期刊文献+
共找到5,593篇文章
< 1 2 250 >
每页显示 20 50 100
Hybrid Dynamic Variables-Dependent Event-Triggered Fuzzy Model Predictive Control 被引量:1
1
作者 Xiongbo Wan Chaoling Zhang +2 位作者 Fan Wei Chuan-Ke Zhang Min Wu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期723-733,共11页
This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative ... This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance. 展开更多
关键词 Dynamic event-triggered mechanism(DETM) hybrid dynamic variables model predictive control(MPC) robust positive invariant(RPI)set T-S fuzzy systems
下载PDF
Novel Adaptive Memory Event-Triggered-Based Fuzzy Robust Control for Nonlinear Networked Systems via the Differential Evolution Algorithm
2
作者 Wei Qian Yanmin Wu Bo Shen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1836-1848,共13页
This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide... This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources. 展开更多
关键词 adaptive memory event-triggered(AMET) differential evolution algorithm fuzzy optimization robust control interval type-2(IT2)fuzzy technique.
下载PDF
Fuzzy Proportional Integral Derivative control of a voice coil actuator system for adaptive deformable mirrors
3
作者 Ziqiang Cui Heng Zuo +4 位作者 Weikang Qiao Hao Li Fujia Du Yifan Wang Jinrui Guo 《Astronomical Techniques and Instruments》 CSCD 2024年第3期179-186,共8页
Research on adaptive deformable mirror technology for voice coil actuators(VCAs)is an important trend in the development of large ground-based telescopes.A voice coil adaptive deformable mirror contains a large number... Research on adaptive deformable mirror technology for voice coil actuators(VCAs)is an important trend in the development of large ground-based telescopes.A voice coil adaptive deformable mirror contains a large number of actuators,and there are problems with structural coupling and large temperature increases in their internal coils.Additionally,parameters of the traditional proportional integral derivative(PID)control cannot be adjusted in real-time to adapt to system changes.These problems can be addressed by introducing fuzzy control methods.A table lookup method is adopted to replace real-time calculations of the regular fuzzy controller during the control process,and a prototype platform has been established to verify the effectiveness and robustness of this process.Experimental tests compare the control performance of traditional and fuzzy proportional integral derivative(Fuzzy-PID)controllers,showing that,in system step response tests,the fuzzy control system reduces rise time by 20.25%,decreases overshoot by 78.24%,and shortens settling time by 67.59%.In disturbance rejection experiments,fuzzy control achieves a 46.09%reduction in the maximum deviation,indicating stronger robustness.The Fuzzy-PID controller,based on table lookup,outperforms the standard controller significantly,showing excellent potential for enhancing the dynamic performance and disturbance rejection capability of the voice coil motor actuator system. 展开更多
关键词 adaptive optics Deformable mirror Voice coil actuator fuzzy control
下载PDF
A finite-time fuzzy adaptive output-feedback fault-tolerant control for underactuated wheeled mobile robots systems
4
作者 Pingfan Liu Shaocheng Tong 《Journal of Automation and Intelligence》 2024年第2期111-118,共8页
This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. ... This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach. 展开更多
关键词 Underactuated wheeled mobile robots system FINITE-TIME fuzzy adaptive fault-tolerant control OUTPUT-FEEDBACK Intermittent actuator faults
下载PDF
Implementation of Fuzzy Logic Control into an Equivalent Minimization Strategy for Adaptive Energy Management of A Parallel Hybrid Electric Vehicle
5
作者 Jared A. Diethorn Andrew C. Nix +1 位作者 Mario G. Perhinschi W. Scott Wayne 《Journal of Transportation Technologies》 2024年第1期88-118,共31页
As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Hybr... As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Hybrid electric vehicles (HEVs) have been introduced to mitigate problems while improving fuel economy. HEVs have led to the demand of creating more advanced controls software to consider multiple components for propulsive power in a vehicle. A large section in the software development process is the implementation of an optimal energy management strategy meant to improve the overall fuel efficiency of the vehicle. Optimal strategies can be implemented when driving conditions are known a prior. The Equivalent Consumption Minimization Strategy (ECMS) is an optimal control strategy that uses an equivalence factor to equate electrical to mechanical power when performing torque split determination between the internal combustion engine and electric motor for propulsive and regenerative torque. This equivalence factor is determined from offline vehicle simulations using a sensitivity analysis to provide optimal fuel economy results while maintaining predetermined high voltage battery state of charge (SOC) constraints. When the control hierarchy is modified or different driving styles are applied, the analysis must be redone to update the equivalence factor. The goal of this work is to implement a fuzzy logic controller that dynamically updates the equivalence factor to improve fuel economy, maintain a strict charge sustaining window of operation for the high voltage battery, and reduce computational time required during algorithm development. The adaptive algorithm is validated against global optimum fuel economy and charge sustaining results from a sensitivity analysis performed for multiple drive cycles. Results show a maximum fuel economy improvement of 9.82% when using a mild driving style and a 95% success rate when maintaining an ending SOC within 5% of the desired SOC regardless of starting SOC. 展开更多
关键词 Hybrid Electric Vehicle fuzzy Logic adaptive control Charge Sustainability
下载PDF
The prediction of projectile-target intersection for moving tank based on adaptive robust constraint-following control and interval uncertainty analysis
6
作者 Cong Li Xiuye Wang +2 位作者 Yuze Ma Fengjie Xu Guolai Yang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期351-363,共13页
To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method... To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method proposed provides a novel way to predict the impact point of projectile for moving tank.First,bidirectional stability constraints and stability constraint-following error are constructed using the Udwadia-Kalaba theory,and an adaptive robust constraint-following controller is designed considering uncertainties.Second,the exterior ballistic ordinary differential equation with uncertainties is integrated into the controller,and the pointing control of stability system is extended to the impact-point control of projectile.Third,based on the interval uncertainty analysis method combining Chebyshev polynomial expansion and affine arithmetic,a prediction method of projectile-target intersection is proposed.Finally,the co-simulation experiment is performed by establishing the multi-body system dynamic model of tank and mathematical model of control system.The results demonstrate that the prediction method of projectile-target intersection based on uncertainty analysis can effectively decrease the uncertainties of system,improve the prediction accuracy,and increase the hit probability.The adaptive robust constraint-following control can effectively restrain the uncertainties caused by road excitation and model error. 展开更多
关键词 Tank stability control Constraint-following adaptive robust control Uncertainty analysis Prediction of projectile-target intersection
下载PDF
Enhancing Safety in Autonomous Vehicle Navigation:An Optimized Path Planning Approach Leveraging Model Predictive Control
7
作者 Shih-Lin Lin Bo-Chen Lin 《Computers, Materials & Continua》 SCIE EI 2024年第9期3555-3572,共18页
This paper explores the application of Model Predictive Control(MPC)to enhance safety and efficiency in autonomous vehicle(AV)navigation through optimized path planning.The evolution of AV technology has progressed ra... This paper explores the application of Model Predictive Control(MPC)to enhance safety and efficiency in autonomous vehicle(AV)navigation through optimized path planning.The evolution of AV technology has progressed rapidly,moving from basic driver-assistance systems(Level 1)to fully autonomous capabilities(Level 5).Central to this advancement are two key functionalities:Lane-Change Maneuvers(LCM)and Adaptive Cruise Control(ACC).In this study,a detailed simulation environment is created to replicate the road network between Nantun andWuri on National Freeway No.1 in Taiwan.The MPC controller is deployed to optimize vehicle trajectories,ensuring safe and efficient navigation.Simulated onboard sensors,including vehicle cameras and millimeterwave radar,are used to detect and respond to dynamic changes in the surrounding environment,enabling real-time decision-making for LCM and ACC.The simulation resultshighlight the superiority of the MPC-based approach in maintaining safe distances,executing controlled lane changes,and optimizing fuel efficiency.Specifically,the MPC controller effectively manages collision avoidance,reduces travel time,and contributes to smoother traffic flow compared to traditional path planning methods.These findings underscore the potential of MPC to enhance the reliability and safety of autonomous driving in complex traffic scenarios.Future research will focus on validating these results through real-world testing,addressing computational challenges for real-time implementation,and exploring the adaptability of MPC under various environmental conditions.This study provides a significant step towards achieving safer and more efficient autonomous vehicle navigation,paving the way for broader adoption of MPC in AV systems. 展开更多
关键词 Autonomous driving model predictive control(MPC) lane change maneuver(LCM) adaptive cruise control(ACC)
下载PDF
Practical prescribed-time fuzzy tracking control for uncertain nonlinear systems with time-varying actuators faults
8
作者 Shuxing Xuan Hongjing Liang Tingwen Huang 《Journal of Automation and Intelligence》 2024年第1期40-49,共10页
The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator fa... The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator faults makes achieving tracking control within a prescribed-time challenging.To tackle this issue,we propose a novel practical prescribed-time fuzzy tracking control strategy,which is independent of the initial state of the system and does not rely on precise modeling of the system and actuators.We apply the approximation capabilities of fuzzy logic systems to handle the unknown nonlinear functions and unidentified actuator faults in the system.The piecewise controller and adaptive law constructed based on piecewise prescribed time-varying function and backstepping technique method establish the theoretical framework of practical prescribed-time tracking control,and extend the range of prescribed-time tracking control to infinity.Regardless of the initial conditions,the proposed control strategy can guarantee that all signals remain uniformly bounded within the practical prescribed time in the presence of unknown nonlinear item and time-varying actuator faults.Simulation example is presented to demonstrate the effectiveness of the proposed control strategy. 展开更多
关键词 Prescribed-time tracking control adaptive fuzzy control Actuator faults Uncertain nonlinear system
下载PDF
An Adaptive Neuro-Fuzzy Inference System to Improve Fractional Order Controller Performance
9
作者 N.Kanagaraj 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3213-3226,共14页
The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant... The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant model has been used to validate the ANFIS combined FOPID control scheme.In the pro-posed adaptive control structure,the intelligent ANFIS was designed such that it will dynamically adjust the fractional order factors(λandµ)of the FOPID(also known as PIλDµ)controller to achieve better control performance.When the plant experiences uncertainties like external load disturbances or sudden changes in the input parameters,the stability and robustness of the system can be achieved effec-tively with the proposed control scheme.Also,a modified structure of the FOPID controller has been used in the present system to enhance the dynamic perfor-mance of the controller.An extensive MATLAB software simulation study was made to verify the usefulness of the proposed control scheme.The study has been carried out under different operating conditions such as external disturbances and sudden changes in input parameters.The results obtained using the ANFIS-FOPID control scheme are also compared to the classical fractional order PIλDµand conventional PID control schemes to validate the advantages of the control-lers.The simulation results confirm the effectiveness of the ANFIS combined FOPID controller for the chosen plant model.Also,the proposed control scheme outperformed traditional control methods in various performance metrics such as rise time,settling time and error criteria. 展开更多
关键词 adaptive neuro-fuzzy inference system(ANFIS) fuzzy logic controller fractional order control PID controller first order time delay system
下载PDF
An Improved Deadbeat Predictive Current Control Method for SPMSM Drives with a Novel Adaptive Disturbance Observer
10
作者 Shuo Zhang Lingding Lei +2 位作者 Chengning Zhang Tian Liu Shuli Wang 《Journal of Beijing Institute of Technology》 EI CAS 2023年第1期107-123,共17页
To improve the dynamic performance of conventional deadbeat predictive current control(DPCC)under parameter mismatch,especially eliminate the current overshoot and oscillation during torque mutation,it is necessary to... To improve the dynamic performance of conventional deadbeat predictive current control(DPCC)under parameter mismatch,especially eliminate the current overshoot and oscillation during torque mutation,it is necessary to enhance the robustness of DPCC against various working conditions.However,the disturbance from parameter mismatch can deteriorate the dynamic performance.To deal with the above problem,firstly,traditional DPCC and the parameter sensitivity of DPCC are introduced and analyzed.Secondly,an extended state observer(ESO)combined with DPCC method is proposed,which can observe and suppress the disturbance due to various parameter mismatch.Thirdly,to improve the accuracy and stability of ESO,an adaptive extended state observer(AESO)using fuzzy controller based on ESO,is presented,and combined with DPCC method.The improved DPCC-AESO can switch the value of gain coefficients with fuzzy control,accelerating the current response speed and avoid the overshoot and oscillation,which improves the robustness and stability performance of SPMSM.Finally,the three methods,as well as conventional DPCC method,DPCC-ESO method,DPCC-AESO method,are comparatively analyzed in this paper.The effectiveness of the proposed two methods are verified by simulation and experimental results. 展开更多
关键词 deadbeat predictive current control(DPCC) surface-mounted permanent magnet synchronous machine(SPMSM) extended state observer(ESO) fuzzy controller dynamic performance OVERSHOOT
下载PDF
Direct adaptive fuzzy control based on integral-type Lyapunov function 被引量:4
11
作者 张天平 朱清 +1 位作者 张惠艳 顾海军 《Journal of Southeast University(English Edition)》 EI CAS 2003年第1期92-97,共6页
A new scheme of direct adaptive fuzzy controller for a class of nonlinear systems with unknown triangular control gain structure is proposed. The design is based on the principle of sliding mode control and the approx... A new scheme of direct adaptive fuzzy controller for a class of nonlinear systems with unknown triangular control gain structure is proposed. The design is based on the principle of sliding mode control and the approximation capability of the first type fuzzy systems. By introducing integral-type Lyapunov function and adopting the adaptive compensation term of optimal approximation error, the closed-loop control system is proved to be globally stable, with tracking error converging to zero. Simulation results demonstrate the effectiveness of the approach. 展开更多
关键词 fuzzy systems fuzzy control adaptive control global stability
下载PDF
ADAPTIVE PREDICTIVE CONTROL OF NEAR-SPACE VEHICLE USING FUNCTIONAL LINK NETWORK 被引量:3
12
作者 都延丽 吴庆宪 姜长生 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第2期148-154,共7页
A novel nonlinear adaptive control method is presented for a near-space hypersonic vehicle (NHV) in the presence of strong uncertainties and disturbances. The control law consists of the optimal generalized predicti... A novel nonlinear adaptive control method is presented for a near-space hypersonic vehicle (NHV) in the presence of strong uncertainties and disturbances. The control law consists of the optimal generalized predictive controller (OGPC) and the functional link network (FLN) direct adaptive law. OGPC is a continuous-time nonlinear predictive control law. The FLN adaptive law is used to offset the unknown uncertainties and disturbances in a flight through the online learning. The learning process does not need any offline training phase. The stability analyses of the NHV close-loop system are provided and it is proved that the system error and the weight learning error are uniformly ultimately hounded. Simulation results show the satisfactory performance of the con- troller for the attitude tracking. 展开更多
关键词 predictive control systems adaptive control systems UNCERTAINTY functional link network near-space vehicle
下载PDF
ADAPTIVE GENETIC ALGORITHM BASED ON SIX FUZZY LOGIC CONTROLLERS 被引量:3
13
作者 朱力立 张焕春 经亚枝 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2003年第2期230-235,共6页
The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimiz... The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimization relationship. The use of six fuzzy logic controllers(6FLCs) is proposed for dynamic control genetic operating parameters of a symbolic-coded GA. This paper uses AGA based on 6FLCs to deal with the travelling salesman problem (TSP). Experimental results show that AGA based on 6FLCs is more efficient than a standard GA in solving combinatorial optimization problems similar to TSP. 展开更多
关键词 adaptive genetic algorithm fuzzy controller dynamic parameters control TSP
下载PDF
Fuzzy disturbance rejection predictive control of ultra-supercritical once-through boiler-turbine unit 被引量:2
14
作者 张帆 吴啸 沈炯 《Journal of Southeast University(English Edition)》 EI CAS 2017年第1期53-58,共6页
In order to overcome the wide-range load tracking and unknown disturbance issues of an ultra-supercritical boiler- turbine unit, a fuzzy disturbance rejection predictive control approach is proposed using the techniq... In order to overcome the wide-range load tracking and unknown disturbance issues of an ultra-supercritical boiler- turbine unit, a fuzzy disturbance rejection predictive control approach is proposed using the techniques of fuzzy scheduling, model predictive control and extended state observer. Local state-space models are established on the basis of nonlinearity analysis and subspace identification. To eiJiance thedisturbance rejection capability of the controller, a extended state observer is employed to estimate unnown disturbances and model mismatches. The disturbance estimation ennaced local predictive controllers ae subsequently devised based on the local models, the performance of which is further strengthened by incorporating the fuzzy scheduling technique. The simulation results verify the merits of the proposed strategy in achieving satisfactory wide-range load tracking ad disturbance rejection performance. 展开更多
关键词 ultra-supercritical power plant model predictive control fuzzy control extended state observer
下载PDF
FUZZY ADAPTIVE CONTROL OF FLEXIBLE-LINK ROBOT MANIPULATOR 被引量:1
15
作者 倪受东 吴洪涛 +1 位作者 袁祖强 嵇海平 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第3期200-205,共6页
A fuzzy adaptive control method is proposed for a flexible robot manipulator. Due to the structure characteristics of the flexible manipulator, the vibration modes must be controlled to realize the high-precision tip ... A fuzzy adaptive control method is proposed for a flexible robot manipulator. Due to the structure characteristics of the flexible manipulator, the vibration modes must be controlled to realize the high-precision tip position. The Lagrangian principle is utilized to model the dynamic function of the single-degree flexible manipulator incorporating the assumed modes method. Simulation results of the fuzzy adaptive control method in the location control and the trajectory tracking with different tip disturbances are presented and compared with the results of the classic PD control. It shows that the controller can obtain the stable and robust performance. 展开更多
关键词 flexible robot manipulator Lagrangian function assumed mode method fuzzy adaptive control
下载PDF
Application of Generalized Predictive Adaptive Control Algorithm in the Design of Missile Control System
16
作者 王正杰 李霁红 +1 位作者 张天桥 饶思成 《Journal of Beijing Institute of Technology》 EI CAS 2001年第4期356-363,共8页
To study the application of the generalized predictive adaptive control algorithm in missile control system, the algorithm is presented based on the recursive least square estimation, and a controller of the pitch c... To study the application of the generalized predictive adaptive control algorithm in missile control system, the algorithm is presented based on the recursive least square estimation, and a controller of the pitch channel of a missile is designed by using this algorithm. The simulations verify that the designed controller can meet the demands of the task well. 展开更多
关键词 generalized predictive control adaptive control ROBUSTNESS missile control system
下载PDF
Multivariable Fuzzy Predictive Control Based on the Modified CPN Model
17
作者 郑怀林 陈维南 《Journal of Southeast University(English Edition)》 EI CAS 1998年第1期108-113,共6页
Through modifying the CPN model, a kind of multivariable fuzzy model is put forward, and the matching fuzzy multistep predictive control algorithm is deduced based on the model. The modified model works in a competiti... Through modifying the CPN model, a kind of multivariable fuzzy model is put forward, and the matching fuzzy multistep predictive control algorithm is deduced based on the model. The modified model works in a competitive output manner which results in its local representation property. While studying on line, only a few parameters need to be regulated. So the model has the merits of fast learning and on line self organizing modeling. The control algorithm is simple, adaptive and useful in multivariable and time delay systems. Applying the algorithm in a paper making system, simulation shows its good effect. 展开更多
关键词 modified CPN model fuzzy predictive control MULTIVARIABLE time delay systems
下载PDF
ADAPTIVE FUZZY CONTROL FOR ROBOT ARM MANIPULATOR WITH 5-DOF 被引量:1
18
作者 Farooq M 王道波 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2007年第1期43-47,共5页
To control the robot and track the designed trajectory with uncertain disturbances in a specified precision range, an adaptive fuzzy control scheme for the robot arm manipulator is discussed. The controller output err... To control the robot and track the designed trajectory with uncertain disturbances in a specified precision range, an adaptive fuzzy control scheme for the robot arm manipulator is discussed. The controller output error method (COEM) is used to design the adaptive fuzzy controller. A few or all of the parameters of the controller are adjusted by using the gradient descent algorithm to minimize the output error. COEM is adopted in the adaptive control system for the robot arm manipulator with 5-DOF. Simulation results show the effectiveness of the method and the real time adjustment of the parameters. 展开更多
关键词 robotic arm manipulator adaptive fuzzy control controller output error method (COEM) gradient descent algorithm
下载PDF
Adaptive predictive functional control based on Takagi-Sugeno model and its application to pH process 被引量:5
19
作者 苏成利 李平 《Journal of Central South University》 SCIE EI CAS 2010年第2期363-371,共9页
In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive fun... In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive functional control(AFPFC) scheme for multivariable nonlinear systems was proposed.Firstly,multivariable nonlinear systems were described based on Takagi-Sugeno(T-S) fuzzy models;assuming that the antecedent parameters of T-S models were kept,the consequent parameters were identified on-line by using the weighted recursive least square(WRLS) method.Secondly,the identified T-S models were linearized to be time-varying state space model at each sampling instant.Finally,by using linear predictive control technique the analysis solution of the optimal control law of AFPFC was established.The application results for pH neutralization process show that the absolute error between the identified T-S model output and the process output is smaller than 0.015;the tracking ability of the proposed AFPFC is superior to that of non-AFPFC(NAFPFC) for pH process without disturbances,the overshoot of the effluent pH value of AFPFC with disturbances is decreased by 50% compared with that of NAFPFC;when the process parameters of AFPFC vary with time the integrated absolute error(IAE) performance index still retains to be less than 200 compared with that of NAFPFC. 展开更多
关键词 Takagi-Sugeno (T-S) model adaptive fuzzy predictive functional control (AFPFC) weighted recursive least square (WRLS) pH process
下载PDF
Backstepping adaptive fuzzy control of uncertain nonlinear systems against actuator faults 被引量:13
20
作者 Ping LI Guanghong YANG 《控制理论与应用(英文版)》 EI 2009年第3期248-256,共9页
A class of unknown nonlinear systems subject to uncertain actuator faults and external disturbances will be studied in this paper with the help of fuzzy approximation theory. Using backstepping technique, a novel adap... A class of unknown nonlinear systems subject to uncertain actuator faults and external disturbances will be studied in this paper with the help of fuzzy approximation theory. Using backstepping technique, a novel adaptive fuzzy control approach is proposed to accommodate the uncertain actuator faults during operation and deal with the external disturbances though the systems cannot be linearized by feedback. The considered faults are modeled as both loss of effectiveness and lock-in-place (stuck at some unknown place). It is proved that the proposed control scheme can guarantee all signals of the closed-loop system to be semi-globally uniformly ultimately bounded and the tracking error between the system output and the reference signal converge to a small neighborhood of zero, though the nonlinear functions of the controlled system as well as the actuator faults and the external disturbances are all unknown. Simulation results demonstrate the effectiveness of the control approach. 展开更多
关键词 adaptive control fuzzy system BACKSTEPPING Uncertain nonlinear system Actuator fault
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部