A novel model of fuzzy clustering, i.e. an allied fuzzy c means (AFCM) model is proposed based on the combination of advantages of fuzzy c means (FCM) and possibilistic c means (PCM) clustering. PCM is sensitive...A novel model of fuzzy clustering, i.e. an allied fuzzy c means (AFCM) model is proposed based on the combination of advantages of fuzzy c means (FCM) and possibilistic c means (PCM) clustering. PCM is sensitive to initializations and often generates coincident clusters. AFCM overcomes this shortcoming and it is an ex tension of PCM. Membership and typicality values can be simultaneously produced in AFCM. Experimental re- suits show that noise data can be well processed, coincident clusters are avoided and clustering accuracy is better.展开更多
Since its inception,the Internet has been rapidly evolving.With the advancement of science and technology and the explosive growth of the population,the demand for the Internet has been on the rise.Many applications i...Since its inception,the Internet has been rapidly evolving.With the advancement of science and technology and the explosive growth of the population,the demand for the Internet has been on the rise.Many applications in education,healthcare,entertainment,science,and more are being increasingly deployed based on the internet.Concurrently,malicious threats on the internet are on the rise as well.Distributed Denial of Service(DDoS)attacks are among the most common and dangerous threats on the internet today.The scale and complexity of DDoS attacks are constantly growing.Intrusion Detection Systems(IDS)have been deployed and have demonstrated their effectiveness in defense against those threats.In addition,the research of Machine Learning(ML)and Deep Learning(DL)in IDS has gained effective results and significant attention.However,one of the challenges when applying ML and DL techniques in intrusion detection is the identification of unknown attacks.These attacks,which are not encountered during the system’s training,can lead to misclassification with significant errors.In this research,we focused on addressing the issue of Unknown Attack Detection,combining two methods:Spatial Location Constraint Prototype Loss(SLCPL)and Fuzzy C-Means(FCM).With the proposed method,we achieved promising results compared to traditional methods.The proposed method demonstrates a very high accuracy of up to 99.8%with a low false positive rate for known attacks on the Intrusion Detection Evaluation Dataset(CICIDS2017)dataset.Particularly,the accuracy is also very high,reaching 99.7%,and the precision goes up to 99.9%for unknown DDoS attacks on the DDoS Evaluation Dataset(CICDDoS2019)dataset.The success of the proposed method is due to the combination of SLCPL,an advanced Open-Set Recognition(OSR)technique,and FCM,a traditional yet highly applicable clustering technique.This has yielded a novel method in the field of unknown attack detection.This further expands the trend of applying DL and ML techniques in the development of intrusion detection systems and cybersecurity.Finally,implementing the proposed method in real-world systems can enhance the security capabilities against increasingly complex threats on computer networks.展开更多
To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this...To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this method, the image segmentation was converted into an optimization problem. The fitness function containing neighbor information was set up based on the gray information and the neighbor relations between the pixels described by the improved two-dimensional histogram. By making use of the global searching ability of the predator-prey particle swarm optimization, the optimal cluster center could be obtained by iterative optimization, and the image segmentation could be accomplished. The simulation results show that the segmentation accuracy ratio of the proposed method is above 99%. The proposed algorithm has strong anti-noise capability, high clustering accuracy and good segment effect, indicating that it is an effective algorithm for image segmentation.展开更多
Determining the relatively similar hydrological properties of the watersheds is very crucial in order to readily classify them for management practices such as flood and soil erosion control. This study aimed to ident...Determining the relatively similar hydrological properties of the watersheds is very crucial in order to readily classify them for management practices such as flood and soil erosion control. This study aimed to identify homogeneous hydrological watersheds using remote sensing data in western Iran. To achieve this goal, remote sensing indices including SAVI, LAI, NDMI, NDVI and snow cover, were extracted from MODIS data over the period 2000 to 2015. Then, a fuzzy method was used to clustering the watersheds based on the extracted indices. A fuzzy c-mean(FCM) algorithm enabled to classify 38 watersheds in three homogeneous groups.The optimal number of clusters was determined through evaluation of partition coefficient, partition entropy function and trial and error. The results indicated three homogeneous regions identified by the fuzzy c-mean clustering and remote sensing product which are consistent with the variations of topography and climate of the study area. Inherently,the grouped watersheds have similar hydrological properties and are likely to need similar management considerations and measures.展开更多
Based on Multi-Masking Empirical Mode Decomposition (MMEMD) and fuzzy c-means (FCM) clustering, a new method of wind turbine bearing fault diagnosis FCM-MMEMD is proposed, which can determine the fault accurately and ...Based on Multi-Masking Empirical Mode Decomposition (MMEMD) and fuzzy c-means (FCM) clustering, a new method of wind turbine bearing fault diagnosis FCM-MMEMD is proposed, which can determine the fault accurately and timely. First, FCM clustering is employed to classify the data into different clusters, which helps to estimate whether there is a fault and how many fault types there are. If fault signals exist, the fault vibration signals are then demodulated and decomposed into different frequency bands by MMEMD in order to be analyzed further. In order to overcome the mode mixing defect of empirical mode decomposition (EMD), a novel method called MMEMD is proposed. It is an improvement to masking empirical mode decomposition (MEMD). By adding multi-masking signals to the signals to be decomposed in different levels, it can restrain low-frequency components from mixing in highfrequency components effectively in the sifting process and then suppress the mode mixing. It has the advantages of easy implementation and strong ability of suppressing modal mixing. The fault type is determined by Hilbert envelope finally. The results of simulation signal decomposition showed the high performance of MMEMD. Experiments of bearing fault diagnosis in wind turbine bearing fault diagnosis proved the validity and high accuracy of the new method.展开更多
Intuitionistic fuzzy sets(IFSs) are useful means to describe and deal with vague and uncertain data.An intuitionistic fuzzy C-means algorithm to cluster IFSs is developed.In each stage of the intuitionistic fuzzy C-me...Intuitionistic fuzzy sets(IFSs) are useful means to describe and deal with vague and uncertain data.An intuitionistic fuzzy C-means algorithm to cluster IFSs is developed.In each stage of the intuitionistic fuzzy C-means method the seeds are modified,and for each IFS a membership degree to each of the clusters is estimated.In the end of the algorithm,all the given IFSs are clustered according to the estimated membership degrees.Furthermore,the algorithm is extended for clustering interval-valued intuitionistic fuzzy sets(IVIFSs).Finally,the developed algorithms are illustrated through conducting experiments on both the real-world and simulated data sets.展开更多
Fuzzy c-means (FCM) algorithm is one of the most popular methods for image segmentation. However, the standard FCM algorithm is sensitive to noise because of not taking into account the spatial information in the im...Fuzzy c-means (FCM) algorithm is one of the most popular methods for image segmentation. However, the standard FCM algorithm is sensitive to noise because of not taking into account the spatial information in the image. An improved FCM algorithm is proposed to improve the antinoise performance of FCM algorithm. The new algorithm is formulated by incorporating the spatial neighborhood information into the membership function for clustering. The distribution statistics of the neighborhood pixels and the prior probability are used to form a new membership func- tion. It is not only effective to remove the noise spots but also can reduce the misclassified pixels. Experimental results indicate that the proposed algorithm is more accurate and robust to noise than the standard FCM algorithm.展开更多
In this paper,we elaborate on residual-driven Fuzzy C-Means(FCM)for image segmentation,which is the first approach that realizes accurate residual(noise/outliers)estimation and enables noise-free image to participate ...In this paper,we elaborate on residual-driven Fuzzy C-Means(FCM)for image segmentation,which is the first approach that realizes accurate residual(noise/outliers)estimation and enables noise-free image to participate in clustering.We propose a residual-driven FCM framework by integrating into FCM a residual-related regularization term derived from the distribution characteristic of different types of noise.Built on this framework,a weighted?2-norm regularization term is presented by weighting mixed noise distribution,thus resulting in a universal residual-driven FCM algorithm in presence of mixed or unknown noise.Besides,with the constraint of spatial information,the residual estimation becomes more reliable than that only considering an observed image itself.Supporting experiments on synthetic,medical,and real-world images are conducted.The results demonstrate the superior effectiveness and efficiency of the proposed algorithm over its peers.展开更多
Suppressed fuzzy c-means (S-FCM) clustering algorithm with the intention of combining the higher speed of hard c-means clustering algorithm and the better classification performance of fuzzy c-means clustering algorit...Suppressed fuzzy c-means (S-FCM) clustering algorithm with the intention of combining the higher speed of hard c-means clustering algorithm and the better classification performance of fuzzy c-means clustering algorithm had been studied by many researchers and applied in many fields. In the algorithm, how to select the suppressed rate is a key step. In this paper, we give a method to select the fixed suppressed rate by the structure of the data itself. The experimental results show that the proposed method is a suitable way to select the suppressed rate in suppressed fuzzy c-means clustering algorithm.展开更多
Cooperation in spectral sensing (SS) offers a fast and reliable detection of primary user (PU) transmission over a frequency spectrum at the expense of increased energy consumption. Since the fusion center (FC) ...Cooperation in spectral sensing (SS) offers a fast and reliable detection of primary user (PU) transmission over a frequency spectrum at the expense of increased energy consumption. Since the fusion center (FC) has to handle a large set of data, a duster based approach, specifically fuzzy c-means clustering (FCM), has been extensively used in energy detection based cooperative spectrum sensing (CSS). However, the performance of FCM degrades at low signal-to-noise ratios (SNR) and in the presence of multiple PUs as energy data patterns at the FC are often found to be non-spherical i.e. overlapping. To address the problem, this work explores the scope of kernel fuzzy c-means (KFCM) on energy detection based CSS through the projection of non-linear input data to a high dimensional feature space. Extensive simulation results are shown to highlight the improved detection of multiple PUs at low SNR with low energy consumption. An improvement in the detection probability by ~6.78% and ~6.96% at -15 dBW and -20 dBW, respectively, is achieved over the existing FCM method.展开更多
A fuzzy clustering analysis based phonetic tied-mixture HMM(FPTM) was presented to decrease parameter size and improve robustness of parameter training. FPTM was synthesized from state-tied HMMs by a modified fuzzy C-...A fuzzy clustering analysis based phonetic tied-mixture HMM(FPTM) was presented to decrease parameter size and improve robustness of parameter training. FPTM was synthesized from state-tied HMMs by a modified fuzzy C-means clustering algorithm. Each Gaussian codebook of FPTM was built from Gaussian components within the same root node in phonetic decision tree. The experimental results on large vocabulary Mandarin speech recognition show that compared with conventional phonetic tied-mixture HMM and state-tied HMM with approximately the same number of Gaussian mixtures, FPTM achieves word error rate reductions by 4.84% and 13.02% respectively. Combining the two schemes of mixing weights pruning and Gaussian centers fuzzy merging, a significantly parameter size reduction was achieved with little impact on recognition accuracy.展开更多
This paper describes an improved algorithm for fuzzy c-means clustering of remotely sensed data, by which the degree of fuzziness of the resultant classification is de- creased as comparing with that by a conventional...This paper describes an improved algorithm for fuzzy c-means clustering of remotely sensed data, by which the degree of fuzziness of the resultant classification is de- creased as comparing with that by a conventional algorithm: that is, the classification accura- cy is increased. This is achieved by incorporating covariance matrices at the level of individual classes rather than assuming a global one. Empirical results from a fuzzy classification of an Edinburgh suburban land cover confirmed the improved performance of the new algorithm for fuzzy c-means clustering, in particular when fuzziness is also accommodated in the assumed reference data.展开更多
Minimally Invasive Spine surgery (MISS) was developed to treat disorders of the spine with less disruption to the muscles. Surgeons use CT images to monitor the volume of muscles after operation in order to evaluate t...Minimally Invasive Spine surgery (MISS) was developed to treat disorders of the spine with less disruption to the muscles. Surgeons use CT images to monitor the volume of muscles after operation in order to evaluate the progress of patient recovery. The first step in the task is to segment the muscle regions from other tissues/organs in CT images. However, manual segmentation of muscle regions is not only inaccurate, but also time consuming. In this work, Gray Space Map (GSM) is used in fuzzy c-means clustering algorithm to segment muscle regions in CT images. GSM com- bines both spatial and intensity information of pixels. Experiments show that the proposed GSM- based fuzzy c-means clustering muscle CT image segmentation yields very good results.展开更多
A novel example-based process for Automated Colorization of grayscale images using Texture Descriptors (ACTD) without any human intervention is proposed. By analyzing a set of sample color images, coherent regions of ...A novel example-based process for Automated Colorization of grayscale images using Texture Descriptors (ACTD) without any human intervention is proposed. By analyzing a set of sample color images, coherent regions of homogeneous textures are extracted. A multi-channel filtering technique is used for texture-based image segmentation, combined with a modified Fuzzy C-means (FCM) clustering algorithm. This modified FCM clustering algorithm includes both the local spatial information from neighboring pixels, and the spatial Euclidian distance to the cluster’s center of gravity. For each area of interest, state-of-the-art texture descriptors are then computed and stored, along with corresponding color information. These texture descriptors and the color information are used for colorization of a grayscale image with similar textures. Given a grayscale image to be colorized, the segmentation and feature extraction processes are repeated. The texture descriptors are used to perform Content-Based Image Retrieval (CBIR). The colorization process is performed by Chroma replacement. This research finds numerous applications, ranging from classic film restoration and enhancement, to adding valuable information into medical and satellite imaging. Also, this can be used to enhance the detection of objects from x-ray images at the airports.展开更多
To improve the accuracy of text clustering, fuzzy c-means clustering based on topic concept sub-space (TCS2FCM) is introduced for classifying texts. Five evaluation functions are combined to extract key phrases. Con...To improve the accuracy of text clustering, fuzzy c-means clustering based on topic concept sub-space (TCS2FCM) is introduced for classifying texts. Five evaluation functions are combined to extract key phrases. Concept phrases, as well as the descriptions of final clusters, are presented using WordNet origin from key phrases. Initial centers and membership matrix are the most important factors affecting clustering performance. Orthogonal concept topic sub-spaces are built with the topic concept phrases representing topics of the texts and the initialization of centers and the membership matrix depend on the concept vectors in sub-spaces. The results show that, different from random initialization of traditional fuzzy c-means clustering, the initialization related to text content contributions can improve clustering precision.展开更多
We propose a novel clustering algorithm using fast global kernel fuzzy c-means-F(FGKFCM-F), where F refers to kernelized feature space. This algorithm proceeds in an incremental way to derive the near-optimal solution...We propose a novel clustering algorithm using fast global kernel fuzzy c-means-F(FGKFCM-F), where F refers to kernelized feature space. This algorithm proceeds in an incremental way to derive the near-optimal solution by solving all intermediate problems using kernel-based fuzzy c-means-F(KFCM-F) as a local search procedure. Due to the incremental nature and the nonlinear properties inherited from KFCM-F, this algorithm overcomes the two shortcomings of fuzzy c-means(FCM): sen- sitivity to initialization and inability to use nonlinear separable data. An accelerating scheme is developed to reduce the compu-tational complexity without significantly affecting the solution quality. Experiments are carried out to test the proposed algorithm on a nonlinear artificial dataset and a real-world dataset of speech signals for consonant/vowel segmentation. Simulation results demonstrate the effectiveness of the proposed algorithm in improving clustering performance on both types of datasets.展开更多
An accurate extraction of vibration signal characteristics of an on-load tap changer(OLTC)during contact switching can effectively help detect its abnormal state.Therefore,an improved fuzzy C-means clustering method f...An accurate extraction of vibration signal characteristics of an on-load tap changer(OLTC)during contact switching can effectively help detect its abnormal state.Therefore,an improved fuzzy C-means clustering method for abnormal state detection of the OLTC contact is proposed.First,the wavelet packet and singular spectrum analysis are used to denoise the vibration signal generated by the moving and static contacts of the OLTC.Then,the Hilbert-Huang transform that is optimized by the ensemble empirical mode decomposition(EEMD)is used to decompose the vibration signal and extract the boundary spectrum features.Finally,the gray wolf algorithm-based fuzzy C-means clustering is used to denoise the signal and determine the abnormal states of the OLTC contact.An analysis of the experimental data shows that the proposed secondary denoising method has a better denoising effect compared to the single denoising method.The EEMD can improve the modal aliasing effect,and the improved fuzzy C-means clustering can effectively identify the abnormal state of the OLTC contacts.The analysis results of field measured data further verify the effectiveness of the proposed method and provide a reference for the abnormal state detection of the OLTC.展开更多
As an effective image segmentation method, the standard fuzzy c-means (FCM) clustering algorithm is very sensitive to noise in images. Several modified FCM algorithms, using local spatial information, can overcome t...As an effective image segmentation method, the standard fuzzy c-means (FCM) clustering algorithm is very sensitive to noise in images. Several modified FCM algorithms, using local spatial information, can overcome this problem to some degree. However, when the noise level in the image is high, these algorithms still cannot obtain satisfactory segmentation performance. In this paper, we introduce a non local spatial constraint term into the objective function of FCM and propose a fuzzy c- means clustering algorithm with non local spatial information (FCM_NLS). FCM_NLS can deal more effectively with the image noise and preserve geometrical edges in the image. Performance evaluation experiments on synthetic and real images, especially magnetic resonance (MR) images, show that FCM NLS is more robust than both the standard FCM and the modified FCM algorithms using local spatial information for noisy image segmentation.展开更多
Diabetic Retinopathy(DR)is a vision disease due to the long-term prevalenceof Diabetes Mellitus.It affects the retina of the eye and causes severedamage to the vision.If not treated on time it may lead to permanent vi...Diabetic Retinopathy(DR)is a vision disease due to the long-term prevalenceof Diabetes Mellitus.It affects the retina of the eye and causes severedamage to the vision.If not treated on time it may lead to permanent vision lossin diabetic patients.Today’s development in science has no medication to cureDiabetic Retinopathy.However,if diagnosed at an early stage it can be controlledand permanent vision loss can be avoided.Compared to the diabetic population,experts to diagnose Diabetic Retinopathy are very less in particular to local areas.Hence an automatic computer-aided diagnosis for DR detection is necessary.Inthis paper,we propose an unsupervised clustering technique to automatically clusterthe DR into one of its five development stages.The deep learning based unsupervisedclustering is made to improve itself with the help of fuzzy rough c-meansclustering where cluster centers are updated by fuzzy rough c-means clusteringalgorithm during the forward pass and the deep learning model representationsare updated by Stochastic Gradient Descent during the backward pass of training.The proposed method was implemented using python and the results were takenon DGX server with Tesla V100 GPU cards.An experimental result on the publicallyavailable Kaggle dataset shows an overall accuracy of 88.7%.The proposedmodel improves the accuracy of DR diagnosis compared to the existingunsupervised algorithms like k-means,FCM,auto-encoder,and FRCM withalexnet.展开更多
1 Introduction In 1973 Dunn first presented the fuzzy c-means (FCM) clustering algorithm, which is an extension of the hard c-means (HCM) clustering algorithm presented by Ball and Hall. Bezdek subsequently generalize...1 Introduction In 1973 Dunn first presented the fuzzy c-means (FCM) clustering algorithm, which is an extension of the hard c-means (HCM) clustering algorithm presented by Ball and Hall. Bezdek subsequently generalized Dung’s algorithm and established an infinite family of algorithms with a fuzzy objective function and also presented a theory of convergence for the FCM algorithm. Since then, FCM algorithms have been applied in pattern recognition effectively and widely, such as in clustering, image segmentation, shape analysis, medical diagnosis, feature selection, automatic target recognition, and classifier design. However, further applications of the FCM algorithms are restricted by the time re-展开更多
文摘A novel model of fuzzy clustering, i.e. an allied fuzzy c means (AFCM) model is proposed based on the combination of advantages of fuzzy c means (FCM) and possibilistic c means (PCM) clustering. PCM is sensitive to initializations and often generates coincident clusters. AFCM overcomes this shortcoming and it is an ex tension of PCM. Membership and typicality values can be simultaneously produced in AFCM. Experimental re- suits show that noise data can be well processed, coincident clusters are avoided and clustering accuracy is better.
基金This research was partly supported by the National Science and Technology Council,Taiwan with Grant Numbers 112-2221-E-992-045,112-2221-E-992-057-MY3 and 112-2622-8-992-009-TD1.
文摘Since its inception,the Internet has been rapidly evolving.With the advancement of science and technology and the explosive growth of the population,the demand for the Internet has been on the rise.Many applications in education,healthcare,entertainment,science,and more are being increasingly deployed based on the internet.Concurrently,malicious threats on the internet are on the rise as well.Distributed Denial of Service(DDoS)attacks are among the most common and dangerous threats on the internet today.The scale and complexity of DDoS attacks are constantly growing.Intrusion Detection Systems(IDS)have been deployed and have demonstrated their effectiveness in defense against those threats.In addition,the research of Machine Learning(ML)and Deep Learning(DL)in IDS has gained effective results and significant attention.However,one of the challenges when applying ML and DL techniques in intrusion detection is the identification of unknown attacks.These attacks,which are not encountered during the system’s training,can lead to misclassification with significant errors.In this research,we focused on addressing the issue of Unknown Attack Detection,combining two methods:Spatial Location Constraint Prototype Loss(SLCPL)and Fuzzy C-Means(FCM).With the proposed method,we achieved promising results compared to traditional methods.The proposed method demonstrates a very high accuracy of up to 99.8%with a low false positive rate for known attacks on the Intrusion Detection Evaluation Dataset(CICIDS2017)dataset.Particularly,the accuracy is also very high,reaching 99.7%,and the precision goes up to 99.9%for unknown DDoS attacks on the DDoS Evaluation Dataset(CICDDoS2019)dataset.The success of the proposed method is due to the combination of SLCPL,an advanced Open-Set Recognition(OSR)technique,and FCM,a traditional yet highly applicable clustering technique.This has yielded a novel method in the field of unknown attack detection.This further expands the trend of applying DL and ML techniques in the development of intrusion detection systems and cybersecurity.Finally,implementing the proposed method in real-world systems can enhance the security capabilities against increasingly complex threats on computer networks.
基金Project(06JJ50110) supported by the Natural Science Foundation of Hunan Province, China
文摘To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this method, the image segmentation was converted into an optimization problem. The fitness function containing neighbor information was set up based on the gray information and the neighbor relations between the pixels described by the improved two-dimensional histogram. By making use of the global searching ability of the predator-prey particle swarm optimization, the optimal cluster center could be obtained by iterative optimization, and the image segmentation could be accomplished. The simulation results show that the segmentation accuracy ratio of the proposed method is above 99%. The proposed algorithm has strong anti-noise capability, high clustering accuracy and good segment effect, indicating that it is an effective algorithm for image segmentation.
文摘Determining the relatively similar hydrological properties of the watersheds is very crucial in order to readily classify them for management practices such as flood and soil erosion control. This study aimed to identify homogeneous hydrological watersheds using remote sensing data in western Iran. To achieve this goal, remote sensing indices including SAVI, LAI, NDMI, NDVI and snow cover, were extracted from MODIS data over the period 2000 to 2015. Then, a fuzzy method was used to clustering the watersheds based on the extracted indices. A fuzzy c-mean(FCM) algorithm enabled to classify 38 watersheds in three homogeneous groups.The optimal number of clusters was determined through evaluation of partition coefficient, partition entropy function and trial and error. The results indicated three homogeneous regions identified by the fuzzy c-mean clustering and remote sensing product which are consistent with the variations of topography and climate of the study area. Inherently,the grouped watersheds have similar hydrological properties and are likely to need similar management considerations and measures.
基金Supported by National Key R&D Projects(Grant No.2018YFB0905500)National Natural Science Foundation of China(Grant No.51875498)+1 种基金Hebei Provincial Natural Science Foundation of China(Grant Nos.E2018203439,E2018203339,F2016203496)Key Scientific Research Projects Plan of Henan Higher Education Institutions(Grant No.19B460001)
文摘Based on Multi-Masking Empirical Mode Decomposition (MMEMD) and fuzzy c-means (FCM) clustering, a new method of wind turbine bearing fault diagnosis FCM-MMEMD is proposed, which can determine the fault accurately and timely. First, FCM clustering is employed to classify the data into different clusters, which helps to estimate whether there is a fault and how many fault types there are. If fault signals exist, the fault vibration signals are then demodulated and decomposed into different frequency bands by MMEMD in order to be analyzed further. In order to overcome the mode mixing defect of empirical mode decomposition (EMD), a novel method called MMEMD is proposed. It is an improvement to masking empirical mode decomposition (MEMD). By adding multi-masking signals to the signals to be decomposed in different levels, it can restrain low-frequency components from mixing in highfrequency components effectively in the sifting process and then suppress the mode mixing. It has the advantages of easy implementation and strong ability of suppressing modal mixing. The fault type is determined by Hilbert envelope finally. The results of simulation signal decomposition showed the high performance of MMEMD. Experiments of bearing fault diagnosis in wind turbine bearing fault diagnosis proved the validity and high accuracy of the new method.
基金supported by the National Natural Science Foundation of China for Distinguished Young Scholars(70625005)
文摘Intuitionistic fuzzy sets(IFSs) are useful means to describe and deal with vague and uncertain data.An intuitionistic fuzzy C-means algorithm to cluster IFSs is developed.In each stage of the intuitionistic fuzzy C-means method the seeds are modified,and for each IFS a membership degree to each of the clusters is estimated.In the end of the algorithm,all the given IFSs are clustered according to the estimated membership degrees.Furthermore,the algorithm is extended for clustering interval-valued intuitionistic fuzzy sets(IVIFSs).Finally,the developed algorithms are illustrated through conducting experiments on both the real-world and simulated data sets.
基金supported by the National Natural Science Foundation of China(6087403160740430664)
文摘Fuzzy c-means (FCM) algorithm is one of the most popular methods for image segmentation. However, the standard FCM algorithm is sensitive to noise because of not taking into account the spatial information in the image. An improved FCM algorithm is proposed to improve the antinoise performance of FCM algorithm. The new algorithm is formulated by incorporating the spatial neighborhood information into the membership function for clustering. The distribution statistics of the neighborhood pixels and the prior probability are used to form a new membership func- tion. It is not only effective to remove the noise spots but also can reduce the misclassified pixels. Experimental results indicate that the proposed algorithm is more accurate and robust to noise than the standard FCM algorithm.
基金supported in part by the Doctoral Students’Short Term Study Abroad Scholarship Fund of Xidian Universitythe National Natural Science Foundation of China(61873342,61672400,62076189)+1 种基金the Recruitment Program of Global Expertsthe Science and Technology Development Fund,MSAR(0012/2019/A1)。
文摘In this paper,we elaborate on residual-driven Fuzzy C-Means(FCM)for image segmentation,which is the first approach that realizes accurate residual(noise/outliers)estimation and enables noise-free image to participate in clustering.We propose a residual-driven FCM framework by integrating into FCM a residual-related regularization term derived from the distribution characteristic of different types of noise.Built on this framework,a weighted?2-norm regularization term is presented by weighting mixed noise distribution,thus resulting in a universal residual-driven FCM algorithm in presence of mixed or unknown noise.Besides,with the constraint of spatial information,the residual estimation becomes more reliable than that only considering an observed image itself.Supporting experiments on synthetic,medical,and real-world images are conducted.The results demonstrate the superior effectiveness and efficiency of the proposed algorithm over its peers.
文摘Suppressed fuzzy c-means (S-FCM) clustering algorithm with the intention of combining the higher speed of hard c-means clustering algorithm and the better classification performance of fuzzy c-means clustering algorithm had been studied by many researchers and applied in many fields. In the algorithm, how to select the suppressed rate is a key step. In this paper, we give a method to select the fixed suppressed rate by the structure of the data itself. The experimental results show that the proposed method is a suitable way to select the suppressed rate in suppressed fuzzy c-means clustering algorithm.
文摘Cooperation in spectral sensing (SS) offers a fast and reliable detection of primary user (PU) transmission over a frequency spectrum at the expense of increased energy consumption. Since the fusion center (FC) has to handle a large set of data, a duster based approach, specifically fuzzy c-means clustering (FCM), has been extensively used in energy detection based cooperative spectrum sensing (CSS). However, the performance of FCM degrades at low signal-to-noise ratios (SNR) and in the presence of multiple PUs as energy data patterns at the FC are often found to be non-spherical i.e. overlapping. To address the problem, this work explores the scope of kernel fuzzy c-means (KFCM) on energy detection based CSS through the projection of non-linear input data to a high dimensional feature space. Extensive simulation results are shown to highlight the improved detection of multiple PUs at low SNR with low energy consumption. An improvement in the detection probability by ~6.78% and ~6.96% at -15 dBW and -20 dBW, respectively, is achieved over the existing FCM method.
基金Supported by the Science and TechnologyCommittee of Shanghai (0 1JC14 0 3 3 )
文摘A fuzzy clustering analysis based phonetic tied-mixture HMM(FPTM) was presented to decrease parameter size and improve robustness of parameter training. FPTM was synthesized from state-tied HMMs by a modified fuzzy C-means clustering algorithm. Each Gaussian codebook of FPTM was built from Gaussian components within the same root node in phonetic decision tree. The experimental results on large vocabulary Mandarin speech recognition show that compared with conventional phonetic tied-mixture HMM and state-tied HMM with approximately the same number of Gaussian mixtures, FPTM achieves word error rate reductions by 4.84% and 13.02% respectively. Combining the two schemes of mixing weights pruning and Gaussian centers fuzzy merging, a significantly parameter size reduction was achieved with little impact on recognition accuracy.
文摘This paper describes an improved algorithm for fuzzy c-means clustering of remotely sensed data, by which the degree of fuzziness of the resultant classification is de- creased as comparing with that by a conventional algorithm: that is, the classification accura- cy is increased. This is achieved by incorporating covariance matrices at the level of individual classes rather than assuming a global one. Empirical results from a fuzzy classification of an Edinburgh suburban land cover confirmed the improved performance of the new algorithm for fuzzy c-means clustering, in particular when fuzziness is also accommodated in the assumed reference data.
文摘Minimally Invasive Spine surgery (MISS) was developed to treat disorders of the spine with less disruption to the muscles. Surgeons use CT images to monitor the volume of muscles after operation in order to evaluate the progress of patient recovery. The first step in the task is to segment the muscle regions from other tissues/organs in CT images. However, manual segmentation of muscle regions is not only inaccurate, but also time consuming. In this work, Gray Space Map (GSM) is used in fuzzy c-means clustering algorithm to segment muscle regions in CT images. GSM com- bines both spatial and intensity information of pixels. Experiments show that the proposed GSM- based fuzzy c-means clustering muscle CT image segmentation yields very good results.
文摘A novel example-based process for Automated Colorization of grayscale images using Texture Descriptors (ACTD) without any human intervention is proposed. By analyzing a set of sample color images, coherent regions of homogeneous textures are extracted. A multi-channel filtering technique is used for texture-based image segmentation, combined with a modified Fuzzy C-means (FCM) clustering algorithm. This modified FCM clustering algorithm includes both the local spatial information from neighboring pixels, and the spatial Euclidian distance to the cluster’s center of gravity. For each area of interest, state-of-the-art texture descriptors are then computed and stored, along with corresponding color information. These texture descriptors and the color information are used for colorization of a grayscale image with similar textures. Given a grayscale image to be colorized, the segmentation and feature extraction processes are repeated. The texture descriptors are used to perform Content-Based Image Retrieval (CBIR). The colorization process is performed by Chroma replacement. This research finds numerous applications, ranging from classic film restoration and enhancement, to adding valuable information into medical and satellite imaging. Also, this can be used to enhance the detection of objects from x-ray images at the airports.
基金The National Natural Science Foundation of China(No60672056)Open Fund of MOE-MS Key Laboratory of Multime-dia Computing and Communication(No06120809)
文摘To improve the accuracy of text clustering, fuzzy c-means clustering based on topic concept sub-space (TCS2FCM) is introduced for classifying texts. Five evaluation functions are combined to extract key phrases. Concept phrases, as well as the descriptions of final clusters, are presented using WordNet origin from key phrases. Initial centers and membership matrix are the most important factors affecting clustering performance. Orthogonal concept topic sub-spaces are built with the topic concept phrases representing topics of the texts and the initialization of centers and the membership matrix depend on the concept vectors in sub-spaces. The results show that, different from random initialization of traditional fuzzy c-means clustering, the initialization related to text content contributions can improve clustering precision.
基金Project supported by the National Research Foundation(NRF) of Korea(Nos.2013009458 and 2013068127)
文摘We propose a novel clustering algorithm using fast global kernel fuzzy c-means-F(FGKFCM-F), where F refers to kernelized feature space. This algorithm proceeds in an incremental way to derive the near-optimal solution by solving all intermediate problems using kernel-based fuzzy c-means-F(KFCM-F) as a local search procedure. Due to the incremental nature and the nonlinear properties inherited from KFCM-F, this algorithm overcomes the two shortcomings of fuzzy c-means(FCM): sen- sitivity to initialization and inability to use nonlinear separable data. An accelerating scheme is developed to reduce the compu-tational complexity without significantly affecting the solution quality. Experiments are carried out to test the proposed algorithm on a nonlinear artificial dataset and a real-world dataset of speech signals for consonant/vowel segmentation. Simulation results demonstrate the effectiveness of the proposed algorithm in improving clustering performance on both types of datasets.
文摘An accurate extraction of vibration signal characteristics of an on-load tap changer(OLTC)during contact switching can effectively help detect its abnormal state.Therefore,an improved fuzzy C-means clustering method for abnormal state detection of the OLTC contact is proposed.First,the wavelet packet and singular spectrum analysis are used to denoise the vibration signal generated by the moving and static contacts of the OLTC.Then,the Hilbert-Huang transform that is optimized by the ensemble empirical mode decomposition(EEMD)is used to decompose the vibration signal and extract the boundary spectrum features.Finally,the gray wolf algorithm-based fuzzy C-means clustering is used to denoise the signal and determine the abnormal states of the OLTC contact.An analysis of the experimental data shows that the proposed secondary denoising method has a better denoising effect compared to the single denoising method.The EEMD can improve the modal aliasing effect,and the improved fuzzy C-means clustering can effectively identify the abnormal state of the OLTC contacts.The analysis results of field measured data further verify the effectiveness of the proposed method and provide a reference for the abnormal state detection of the OLTC.
文摘As an effective image segmentation method, the standard fuzzy c-means (FCM) clustering algorithm is very sensitive to noise in images. Several modified FCM algorithms, using local spatial information, can overcome this problem to some degree. However, when the noise level in the image is high, these algorithms still cannot obtain satisfactory segmentation performance. In this paper, we introduce a non local spatial constraint term into the objective function of FCM and propose a fuzzy c- means clustering algorithm with non local spatial information (FCM_NLS). FCM_NLS can deal more effectively with the image noise and preserve geometrical edges in the image. Performance evaluation experiments on synthetic and real images, especially magnetic resonance (MR) images, show that FCM NLS is more robust than both the standard FCM and the modified FCM algorithms using local spatial information for noisy image segmentation.
文摘Diabetic Retinopathy(DR)is a vision disease due to the long-term prevalenceof Diabetes Mellitus.It affects the retina of the eye and causes severedamage to the vision.If not treated on time it may lead to permanent vision lossin diabetic patients.Today’s development in science has no medication to cureDiabetic Retinopathy.However,if diagnosed at an early stage it can be controlledand permanent vision loss can be avoided.Compared to the diabetic population,experts to diagnose Diabetic Retinopathy are very less in particular to local areas.Hence an automatic computer-aided diagnosis for DR detection is necessary.Inthis paper,we propose an unsupervised clustering technique to automatically clusterthe DR into one of its five development stages.The deep learning based unsupervisedclustering is made to improve itself with the help of fuzzy rough c-meansclustering where cluster centers are updated by fuzzy rough c-means clusteringalgorithm during the forward pass and the deep learning model representationsare updated by Stochastic Gradient Descent during the backward pass of training.The proposed method was implemented using python and the results were takenon DGX server with Tesla V100 GPU cards.An experimental result on the publicallyavailable Kaggle dataset shows an overall accuracy of 88.7%.The proposedmodel improves the accuracy of DR diagnosis compared to the existingunsupervised algorithms like k-means,FCM,auto-encoder,and FRCM withalexnet.
基金Project supported by the National Natural Science Foundation of China.
文摘1 Introduction In 1973 Dunn first presented the fuzzy c-means (FCM) clustering algorithm, which is an extension of the hard c-means (HCM) clustering algorithm presented by Ball and Hall. Bezdek subsequently generalized Dung’s algorithm and established an infinite family of algorithms with a fuzzy objective function and also presented a theory of convergence for the FCM algorithm. Since then, FCM algorithms have been applied in pattern recognition effectively and widely, such as in clustering, image segmentation, shape analysis, medical diagnosis, feature selection, automatic target recognition, and classifier design. However, further applications of the FCM algorithms are restricted by the time re-