-778,共9页
为解决气动调节阀控制过程中出现的超调大、精度低等问题,本文采用BP神经网络整定出较优的PID(Proportional Integral Derivative)控制参数,对Smith预估控制器以及模糊控制器进行设计,实现了基于BP神经网络的Smith-Fuzzy-PID控制方法。... 为解决气动调节阀控制过程中出现的超调大、精度低等问题,本文采用BP神经网络整定出较优的PID(Proportional Integral Derivative)控制参数,对Smith预估控制器以及模糊控制器进行设计,实现了基于BP神经网络的Smith-Fuzzy-PID控制方法。搭建了实验平台,通过阶跃响应实验来对控制方法进行验证,验证结果表明,提出的方法调节过程无超调,调节时间仅为1.9 s,定位精度在±0.5%以内,有效提高了系统的稳定性,实现了气动调节阀的快速精准定位。 展开更多
关键词 气动调节阀 Smith预估 模糊控制 BP神经网络 PID控制
下载PDF
Solar Radiation Estimation Based on a New Combined Approach of Artificial Neural Networks (ANN) and Genetic Algorithms (GA) in South Algeria
5
作者 Djeldjli Halima Benatiallah Djelloul +3 位作者 Ghasri Mehdi Tanougast Camel Benatiallah Ali Benabdelkrim Bouchra 《Computers, Materials & Continua》 SCIE EI 2024年第6期4725-4740,共16页
When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global s... When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar radiation(GSR)in the south of Algeria:Adrar,Ouargla,and Bechar.The proposed hybrid GA-ANN model,based on genetic algorithm-based optimization,was developed to improve the ANN model.The GA-ANN and ANFIS models performed better than the standalone ANN-based model,with GA-ANN being better suited for forecasting in all sites,and it performed the best with the best values in the testing phase of Coefficient of Determination(R=0.9005),Mean Absolute Percentage Error(MAPE=8.40%),and Relative Root Mean Square Error(rRMSE=12.56%).Nevertheless,the ANFIS model outperformed the GA-ANN model in forecasting daily GSR,with the best values of indicators when testing the model being R=0.9374,MAPE=7.78%,and rRMSE=10.54%.Generally,we may conclude that the initial ANN stand-alone model performance when forecasting solar radiation has been improved,and the results obtained after injecting the genetic algorithm into the ANN to optimize its weights were satisfactory.The model can be used to forecast daily GSR in dry climates and other climates and may also be helpful in selecting solar energy system installations and sizes. 展开更多
关键词 Solar energy systems genetic algorithm neural networks hybrid adaptive neuro fuzzy inference system solar radiation
下载PDF
Alternative Method of Constructing Granular Neural Networks
6
作者 Yushan Yin Witold Pedrycz Zhiwu Li 《Computers, Materials & Continua》 SCIE EI 2024年第4期623-650,共28页
Utilizing granular computing to enhance artificial neural network architecture, a newtype of network emerges—thegranular neural network (GNN). GNNs offer distinct advantages over their traditional counterparts: The a... Utilizing granular computing to enhance artificial neural network architecture, a newtype of network emerges—thegranular neural network (GNN). GNNs offer distinct advantages over their traditional counterparts: The ability toprocess both numerical and granular data, leading to improved interpretability. This paper proposes a novel designmethod for constructing GNNs, drawing inspiration from existing interval-valued neural networks built uponNNNs. However, unlike the proposed algorithm in this work, which employs interval values or triangular fuzzynumbers for connections, existing methods rely on a pre-defined numerical network. This new method utilizesa uniform distribution of information granularity to granulate connections with unknown parameters, resultingin independent GNN structures. To quantify the granularity output of the network, the product of two commonperformance indices is adopted: The coverage of numerical data and the specificity of information granules.Optimizing this combined performance index helps determine the optimal parameters for the network. Finally,the paper presents the complete model construction and validates its feasibility through experiments on datasetsfrom the UCIMachine Learning Repository. The results demonstrate the proposed algorithm’s effectiveness andpromising performance. 展开更多
关键词 Granular neural network granular connection interval analysis triangular fuzzy numbers particle swarm optimization(PSO)
下载PDF
Real-Time Prediction of Urban Traffic Problems Based on Artificial Intelligence-Enhanced Mobile Ad Hoc Networks(MANETS)
7
作者 Ahmed Alhussen Arshiya S.Ansari 《Computers, Materials & Continua》 SCIE EI 2024年第5期1903-1923,共21页
Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Ne... Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Networks(MANETs)based real-time prediction paradigm for urban traffic challenges.MANETs are wireless networks that are based on mobile devices and may self-organize.The distributed nature of MANETs and the power of AI approaches are leveraged in this framework to provide reliable and timely traffic congestion forecasts.This study suggests a unique Chaotic Spatial Fuzzy Polynomial Neural Network(CSFPNN)technique to assess real-time data acquired from various sources within theMANETs.The framework uses the proposed approach to learn from the data and create predictionmodels to detect possible traffic problems and their severity in real time.Real-time traffic prediction allows for proactive actions like resource allocation,dynamic route advice,and traffic signal optimization to reduce congestion.The framework supports effective decision-making,decreases travel time,lowers fuel use,and enhances overall urban mobility by giving timely information to pedestrians,drivers,and urban planners.Extensive simulations and real-world datasets are used to test the proposed framework’s prediction accuracy,responsiveness,and scalability.Experimental results show that the suggested framework successfully anticipates urban traffic issues in real-time,enables proactive traffic management,and aids in creating smarter,more sustainable cities. 展开更多
关键词 Mobile AdHocnetworks(MANET) urban traffic prediction artificial intelligence(AI) traffic congestion chaotic spatial fuzzy polynomial neural network(CSFPNN)
下载PDF
A Neuro T-Norm Fuzzy Logic Based System
8
作者 Alex Tserkovny 《Journal of Software Engineering and Applications》 2024年第8期638-663,共26页
In this study, we are first examining well-known approach to improve fuzzy reasoning model (FRM) by use of the genetic-based learning mechanism [1]. Later we propose our alternative way to build FRM, which has signifi... In this study, we are first examining well-known approach to improve fuzzy reasoning model (FRM) by use of the genetic-based learning mechanism [1]. Later we propose our alternative way to build FRM, which has significant precision advantages and does not require any adjustment/learning. We put together neuro-fuzzy system (NFS) to connect the set of exemplar input feature vectors (FV) with associated output label (target), both represented by their membership functions (MF). Next unknown FV would be classified by getting upper value of current output MF. After that the fuzzy truths for all MF upper values are maximized and the label of the winner is considered as the class of the input FV. We use the knowledge in the exemplar-label pairs directly with no training. It sets up automatically and then classifies all input FV from the same population as the exemplar FVs. We show that our approach statistically is almost twice as accurate, as well-known genetic-based learning mechanism FRM. 展开更多
关键词 Neuro-fuzzy System neural network fuzzy Logic Modus Ponnens Modus Tollens fuzzy Conditional Inference
下载PDF
Unknown DDoS Attack Detection with Fuzzy C-Means Clustering and Spatial Location Constraint Prototype Loss
9
作者 Thanh-Lam Nguyen HaoKao +2 位作者 Thanh-Tuan Nguyen Mong-Fong Horng Chin-Shiuh Shieh 《Computers, Materials & Continua》 SCIE EI 2024年第2期2181-2205,共25页
Since its inception,the Internet has been rapidly evolving.With the advancement of science and technology and the explosive growth of the population,the demand for the Internet has been on the rise.Many applications i... Since its inception,the Internet has been rapidly evolving.With the advancement of science and technology and the explosive growth of the population,the demand for the Internet has been on the rise.Many applications in education,healthcare,entertainment,science,and more are being increasingly deployed based on the internet.Concurrently,malicious threats on the internet are on the rise as well.Distributed Denial of Service(DDoS)attacks are among the most common and dangerous threats on the internet today.The scale and complexity of DDoS attacks are constantly growing.Intrusion Detection Systems(IDS)have been deployed and have demonstrated their effectiveness in defense against those threats.In addition,the research of Machine Learning(ML)and Deep Learning(DL)in IDS has gained effective results and significant attention.However,one of the challenges when applying ML and DL techniques in intrusion detection is the identification of unknown attacks.These attacks,which are not encountered during the system’s training,can lead to misclassification with significant errors.In this research,we focused on addressing the issue of Unknown Attack Detection,combining two methods:Spatial Location Constraint Prototype Loss(SLCPL)and Fuzzy C-Means(FCM).With the proposed method,we achieved promising results compared to traditional methods.The proposed method demonstrates a very high accuracy of up to 99.8%with a low false positive rate for known attacks on the Intrusion Detection Evaluation Dataset(CICIDS2017)dataset.Particularly,the accuracy is also very high,reaching 99.7%,and the precision goes up to 99.9%for unknown DDoS attacks on the DDoS Evaluation Dataset(CICDDoS2019)dataset.The success of the proposed method is due to the combination of SLCPL,an advanced Open-Set Recognition(OSR)technique,and FCM,a traditional yet highly applicable clustering technique.This has yielded a novel method in the field of unknown attack detection.This further expands the trend of applying DL and ML techniques in the development of intrusion detection systems and cybersecurity.Finally,implementing the proposed method in real-world systems can enhance the security capabilities against increasingly complex threats on computer networks. 展开更多
关键词 CYBERSECURITY DDoS unknown attack detection machine learning deep learning incremental learning convolutional neural networks(CNN) open-set recognition(OSR) spatial location constraint prototype loss fuzzy c-means CICIDS2017 CICDDoS2019
下载PDF
Effective data transmission through energy-efficient clustering and Fuzzy-Based IDS routing approach in WSNs
10
作者 Saziya TABBASSUM Rajesh Kumar PATHAK 《虚拟现实与智能硬件(中英文)》 EI 2024年第1期1-16,共16页
Wireless sensor networks(WSN)gather information and sense information samples in a certain region and communicate these readings to a base station(BS).Energy efficiency is considered a major design issue in the WSNs,a... Wireless sensor networks(WSN)gather information and sense information samples in a certain region and communicate these readings to a base station(BS).Energy efficiency is considered a major design issue in the WSNs,and can be addressed using clustering and routing techniques.Information is sent from the source to the BS via routing procedures.However,these routing protocols must ensure that packets are delivered securely,guaranteeing that neither adversaries nor unauthentic individuals have access to the sent information.Secure data transfer is intended to protect the data from illegal access,damage,or disruption.Thus,in the proposed model,secure data transmission is developed in an energy-effective manner.A low-energy adaptive clustering hierarchy(LEACH)is developed to efficiently transfer the data.For the intrusion detection systems(IDS),Fuzzy logic and artificial neural networks(ANNs)are proposed.Initially,the nodes were randomly placed in the network and initialized to gather information.To ensure fair energy dissipation between the nodes,LEACH randomly chooses cluster heads(CHs)and allocates this role to the various nodes based on a round-robin management mechanism.The intrusion-detection procedure was then utilized to determine whether intruders were present in the network.Within the WSN,a Fuzzy interference rule was utilized to distinguish the malicious nodes from legal nodes.Subsequently,an ANN was employed to distinguish the harmful nodes from suspicious nodes.The effectiveness of the proposed approach was validated using metrics that attained 97%accuracy,97%specificity,and 97%sensitivity of 95%.Thus,it was proved that the LEACH and Fuzzy-based IDS approaches are the best choices for securing data transmission in an energy-efficient manner. 展开更多
关键词 Low energy adaptive clustering hierarchy(LEACH) Intrusion detection system(IDS) Wireless sensor network(WSN) fuzzy logic and artificial neural network(ANN)
下载PDF
A fuzzy control and neural network based rotor speed controller for maximum power point tracking in permanent magnet synchronous wind power generation system 被引量:1
11
作者 Min Ding Zili Tao +3 位作者 Bo Hu Meng Ye Yingxiong Ou Ryuichi Yokoyama 《Global Energy Interconnection》 EI CSCD 2023年第5期554-566,共13页
When the wind speed changes significantly in a permanent magnet synchronous wind power generation system,the maximum power point cannot be easily determined in a timely manner.This study proposes a maximum power refer... When the wind speed changes significantly in a permanent magnet synchronous wind power generation system,the maximum power point cannot be easily determined in a timely manner.This study proposes a maximum power reference signal search method based on fuzzy control,which is an improvement to the climbing search method.A neural network-based parameter regulator is proposed to address external wind speed fluctuations,where the parameters of a proportional-integral controller is adjusted to accurately monitor the maximum power point under different wind speed conditions.Finally,the effectiveness of this method is verified via Simulink simulation. 展开更多
关键词 Maximum wind power tracking fuzzy control neural network
下载PDF
A Quasi-Newton Neural Network Based Efficient Intrusion Detection System for Wireless Sensor Network 被引量:1
12
作者 A.Gautami J.Shanthini S.Karthik 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期427-443,共17页
In Wireless Sensor Networks(WSN),attacks mostly aim in limiting or eliminating the capability of the network to do its normal function.Detecting this misbehaviour is a demanding issue.And so far the prevailing researc... In Wireless Sensor Networks(WSN),attacks mostly aim in limiting or eliminating the capability of the network to do its normal function.Detecting this misbehaviour is a demanding issue.And so far the prevailing research methods show poor performance.AQN3 centred efficient Intrusion Detection Systems(IDS)is proposed in WSN to ameliorate the performance.The proposed system encompasses Data Gathering(DG)in WSN as well as Intrusion Detection(ID)phases.In DG,the Sensor Nodes(SN)is formed as clusters in the WSN and the Distance-based Fruit Fly Fuzzy c-means(DFFF)algorithm chooses the Cluster Head(CH).Then,the data is amassed by the discovered path.Next,it is tested with the trained IDS.The IDS encompasses‘3’steps:pre-processing,matrix reduction,and classification.In pre-processing,the data is organized in a clear format.Then,attributes are presented on the matrix format and the ELDA(entropybased linear discriminant analysis)lessens the matrix values.Next,the output as of the matrix reduction is inputted to the QN3 classifier,which classifies the denial-of-services(DoS),Remotes to Local(R2L),Users to Root(U2R),and probes into attacked or Normal data.In an experimental estimation,the proposed algorithm’s performance is contrasted with the prevailing algorithms.The proposed work attains an enhanced outcome than the prevailing methods. 展开更多
关键词 Distance fruit fly fuzzy c-means(DFFF) entropy-based linear discriminant analysis(ELDA) Quasi-Newton neural network(QN3) remote to local(R2L) denial of service(DoS) user to root(U2R)
下载PDF
Modeling of grain size in isothermal compression of Ti-6Al-4V alloy using fuzzy neural network 被引量:6
13
作者 LUO Jiao LI Miaoquan 《Rare Metals》 SCIE EI CAS CSCD 2011年第6期555-564,共10页
Isothermal compression of Ti-6Al-4V alloy was conducted in the deformation temperature range of 1093-1303 K, the strain rates of 0.001, 0.01, 0.1, 1.0, and 10.0 s-1, and the height reductions of 20%-60% with an interv... Isothermal compression of Ti-6Al-4V alloy was conducted in the deformation temperature range of 1093-1303 K, the strain rates of 0.001, 0.01, 0.1, 1.0, and 10.0 s-1, and the height reductions of 20%-60% with an interval of 10%. After compression, the effect of the processing parameters including deformation temperature, strain rate, and height reduction on the flow stress and the microstructure was investigated. The grain size of primary a phase was measured using an OLYMPUS PMG3 microscope with the quantitative metallography SISC IAS V8.0 image analysis software. A model of grain size in isothermal compression of Ti-6A1-4V alloy was developed using fuzzy neural net- work (FNN) with back-propagation (BP) learning algorithm. The maximum difference and the average difference between the predicted and the experimental grain sizes of primary a phase are 13.31% and 7.62% for the sampled data, and 16.48% and 6.97% for the non-sampled data, respectively. It can be concluded that the present model with high prediction precision can be used to predict the grain size in isothermal compression of Ti-6Al-4V alloy. 展开更多
关键词 titanium alloy isothermal compression grain size fuzzy neural network
下载PDF
Parameter Optimization of Interval Type-2 Fuzzy Neural Networks Based on PSO and BBBC Methods 被引量:20
14
作者 Jiajun Wang Tufan Kumbasar 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第1期247-257,共11页
Interval type-2 fuzzy neural networks(IT2FNNs)can be seen as the hybridization of interval type-2 fuzzy systems(IT2FSs) and neural networks(NNs). Thus, they naturally inherit the merits of both IT2 FSs and NNs. Althou... Interval type-2 fuzzy neural networks(IT2FNNs)can be seen as the hybridization of interval type-2 fuzzy systems(IT2FSs) and neural networks(NNs). Thus, they naturally inherit the merits of both IT2 FSs and NNs. Although IT2 FNNs have more advantages in processing uncertain, incomplete, or imprecise information compared to their type-1 counterparts, a large number of parameters need to be tuned in the IT2 FNNs,which increases the difficulties of their design. In this paper,big bang-big crunch(BBBC) optimization and particle swarm optimization(PSO) are applied in the parameter optimization for Takagi-Sugeno-Kang(TSK) type IT2 FNNs. The employment of the BBBC and PSO strategies can eliminate the need of backpropagation computation. The computing problem is converted to a simple feed-forward IT2 FNNs learning. The adoption of the BBBC or the PSO will not only simplify the design of the IT2 FNNs, but will also increase identification accuracy when compared with present methods. The proposed optimization based strategies are tested with three types of interval type-2 fuzzy membership functions(IT2FMFs) and deployed on three typical identification models. Simulation results certify the effectiveness of the proposed parameter optimization methods for the IT2 FNNs. 展开更多
关键词 BIG bang-big crunch (BBBC) INTERVAL type-2 fuzzy neural networks (IT2FNNs) parameter OPTIMIZATION particle SWARM OPTIMIZATION (PSO)
下载PDF
A Short-Term Climate Prediction Model Based on a Modular Fuzzy Neural Network 被引量:6
15
作者 金龙 金健 姚才 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第3期428-435,共8页
In terms of the modular fuzzy neural network (MFNN) combining fuzzy c-mean (FCM) cluster and single-layer neural network, a short-term climate prediction model is developed. It is found from modeling results that the ... In terms of the modular fuzzy neural network (MFNN) combining fuzzy c-mean (FCM) cluster and single-layer neural network, a short-term climate prediction model is developed. It is found from modeling results that the MFNN model for short-term climate prediction has advantages of simple structure, no hidden layer and stable network parameters because of the assembling of sound functions of the self-adaptive learning, association and fuzzy information processing of fuzzy mathematics and neural network methods. The case computational results of Guangxi flood season (JJA) rainfall show that the mean absolute error (MAE) and mean relative error (MRE) of the prediction during 1998-2002 are 68.8 mm and 9.78%, and in comparison with the regression method, under the conditions of the same predictors and period they are 97.8 mm and 12.28% respectively. Furthermore, it is also found from the stability analysis of the modular model that the change of the prediction results of independent samples with training times in the stably convergent interval of the model is less than 1.3 mm. The obvious oscillation phenomenon of prediction results with training times, such as in the common back-propagation neural network (BPNN) model, does not occur, indicating a better practical application potential of the MFNN model. 展开更多
关键词 modular fuzzy neural network short-term climate prediction flood season
下载PDF
Fuzzy Neural Network Model of 4-CBA Concentration for Industrial Purified Terephthalic Acid Oxidation Process 被引量:7
16
作者 刘瑞兰 苏宏业 +3 位作者 牟盛静 贾涛 陈渭泉 褚健 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第2期234-239,共6页
A fuzzy neural network (FNN) model is developed to predict the 4-CBA concentration of the oxidation unit in purified terephthalic acid process. Several technologies are used to deal with the process data before modeli... A fuzzy neural network (FNN) model is developed to predict the 4-CBA concentration of the oxidation unit in purified terephthalic acid process. Several technologies are used to deal with the process data before modeling.First,a set of preliminary input variables is selected according to prior knowledge and experience. Secondly,a method based on the maximum correlation coefficient is proposed to detect the dead time between the process variables and response variables. Finally, the fuzzy curve method is used to reduce the unimportant input variables.The simulation results based on industrial data show that the relative error range of the FNN model is narrower than that of the American Oil Company (AMOCO) model. Furthermore, the FNN model can predict the trend of the 4-CBA concentration more accurately. 展开更多
关键词 purified terephthalic acid 4-carboxybenzaldchydc fuzzy neural network soft sensor input variables selection fuzzy curve dead time detection
下载PDF
APPROXIMATION ANALYSES FOR FUZZY VALUED FUNCTIONS IN L_1(μ)-NORM BY REGULAR FUZZY NEURAL NETWORKS 被引量:4
17
作者 Liu Puyin (Dept. of System Eng. and Math., National Univ. of Defence Tech., Changsha 410073) 《Journal of Electronics(China)》 2000年第2期132-138,共7页
By defining fuzzy valued simple functions and giving L1(μ) approximations of fuzzy valued integrably bounded functions by such simple functions, the paper analyses by L1(μ)-norm the approximation capability of four-... By defining fuzzy valued simple functions and giving L1(μ) approximations of fuzzy valued integrably bounded functions by such simple functions, the paper analyses by L1(μ)-norm the approximation capability of four-layer feedforward regular fuzzy neural networks to the fuzzy valued integrably bounded function F : Rn → FcO(R). That is, if the transfer functionσ: R→R is non-polynomial and integrable function on each finite interval, F may be innorm approximated by fuzzy valued functions defined as to anydegree of accuracy. Finally some real examples demonstrate the conclusions. 展开更多
关键词 fuzzy VALUED simple function REGULAR fuzzy neural network L1(μ) APPROXIMATION Universal approximator
下载PDF
Self-organizing fuzzy clustering neural network and application to electronic countermeasures effectiveness evaluation 被引量:6
18
作者 Li Zhisheng Li Junshan +1 位作者 Feng Fan Zhao Xin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第1期119-124,共6页
A self-organizing fuzzy clustering neural network by combining the self-organizing Kohonen clustering network with the fuzzy theory is proposed. This network model is designed for the effectiveness evaluation of elect... A self-organizing fuzzy clustering neural network by combining the self-organizing Kohonen clustering network with the fuzzy theory is proposed. This network model is designed for the effectiveness evaluation of electronic countermeasures, which not only exerts the advantages of the fuzzy theory, but also has a good ability in machine learning and data analysis. The subjective value of sample versus class is computed by the fuzzy computing theory, and the classified results obtained by self-organizing learning of Kohonen neural network are represented on output layer. Meanwhile, the fuzzy competition learning algorithm keeps the similar information between samples and overcomes the disadvantages of neural network which has fewer samples. The simulation result indicates that the proposed algorithm is feasible and effective. 展开更多
关键词 fuzzy clusteringself-organizing neural network effectiveness evaluation
下载PDF
Adaptive control of parallel manipulators via fuzzy-neural network algorithm 被引量:3
19
作者 Dachang ZHU Yuefa FANG 《控制理论与应用(英文版)》 EI 2007年第3期295-300,共6页
This paper considers adaptive control of parallel manipulators combined with fuzzy-neural network algorithms (FNNA). With this algorithm, the robustness is guaranteed by the adaptive control law and the parametric u... This paper considers adaptive control of parallel manipulators combined with fuzzy-neural network algorithms (FNNA). With this algorithm, the robustness is guaranteed by the adaptive control law and the parametric uncertainties are eliminated. FNNA is used to handle model uncertainties and external disturbances. In the proposed control scheme, we consider modifying the weight of fuzzy rules and present these rules to a MIMO system of parallel manipulators with more than three degrees-of-freedom (DoF). The algorithm has the advantage of not requiring the inverse of the Jacobian matrix especially for the low DoF parallel manipulators. The validity of the control scheme is shown through numerical simulations of a 6-RPS parallel manipulator with three DoF. 展开更多
关键词 Parallel manipulator Adaptive control fuzzy neural network algorithm SIMULATION
下载PDF
Modeling of Energy Consumption and Effluent Quality Using Density Peaks-based Adaptive Fuzzy Neural Network 被引量:10
20
作者 Junfei Qiao Hongbiao Zhou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第5期968-976,共9页
Modeling of energy consumption(EC) and effluent quality(EQ) are very essential problems that need to be solved for the multiobjective optimal control in the wastewater treatment process(WWTP). To address this issue, a... Modeling of energy consumption(EC) and effluent quality(EQ) are very essential problems that need to be solved for the multiobjective optimal control in the wastewater treatment process(WWTP). To address this issue, a density peaks-based adaptive fuzzy neural network(DP-AFNN) is proposed in this study. To obtain suitable fuzzy rules, a DP-based clustering method is applied to fit the cluster centers to process nonlinearity.The parameters of the extracted fuzzy rules are fine-tuned based on the improved Levenberg-Marquardt algorithm during the training process. Furthermore, the analysis of convergence is performed to guarantee the successful application of the DPAFNN. Finally, the proposed DP-AFNN is utilized to develop the models of EC and EQ in the WWTP. The experimental results show that the proposed DP-AFNN can achieve fast convergence speed and high prediction accuracy in comparison with some existing methods. 展开更多
关键词 Density peaks clustering effluent quality (EQ) energy consumption (EC) fuzzy neural network improved Levenberg-Marquardt algorithm wastewater treatment process (WWTP).
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部