期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Novel robust approach for constructing Mamdani-type fuzzy system based on PRM and subtractive clustering algorithm 被引量:1
1
作者 褚菲 马小平 +1 位作者 王福利 贾润达 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2620-2628,共9页
A novel approach for constructing robust Mamdani fuzzy system was proposed, which consisted of an efficiency robust estimator(partial robust M-regression, PRM) in the parameter learning phase of the initial fuzzy syst... A novel approach for constructing robust Mamdani fuzzy system was proposed, which consisted of an efficiency robust estimator(partial robust M-regression, PRM) in the parameter learning phase of the initial fuzzy system, and an improved subtractive clustering algorithm in the fuzzy-rule-selecting phase. The weights obtained in PRM, which gives protection against noise and outliers, were incorporated into the potential measure of the subtractive cluster algorithm to enhance the robustness of the fuzzy rule cluster process, and a compact Mamdani-type fuzzy system was established after the parameters in the consequent parts of rules were re-estimated by partial least squares(PLS). The main characteristics of the new approach were its simplicity and ability to construct fuzzy system fast and robustly. Simulation and experiment results show that the proposed approach can achieve satisfactory results in various kinds of data domains with noise and outliers. Compared with D-SVD and ARRBFN, the proposed approach yields much fewer rules and less RMSE values. 展开更多
关键词 Mamdani-type fuzzy system robust system subtractive clustering algorithm outlier partial robust M-regression
下载PDF
CONSIDERING NEIGHBORHOOD INFORMATION IN IMAGE FUZZY CLUSTERING 被引量:2
2
作者 Huang Ning Zhu Minhui Zhang Shourong(The Nat. Key Lab of Microwave Imaging Tech, Inst. of Electronics, CAS, Beijing 100080) 《Journal of Electronics(China)》 2002年第3期307-310,共4页
Fuzzy C-means clustering algorithm is a classical non-supervised classification method.For image classification, fuzzy C-means clustering algorithm makes decisions on a pixel-by-pixel basis and does not take advantage... Fuzzy C-means clustering algorithm is a classical non-supervised classification method.For image classification, fuzzy C-means clustering algorithm makes decisions on a pixel-by-pixel basis and does not take advantage of spatial information, regardless of the pixels' correlation. In this letter, a novel fuzzy C-means clustering algorithm is introduced, which is based on image's neighborhood system. During classification procedure, the novel algorithm regards all pixels'fuzzy membership as a random field. The neighboring pixels' fuzzy membership information is used for the algorithm's iteration procedure. As a result, the algorithm gives a more smooth classification result and cuts down the computation time. 展开更多
关键词 Remote sensing clusterING fuzzy C-means clustering algorithm
下载PDF
A NEW UNSUPERVISED CLASSIFICATION ALGORITHM FOR POLARIMETRIC SAR IMAGES BASED ON FUZZY SET THEORY 被引量:2
3
作者 Fu Yusheng Xie Yan Pi Yiming Hou Yinming 《Journal of Electronics(China)》 2006年第4期598-601,共4页
In this letter, a new method is proposed for unsupervised classification of terrain types and man-made objects using POLarimetric Synthetic Aperture Radar (POLSAR) data. This technique is a combi-nation of the usage o... In this letter, a new method is proposed for unsupervised classification of terrain types and man-made objects using POLarimetric Synthetic Aperture Radar (POLSAR) data. This technique is a combi-nation of the usage of polarimetric information of SAR images and the unsupervised classification method based on fuzzy set theory. Image quantization and image enhancement are used to preprocess the POLSAR data. Then the polarimetric information and Fuzzy C-Means (FCM) clustering algorithm are used to classify the preprocessed images. The advantages of this algorithm are the automated classification, its high classifica-tion accuracy, fast convergence and high stability. The effectiveness of this algorithm is demonstrated by ex-periments using SIR-C/X-SAR (Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar) data. 展开更多
关键词 Radar polarimetry Synthetic Aperture Radar (SAR) fuzzy set theory Unsupervised classification Image quantization Image enhancement fuzzy C-Means (FCM) clustering algorithm Membership function
下载PDF
Employment Quality EvaluationModel Based on Hybrid Intelligent Algorithm
4
作者 Xianhui Gu Xiaokan Wang Shuang Liang 《Computers, Materials & Continua》 SCIE EI 2023年第1期131-139,共9页
In order to solve the defect of large error in current employment quality evaluation,an employment quality evaluation model based on grey correlation degree method and fuzzy C-means(FCM)is proposed.Firstly,it analyzes... In order to solve the defect of large error in current employment quality evaluation,an employment quality evaluation model based on grey correlation degree method and fuzzy C-means(FCM)is proposed.Firstly,it analyzes the related research work of employment quality evaluation,establishes the employment quality evaluation index system,collects the index data,and normalizes the index data;Then,the weight value of employment quality evaluation index is determined by Grey relational analysis method,and some unimportant indexes are removed;Finally,the employment quality evaluation model is established by using fuzzy cluster analysis algorithm,and compared with other employment quality evaluation models.The test results show that the employment quality evaluation accuracy of the design model exceeds 93%,the employment quality evaluation error can meet the requirements of practical application,and the employment quality evaluation effect is much better than the comparison model.The comparison test verifies the superiority of the model. 展开更多
关键词 Employment quality fuzzy c-means clustering algorithm grey correlation analysis method evaluation model index system comparative test
下载PDF
Fuzzy identification of nonlinear dynamic system based on selection of important input variables
5
作者 LYU Jinfeng LIU Fucai REN Yaxue 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第3期737-747,共11页
Input variables selection(IVS) is proved to be pivotal in nonlinear dynamic system modeling. In order to optimize the model of the nonlinear dynamic system, a fuzzy modeling method for determining the premise structur... Input variables selection(IVS) is proved to be pivotal in nonlinear dynamic system modeling. In order to optimize the model of the nonlinear dynamic system, a fuzzy modeling method for determining the premise structure by selecting important inputs of the system is studied. Firstly, a simplified two stage fuzzy curves method is proposed, which is employed to sort all possible inputs by their relevance with outputs, select the important input variables of the system and identify the structure.Secondly, in order to reduce the complexity of the model, the standard fuzzy c-means clustering algorithm and the recursive least squares algorithm are used to identify the premise parameters and conclusion parameters, respectively. Then, the effectiveness of IVS is verified by two well-known issues. Finally, the proposed identification method is applied to a realistic variable load pneumatic system. The simulation experiments indi cate that the IVS method in this paper has a positive influence on the approximation performance of the Takagi-Sugeno(T-S) fuzzy modeling. 展开更多
关键词 Takagi-Sugeno(T-S)fuzzy modeling input variable selection(IVS) fuzzy identification fuzzy c-means clustering algorithm
下载PDF
Interactive Protein Data Clustering
6
作者 Terje Kristensen Vemund Jakobsen 《Computer Technology and Application》 2011年第10期818-827,共10页
In this paper, the authors present three different algorithms for data clustering. These are Self-Organizing Map (SOM), Neural Gas (NG) and Fuzzy C-Means (FCM) algorithms. SOM and NG algorithms are based on comp... In this paper, the authors present three different algorithms for data clustering. These are Self-Organizing Map (SOM), Neural Gas (NG) and Fuzzy C-Means (FCM) algorithms. SOM and NG algorithms are based on competitive leaming. An important property of these algorithms is that they preserve the topological structure of data. This means that data that is close in input distribution is mapped to nearby locations in the network. The FCM algorithm is an algorithm based on soft clustering which means that the different clusters are not necessarily distinct, but may overlap. This clustering method may be very useful in many biological problems, for instance in genetics, where a gene may belong to different clusters. The different algorithms are compared in terms of their visualization of the clustering of proteomic data. 展开更多
关键词 DATAMINING self-organizing map neural gas fuzzy c-means algorithm and protein clustering.
下载PDF
Advanced Fuzzy C-Means Algorithm Based on Local Density and Distance 被引量:1
7
作者 Shaochun PANG Yijie +1 位作者 SHAO Sen JIANG Keyuan 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第5期636-642,共7页
This paper presents an advanced fuzzy C-means(FCM) clustering algorithm to overcome the weakness of the traditional FCM algorithm, including the instability of random selecting of initial center and the limitation of ... This paper presents an advanced fuzzy C-means(FCM) clustering algorithm to overcome the weakness of the traditional FCM algorithm, including the instability of random selecting of initial center and the limitation of the data separation or the size of clusters. The advanced FCM algorithm combines the distance with density and improves the objective function so that the performance of the algorithm can be improved. The experimental results show that the proposed FCM algorithm requires fewer iterations yet provides higher accuracy than the traditional FCM algorithm. The advanced algorithm is applied to the influence of stars' box-office data, and the classification accuracy of the first class stars achieves 92.625%. 展开更多
关键词 objective function clustering center fuzzy C-means (FCM) clustering algorithm degree of member-ship
原文传递
3D reconstruction method based on contour features
8
作者 HAN Bao-ling ZHU Ying +2 位作者 LUO Qing-sheng XU Bo ZHANG Tian 《Journal of Beijing Institute of Technology》 EI CAS 2016年第3期301-308,共8页
To guarantee the accuracy and real-time of the 3D reconstruction method for outdoor scene,an algorithm based on region segmentation and matching was proposed.Firstly,on the basis of morphological gradient information,... To guarantee the accuracy and real-time of the 3D reconstruction method for outdoor scene,an algorithm based on region segmentation and matching was proposed.Firstly,on the basis of morphological gradient information,obtained by comparing color weight gradient images and proposing a multi-threshold segmentation,scene contour features were extracted by a watershed algorithm and a fuzzy c-means clustering algorithm.Secondly,to reduce the search area,increase the correct matching ratio and accelerate the matching speed,the region constraint was established according to a region's local position,area and gray characteristics,the edge pixel constraint was established according to the epipolar constraint and the continuity constraint.Finally,by using the stereo matching edge pixel pairs,their 3D coordinates were estimated according to the binocular stereo vision imaging model.Experimental results show that the proposed method can yield a high stereo matching ratio and reconstruct a 3D scene quickly and efficiently. 展开更多
关键词 gradient map watershed algorithm fuzzy c-means clustering algorithm region con-straint contour matching 3D reconstruction
下载PDF
Three-dimensional gravity inversion based on optimization processing from edge detection
9
作者 Sheng Liu Shuanggen Jin Qiang Chen 《Geodesy and Geodynamics》 CSCD 2022年第5期503-524,共22页
Gravity inversion requires much computation,and inversion results are often non-unique.The first problem is often due to the large number of grid cells.Edge detection method,i.e.,tilt angle method of analytical signal... Gravity inversion requires much computation,and inversion results are often non-unique.The first problem is often due to the large number of grid cells.Edge detection method,i.e.,tilt angle method of analytical signal amplitude(TAS),helps to identify the boundaries of underground geological anomalies at different depths,which can be used to optimize the grid and reduce the number of grid cells.The requirement of smooth inversion is that the boundaries of the meshing area should be continuous rather than jagged.In this paper,the optimized meshing strategy is improved,and the optimized meshing region obtained by the TAS is changed to a regular region to facilitate the smooth inversion.For the second problem,certain constraints can be used to improve the accuracy of inversion.The results of analytic signal amplitude(ASA)are used to delineate the central distribution of geological bodies.We propose a new method using the results of ASA to perform local constraints to reduce the non-uniqueness of inversion.The guided fuzzy c-means(FCM)clustering algorithm combined with priori petrophysical information is also used to reduce the non-uniqueness of gravity inversion.The Open Acc technology is carried out to speed up the computation for parallelizing the serial program on GPU.In general,the TAS is used to reduce the number of grid cells.The local weighting and priori petrophysical constraint are used in conjunction with the FCM algorithm during the inversion,which improves the accuracy of inversion.The inversion is accelerated by the Open Acc technology on GPU.The proposed method is validated using synthetic data,and the results show that the efficiency and accuracy of gravity inversion are greatly improved by using the proposed method. 展开更多
关键词 Gravity inversion Locally weighted constraint Petrophysical constrain fuzzy c-means clustering algorithm Open Acc technology
下载PDF
Automatic segmentation algorithm for high-spatial-resolution remote sensing images based on self-learning super-pixel convolutional network
10
作者 Zenan Yang Haipeng Niu +3 位作者 Liang Huang Xiaoxuan Wang Liangxin Fan Dongyang Xiao 《International Journal of Digital Earth》 SCIE EI 2022年第1期1101-1124,共24页
Super-pixel algorithms based on convolutional neural networks with fuzzy C-means clustering are widely used for high-spatial-resolution remote sensing images segmentation.However,this model requires the number of clus... Super-pixel algorithms based on convolutional neural networks with fuzzy C-means clustering are widely used for high-spatial-resolution remote sensing images segmentation.However,this model requires the number of clusters to be set manually,resulting in a low automation degree due to the complexity of the iterative clustering process.To address this problem,a segmentation method based on a self-learning super-pixel network(SLSP-Net)and modified automatic fuzzy clustering(MAFC)is proposed.SLSP-Net performs feature extraction,non-iterative clustering,and gradient reconstruction.A lightweight feature embedder is adopted for feature extraction,thus expanding the receiving range and generating multi-scale features.Automatic matching is used for non-iterative clustering,and the overfitting of the network model is overcome by adaptively adjusting the gradient weight parameters,providing a better irregular super-pixel neighborhood structure.An optimized density peak algorithm is adopted for MAFC.Based on the obtained super-pixel image,this maximizes the robust decision-making interval,which enhances the automation of regional clustering.Finally,prior entropy fuzzy C-means clustering is applied to optimize the robust decision-making and obtain the final segmentation result.Experimental results show that the proposed model offers reduced experimental complexity and achieves good performance,realizing not only automatic image segmentation,but also good segmentation results. 展开更多
关键词 Deep convolution neural network model super-pixel algorithm automatic fuzzy clustering prior entropy fuzzy C-Means clustering algorithm remote sensing images
原文传递
Characterization of particulate products for aging of ethylbenzene secondary organic aerosol in the presence of ammonium sulfate seed aerosol 被引量:6
11
作者 Mingqiang Huang Jiahui Zhang +6 位作者 Shunyou Cai Yingmin Liao Weixiong Zhao Changjin Hu Xuejun Gu Li Fang Weijun Zhang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第9期219-229,共11页
Aging of secondary organic aerosol(SOA) particles formed from OH– initiated oxidation of ethylbenzene in the presence of high mass(100–300 μg/m^3) concentrations of(NH_4)_2SO_4seed aerosol was investigated in... Aging of secondary organic aerosol(SOA) particles formed from OH– initiated oxidation of ethylbenzene in the presence of high mass(100–300 μg/m^3) concentrations of(NH_4)_2SO_4seed aerosol was investigated in a home-made smog chamber in this study.The chemical composition of aged ethylbenzene SOA particles was measured using an aerosol laser time-of-flight mass spectrometer(ALTOFMS) coupled with a Fuzzy C-Means(FCM) clustering algorithm.Experimental results showed that nitrophenol,ethyl-nitrophenol,2,4-dinitrophenol,methyl glyoxylic acid,5-ethyl-6-oxo-2,4-hexadienoic acid,2-ethyl-2,4-hexadiendioic acid,2,3-dihydroxy-5-ethyl-6-oxo-4-hexenoic acid,1H-imidazole,hydrated N-glyoxal substituted1H-imidazole,hydrated glyoxal dimer substituted imidazole,1H-imidazole-2-carbaldehyde,N-glyoxal substituted hydrated 1H-imidazole-2-carbaldehyde and high-molecular-weight(HMW) components were the predominant products in the aged particles.Compared to the previous aromatic SOA aging studies,imidazole compounds,which can absorb solar radiation effectively,were newly detected in aged ethylbenzene SOA in the presence of high concentrations of(NH_4)_2SO_4seed aerosol.These findings provide new information for discussing aromatic SOA aging mechanisms. 展开更多
关键词 Ethylbenzene Secondary organic aerosol(NH_4)_2SO_4 seed aerosol Laser desorption/ionization fuzzy clustering(FCM) algorithm Aging mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部