The paper discusses the features of the Biomass Boiler drum water level. Conventional PID Control System can not reach a satisfaction result in nonlinearity and time different from Biomass Boiler Drum Water Control Sy...The paper discusses the features of the Biomass Boiler drum water level. Conventional PID Control System can not reach a satisfaction result in nonlinearity and time different from Biomass Boiler Drum Water Control System. In this study, a kind of fuzzy self-adaptive PID controller is described and this controller is used in biomass boiler’s drum water level control system. Using the simulink tool of MATLAB simulation software to simulate the fuzzy adaptive PID and conventional PID control system, the result of the comparison shows that the fuzzy self-adaptive PID has the strong anti-jamming, flexibility and adaptability as well as the higher control precision in Biomass Boiler Drum Water.展开更多
Quadruped robot driven by high power density hydraulic device works in unstructured en- vironment. With variable load and various external disturbance, the hydraulic servo system has fea- tures such as nonlinear, time...Quadruped robot driven by high power density hydraulic device works in unstructured en- vironment. With variable load and various external disturbance, the hydraulic servo system has fea- tures such as nonlinear, time-varying parameters. Traditional control method has some limitation. In order to help the hydraulic servo system of the quadruped robot to adapt to harsh environments, and to obtain high control quality and control precision, an incremental fuzzy adaptive PID controller based on position feedback is designed to solve the related technical problems. Matlab/Simulink sim- ulation and experimental results show that the incremental fuzzy adaptive PID controller improves the dynamic performance of the system, enhances the respond speed and precision of the hydraulic ser- vo system, and has some theory significance and practical value.展开更多
The welding wire feed mechanism is an important component of welding equipment, both reliability and stabilization are the premise that the welding quality can be ensured. The PID is currently adapted to control the w...The welding wire feed mechanism is an important component of welding equipment, both reliability and stabilization are the premise that the welding quality can be ensured. The PID is currently adapted to control the welding wire feed mechanism, although the fuzzy PID has advantage of fast response and adaptation, the precision of fuzzy PID is lower. Accordingly, the fuzzy self-adaptive PID controller was proposed through changing fuzzy input variables and output variables based on variable universe, simple furwtion is adopted as scaling factor, the fuzzy PID controller parameters are adjusted to improve the precision and adjustment range. Simulation results show that control effects of fuzzy self-adaptive PID adopted by the welding wire feed mechanism have good adaptive ability and robustness based on variable universe, the welding experiments indicate that the welding quality met the requirements actually.展开更多
Based on Matlab/Simulink and Fuzzy Logic toolboxes, the altitude control system is designed and simulated. The validity of conventional PID control method and adaptive fuzzy PID control method is compared. It can be d...Based on Matlab/Simulink and Fuzzy Logic toolboxes, the altitude control system is designed and simulated. The validity of conventional PID control method and adaptive fuzzy PID control method is compared. It can be drawn out that the adaptive fuzzy PID control method is superior to the conventional PID in rising time and overshoot etc. The effectiveness of a fuzzy PID controller shows potential application in the future, especially in the presence of model uncertainty or changing dynamics and time-varying parameters.展开更多
After heat is metered in each house unit,the heating system is regulated by variable flow.The temperature of the return w ater is controlled to regulate the flow to realize the temperature regulation.According to the ...After heat is metered in each house unit,the heating system is regulated by variable flow.The temperature of the return w ater is controlled to regulate the flow to realize the temperature regulation.According to the characteristics of the temperature control w ith big inertia,pure time-delay and degeneration,a fuzzy adaptive PID controller is designed w ith the advantages of the fuzzy control and PID algorithm,and the simulation model is established according to the characteristics of heating metering system.Simulation results show that the fuzzy adaptive PID controller proposed has small overshoot,short oscillation cycle,high precision and strong anti-jamming capability in comparison w ith conventional PID controller,w hich could meet the requirement of the dynamic and steady-state performance of the heating process.展开更多
A novel intelligent adaptive fuzzy PHD controller based on multimodel control approach is presented in this paper.It can improve the system performance of the dynamic time- varying system at various operating conditio...A novel intelligent adaptive fuzzy PHD controller based on multimodel control approach is presented in this paper.It can improve the system performance of the dynamic time- varying system at various operating conditions.The fuzzy PHD controller is implemented by combining a fuzzy PI with a fuzzy PD controller in a parallel structure. The parameters of the fuzzy PHD controller are linked, via analytical derivation, to the gains of the linear PID controller. The sum of error square is used as performance criterion to locate the model that best reresents the process among the multiple models, The desired control output to drive the process along the desired path is generated only by modifying the output scale factots GU_I and GU_D of the fuzzy PID controller, Among the prescribed models, the control signal of the nearestmmodel to the system is applied. The system can be driven to its original trajectory because of the robustness of the fuzzy PID controller, Computer simulation results show that the展开更多
The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant...The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant model has been used to validate the ANFIS combined FOPID control scheme.In the pro-posed adaptive control structure,the intelligent ANFIS was designed such that it will dynamically adjust the fractional order factors(λandµ)of the FOPID(also known as PIλDµ)controller to achieve better control performance.When the plant experiences uncertainties like external load disturbances or sudden changes in the input parameters,the stability and robustness of the system can be achieved effec-tively with the proposed control scheme.Also,a modified structure of the FOPID controller has been used in the present system to enhance the dynamic perfor-mance of the controller.An extensive MATLAB software simulation study was made to verify the usefulness of the proposed control scheme.The study has been carried out under different operating conditions such as external disturbances and sudden changes in input parameters.The results obtained using the ANFIS-FOPID control scheme are also compared to the classical fractional order PIλDµand conventional PID control schemes to validate the advantages of the control-lers.The simulation results confirm the effectiveness of the ANFIS combined FOPID controller for the chosen plant model.Also,the proposed control scheme outperformed traditional control methods in various performance metrics such as rise time,settling time and error criteria.展开更多
针对现有实际通用组播(pragmatic general multicast protocol,PGM)拥塞控制方案难以适应网络的动态变化等不足,提出了一种基于模糊比例积分微分(fuzzy proportional plus integral plus derivative,Fuzzy-PID)控制的组播拥塞控制机制(f...针对现有实际通用组播(pragmatic general multicast protocol,PGM)拥塞控制方案难以适应网络的动态变化等不足,提出了一种基于模糊比例积分微分(fuzzy proportional plus integral plus derivative,Fuzzy-PID)控制的组播拥塞控制机制(fuzzy-PID-controlled multicast congestion control mechanism,FPIDMCC)。FPIDMCC在源端和接收端代表间运用Fuzzy-PID控制方案,使源端能快速响应网络拥塞,实时调整发送速率并使之趋于稳定,增强了对动态网络的适应性;此外,采用基于代表和中间节点反馈聚集相结合的方式进行反馈控制,可有效避免反馈爆炸。其中Fuzzy-PID控制方案结合了传统PID和模糊推理的优点,由模糊推理得到PID控制参数,减少了对系统模型的依赖性。仿真结果表明,FPIDMCC机制拥塞响应速度快、系统稳定性好、动态适应能力强。展开更多
文摘The paper discusses the features of the Biomass Boiler drum water level. Conventional PID Control System can not reach a satisfaction result in nonlinearity and time different from Biomass Boiler Drum Water Control System. In this study, a kind of fuzzy self-adaptive PID controller is described and this controller is used in biomass boiler’s drum water level control system. Using the simulink tool of MATLAB simulation software to simulate the fuzzy adaptive PID and conventional PID control system, the result of the comparison shows that the fuzzy self-adaptive PID has the strong anti-jamming, flexibility and adaptability as well as the higher control precision in Biomass Boiler Drum Water.
基金Supported by the Ministerial Level Advanced Research Foundation(65822576)
文摘Quadruped robot driven by high power density hydraulic device works in unstructured en- vironment. With variable load and various external disturbance, the hydraulic servo system has fea- tures such as nonlinear, time-varying parameters. Traditional control method has some limitation. In order to help the hydraulic servo system of the quadruped robot to adapt to harsh environments, and to obtain high control quality and control precision, an incremental fuzzy adaptive PID controller based on position feedback is designed to solve the related technical problems. Matlab/Simulink sim- ulation and experimental results show that the incremental fuzzy adaptive PID controller improves the dynamic performance of the system, enhances the respond speed and precision of the hydraulic ser- vo system, and has some theory significance and practical value.
文摘The welding wire feed mechanism is an important component of welding equipment, both reliability and stabilization are the premise that the welding quality can be ensured. The PID is currently adapted to control the welding wire feed mechanism, although the fuzzy PID has advantage of fast response and adaptation, the precision of fuzzy PID is lower. Accordingly, the fuzzy self-adaptive PID controller was proposed through changing fuzzy input variables and output variables based on variable universe, simple furwtion is adopted as scaling factor, the fuzzy PID controller parameters are adjusted to improve the precision and adjustment range. Simulation results show that control effects of fuzzy self-adaptive PID adopted by the welding wire feed mechanism have good adaptive ability and robustness based on variable universe, the welding experiments indicate that the welding quality met the requirements actually.
基金Sponsored by the Ministerial Level Foundation(K130506)
文摘Based on Matlab/Simulink and Fuzzy Logic toolboxes, the altitude control system is designed and simulated. The validity of conventional PID control method and adaptive fuzzy PID control method is compared. It can be drawn out that the adaptive fuzzy PID control method is superior to the conventional PID in rising time and overshoot etc. The effectiveness of a fuzzy PID controller shows potential application in the future, especially in the presence of model uncertainty or changing dynamics and time-varying parameters.
基金Project Supported by Education Department of Liaoning Province(LT2012005)
文摘After heat is metered in each house unit,the heating system is regulated by variable flow.The temperature of the return w ater is controlled to regulate the flow to realize the temperature regulation.According to the characteristics of the temperature control w ith big inertia,pure time-delay and degeneration,a fuzzy adaptive PID controller is designed w ith the advantages of the fuzzy control and PID algorithm,and the simulation model is established according to the characteristics of heating metering system.Simulation results show that the fuzzy adaptive PID controller proposed has small overshoot,short oscillation cycle,high precision and strong anti-jamming capability in comparison w ith conventional PID controller,w hich could meet the requirement of the dynamic and steady-state performance of the heating process.
文摘A novel intelligent adaptive fuzzy PHD controller based on multimodel control approach is presented in this paper.It can improve the system performance of the dynamic time- varying system at various operating conditions.The fuzzy PHD controller is implemented by combining a fuzzy PI with a fuzzy PD controller in a parallel structure. The parameters of the fuzzy PHD controller are linked, via analytical derivation, to the gains of the linear PID controller. The sum of error square is used as performance criterion to locate the model that best reresents the process among the multiple models, The desired control output to drive the process along the desired path is generated only by modifying the output scale factots GU_I and GU_D of the fuzzy PID controller, Among the prescribed models, the control signal of the nearestmmodel to the system is applied. The system can be driven to its original trajectory because of the robustness of the fuzzy PID controller, Computer simulation results show that the
基金The author extends their appreciation to the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project number(IFPSAU-2021/01/18128).
文摘The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant model has been used to validate the ANFIS combined FOPID control scheme.In the pro-posed adaptive control structure,the intelligent ANFIS was designed such that it will dynamically adjust the fractional order factors(λandµ)of the FOPID(also known as PIλDµ)controller to achieve better control performance.When the plant experiences uncertainties like external load disturbances or sudden changes in the input parameters,the stability and robustness of the system can be achieved effec-tively with the proposed control scheme.Also,a modified structure of the FOPID controller has been used in the present system to enhance the dynamic perfor-mance of the controller.An extensive MATLAB software simulation study was made to verify the usefulness of the proposed control scheme.The study has been carried out under different operating conditions such as external disturbances and sudden changes in input parameters.The results obtained using the ANFIS-FOPID control scheme are also compared to the classical fractional order PIλDµand conventional PID control schemes to validate the advantages of the control-lers.The simulation results confirm the effectiveness of the ANFIS combined FOPID controller for the chosen plant model.Also,the proposed control scheme outperformed traditional control methods in various performance metrics such as rise time,settling time and error criteria.
文摘针对现有实际通用组播(pragmatic general multicast protocol,PGM)拥塞控制方案难以适应网络的动态变化等不足,提出了一种基于模糊比例积分微分(fuzzy proportional plus integral plus derivative,Fuzzy-PID)控制的组播拥塞控制机制(fuzzy-PID-controlled multicast congestion control mechanism,FPIDMCC)。FPIDMCC在源端和接收端代表间运用Fuzzy-PID控制方案,使源端能快速响应网络拥塞,实时调整发送速率并使之趋于稳定,增强了对动态网络的适应性;此外,采用基于代表和中间节点反馈聚集相结合的方式进行反馈控制,可有效避免反馈爆炸。其中Fuzzy-PID控制方案结合了传统PID和模糊推理的优点,由模糊推理得到PID控制参数,减少了对系统模型的依赖性。仿真结果表明,FPIDMCC机制拥塞响应速度快、系统稳定性好、动态适应能力强。