Aimed to the characters of pests forecast such as fuzziness, correlation, nonlinear and real-time as well as decline of generalization capacity of neural network in prediction with few observations, a method of pests ...Aimed to the characters of pests forecast such as fuzziness, correlation, nonlinear and real-time as well as decline of generalization capacity of neural network in prediction with few observations, a method of pests forecasting using the method of neural network based on fuzzy clustering was proposed in this experiment. The simulation results demonstrated that the method was simple and practical and could forecast pests fast and accurately, particularly, the method could obtain good results with few samples and samples correlation.展开更多
The slagging/fouling due to the accession of fireside deposits on the steam boilers decreases boiler efficiency and availability which leads to unexpected shut-downs. Since it is inevitably associated with the three m...The slagging/fouling due to the accession of fireside deposits on the steam boilers decreases boiler efficiency and availability which leads to unexpected shut-downs. Since it is inevitably associated with the three major factors namely the fuel characteristics, boiler operating conditions and ash behavior, this serious slagging/fouling may be reduced by varying the above three factors. The research develops a generic slagging/fouling prediction tool based on hybrid fuzzy clustering and Artificial Neural Networks (FCANN). The FCANN model presents a good accuracy of 99.85% which makes this model fast in response and easy to be updated with lesser time when compared to single ANN. The comparison between predictions and observations is found to be satisfactory with less input parameters. This should be capable of giving relatively quick responses while being easily implemented for various furnace types.展开更多
With the progress of computer technology, data mining has become a hot research area in the computer science community. In this paper, we undertake theoretical research on the novel data mining algorithm based on fuzz...With the progress of computer technology, data mining has become a hot research area in the computer science community. In this paper, we undertake theoretical research on the novel data mining algorithm based on fuzzy clustering theory and deep neural network. The focus of data mining in seeking the visualization methods in the process of data mining, knowledge discovery process can be users to understand, to facilitate human-computer interaction in knowledge discovery process. Inspired by the brain structure layers, neural network researchers have been trying to multilayer neural network research. The experiment result shows that out algorithm is effective and robust.展开更多
Wireless sensor networks(WSN)gather information and sense information samples in a certain region and communicate these readings to a base station(BS).Energy efficiency is considered a major design issue in the WSNs,a...Wireless sensor networks(WSN)gather information and sense information samples in a certain region and communicate these readings to a base station(BS).Energy efficiency is considered a major design issue in the WSNs,and can be addressed using clustering and routing techniques.Information is sent from the source to the BS via routing procedures.However,these routing protocols must ensure that packets are delivered securely,guaranteeing that neither adversaries nor unauthentic individuals have access to the sent information.Secure data transfer is intended to protect the data from illegal access,damage,or disruption.Thus,in the proposed model,secure data transmission is developed in an energy-effective manner.A low-energy adaptive clustering hierarchy(LEACH)is developed to efficiently transfer the data.For the intrusion detection systems(IDS),Fuzzy logic and artificial neural networks(ANNs)are proposed.Initially,the nodes were randomly placed in the network and initialized to gather information.To ensure fair energy dissipation between the nodes,LEACH randomly chooses cluster heads(CHs)and allocates this role to the various nodes based on a round-robin management mechanism.The intrusion-detection procedure was then utilized to determine whether intruders were present in the network.Within the WSN,a Fuzzy interference rule was utilized to distinguish the malicious nodes from legal nodes.Subsequently,an ANN was employed to distinguish the harmful nodes from suspicious nodes.The effectiveness of the proposed approach was validated using metrics that attained 97%accuracy,97%specificity,and 97%sensitivity of 95%.Thus,it was proved that the LEACH and Fuzzy-based IDS approaches are the best choices for securing data transmission in an energy-efficient manner.展开更多
This paper advances a new approach based on wavelet and wavelet packet transforms in tandem with a fuzzy cluster neural network,abbreviated WPFCNN.Wavelets and wavelet packets decompose a vibration signal into differe...This paper advances a new approach based on wavelet and wavelet packet transforms in tandem with a fuzzy cluster neural network,abbreviated WPFCNN.Wavelets and wavelet packets decompose a vibration signal into different bands at different levels and provides multiresolution or multiscale views of a signal which is stationary or nonstationary. Fuzzy mathematics processes uncertain problems in engineering and converts the attributes extracted by wavelet packets to fuzzy membership degree.To achieve self-organizing classification,the MAXNET neural network is employed.WPFCNN integrates the advantages of wavelet packets and fuzzy cluster with MAXNET.The approach is adopted to process and classify vibration signal of a NH_3 compressor in a petrochemical plant.The results indicate that it is a useful and effective intelligence classification in the field of condition monitoring and fault diagnosis.展开更多
The three speciations(water extract, adsorption and organic speciations) of Cu, Zn, Fe and Mn in geo-chemical samples were determined by fuzzy cluster-artificial neural network(FC-ANN) method coupled with atomic a...The three speciations(water extract, adsorption and organic speciations) of Cu, Zn, Fe and Mn in geo-chemical samples were determined by fuzzy cluster-artificial neural network(FC-ANN) method coupled with atomic absorption spectrometry. A back-propagation artificial neural network with one input node and three export nodes was constructed, which could forecaste three speciations of heavy metals simultaneously. In the learning sample set, the three speciations of each element were allowed to change in a wide concentration range and the accuracy of the analysis was apparently increased via the learning sample set optimized with the help of the fuzzy cluster analysis. The average relative errors of the three speciations of Cu, Zn, Fe or Mn from 100 geo-chemical samples were less than 5%. The relative standard deviations of the three speciations of each of four heavy metals were 0.008%―4.43%.展开更多
A novel radio-map establishment based on fuzzy clustering for hybrid K-Nearest Neighbor (KNN) and Artifi cial Neural Network (ANN) position algorithm in WLAN indoor environment is proposed. First of all, the Principal...A novel radio-map establishment based on fuzzy clustering for hybrid K-Nearest Neighbor (KNN) and Artifi cial Neural Network (ANN) position algorithm in WLAN indoor environment is proposed. First of all, the Principal Component Analysis (PCA) is utilized for the purpose of simplifying input dimensions of position estimation algorithm and saving storage cost for the establishment of radio-map. Then, reference points (RPs) calibrated in the off-line phase are divided into separate clusters by Fuzzy C-means clustering (FCM), and membership degrees (MDs) for different clusters are also allocated to each RPs. However, the singular RPs cased by the multi-path effect signifi cantly decreases the clustering performance. Therefore, a novel radio-map establishment method is presented based on the modifi cation of signal samples recorded at singular RPs by surface fitting. In the on-line phase, the region which the mobile terminal (MT) belongs to is estimated according to the MDs firstly. Then, in estimated small dimensional regions, MT's coordinates are calculated byKNN positioning method for efficiency purpose. However, for the regions including singular RPs, ANN method is utilized because ofits great pattern matching ability. Furthermore, compared with other typical indoor positioning methods, feasibility and effectiveness of this hybrid KNN/ANN method are also verified by the experimental results in static and tracking situations.展开更多
It is difficult to measure the online values of biochemical oxygen demand(BOD) due to the characteristics of nonlinear dynamics, large lag and uncertainty in wastewater treatment process. In this paper, based on the k...It is difficult to measure the online values of biochemical oxygen demand(BOD) due to the characteristics of nonlinear dynamics, large lag and uncertainty in wastewater treatment process. In this paper, based on the knowledge representation ability and learning capability, an improved T–S fuzzy neural network(TSFNN) is introduced to predict BOD values by the soft computing method. In this improved TSFNN, a K-means clustering is used to initialize the structure of TSFNN, including the number of fuzzy rules and parameters of membership function. For training TSFNN, a gradient descent method with the momentum item is used to adjust antecedent parameters and consequent parameters. This improved TSFNN is applied to predict the BOD values in effluent of the wastewater treatment process. The simulation results show that the TSFNN with K-means clustering algorithm can measure the BOD values accurately. The algorithm presents better approximation performance than some other methods.展开更多
Modeling of energy consumption(EC) and effluent quality(EQ) are very essential problems that need to be solved for the multiobjective optimal control in the wastewater treatment process(WWTP). To address this issue, a...Modeling of energy consumption(EC) and effluent quality(EQ) are very essential problems that need to be solved for the multiobjective optimal control in the wastewater treatment process(WWTP). To address this issue, a density peaks-based adaptive fuzzy neural network(DP-AFNN) is proposed in this study. To obtain suitable fuzzy rules, a DP-based clustering method is applied to fit the cluster centers to process nonlinearity.The parameters of the extracted fuzzy rules are fine-tuned based on the improved Levenberg-Marquardt algorithm during the training process. Furthermore, the analysis of convergence is performed to guarantee the successful application of the DPAFNN. Finally, the proposed DP-AFNN is utilized to develop the models of EC and EQ in the WWTP. The experimental results show that the proposed DP-AFNN can achieve fast convergence speed and high prediction accuracy in comparison with some existing methods.展开更多
Multiple sensor registration is an important link in multi-sensors data fusion. The existed algorithm is all based on the assumption that system errors come from a fixed deviation set. But there are many other factors...Multiple sensor registration is an important link in multi-sensors data fusion. The existed algorithm is all based on the assumption that system errors come from a fixed deviation set. But there are many other factors, which can result system errors. So traditional registration algorithms have limitation. This paper presents a registration algorithm for sensor alignment based on stochastic fuzzy neural network (SNFF), and utilized fuzzy clustering algorithm obtaining the number of fuzzy rules. Finally, the simulative result illuminate that this way could gain a satisfing result.展开更多
FAM(Fuzzy Associative Memory) Network Model, FAM Adaptive Learning Algorithm and Principal of FAM Inference Machine are introduced, and successfully application to ″New Generation Expert System for Earthquake Predict...FAM(Fuzzy Associative Memory) Network Model, FAM Adaptive Learning Algorithm and Principal of FAM Inference Machine are introduced, and successfully application to ″New Generation Expert System for Earthquake Prediction″ (NGESEP). This system has good function for knowledge learning without disadvantages of neural network, which the learned knowledge implied in network is difficult to be understood or interpreted by expert system.展开更多
Dissolved oxygen(DO)content is an important index of river water quality.Water quality sensors have been used in China for urban river water monitoring and DO content prediction.However,water quality sensors are expen...Dissolved oxygen(DO)content is an important index of river water quality.Water quality sensors have been used in China for urban river water monitoring and DO content prediction.However,water quality sensors are expensive and difficult to maintain,and have a short operation period and difficult to maintain.This study developed a scientific and accurate method for prediction of DO content changes using fish school features.The behavioral features of the Carassius auratus fish school were described using two-dimensional fish school images.The degree of DO content decline was graded into five levels,and the corresponding numerical ranges of cluster characteristic parameters were determined by considering the opinions of ichthyologists.Finally,the variation of DO content was predicted using the characteristic parameters of the fish school and the multiple-input single-output Takagi-Sugeno fuzzy neural network.The prediction results were basically consistent with the actual variations of DO content.Therefore,it is feasible to use the behavioral features of the fish school to dynamically predict the level of DO content in water,and this method is especially suitable for prediction of sharp decline of DO content in a relatively short time.展开更多
In this paper, polynomial fuzzy neural network classifiers (PFNNCs) is proposed by means of density fuzzy c-means and L2-norm regularization. The overall design of PFNNCs was realized by means of fuzzy rules that come...In this paper, polynomial fuzzy neural network classifiers (PFNNCs) is proposed by means of density fuzzy c-means and L2-norm regularization. The overall design of PFNNCs was realized by means of fuzzy rules that come in form of three parts, namely premise part, consequence part and aggregation part. The premise part was developed by density fuzzy c-means that helps determine the apex parameters of membership functions, while the consequence part was realized by means of two types of polynomials including linear and quadratic. L2-norm regularization that can alleviate the overfitting problem was exploited to estimate the parameters of polynomials, which constructed the aggregation part. Experimental results of several data sets demonstrate that the proposed classifiers show higher classification accuracy in comparison with some other classifiers reported in the literature.展开更多
This paper proposes an approach to detecting diseases in neem leaf that uses a Fuzzy-Higher Order Biologically Inspired Neuron Model(F-HOBINM)and adaptive neuro classifier(ANFIS).India exports USD 0.28-million worth o...This paper proposes an approach to detecting diseases in neem leaf that uses a Fuzzy-Higher Order Biologically Inspired Neuron Model(F-HOBINM)and adaptive neuro classifier(ANFIS).India exports USD 0.28-million worth of neem leaf to the UK,USA,UAE,and Europe in the form of dried leaves and powder,both of which help reduce diabetesrelated issues,cardiovascular problems,and eye disorders.Diagnosing neem leaf disease is difficult through visual interpretation,owing to similarity in their color and texture patterns.The most common diseases include bacterial blight,Colletotrichum and Alternaria leaf spot,blight,damping-off,powdery mildew,Pseudocercospora leaf spot,leaf web blight,and seedling wilt.However,traditional color and texture algorithms fail to identify leaf diseases due to irregular lumps and surfaces,and rough ridges,as the classification time involved takes as long as a week.The proposed F-HOBINM algorithm recognizes the leaf intensity through the leaky capacitor,and uses subjective intensity and physical stimulus to interpret the diagnosis.Further,the processed leaf images from the HOBINM algorithm are applied to the ANFIS classifier to identify neem leaf diseases.The experimental results show 92.18%accuracy from a database of 1,462 neem leaves.展开更多
为了解决寻常型银屑病在样本分布不平衡的数据中可能会导致的深度学习模型诊断效果下降等问题,通过结合改进模糊KMeans聚类算法对高聚类复杂度数据的处理能力以及Visual Geometry Group 13(VGG13)深度卷积神经网络模型的预测能力,提出...为了解决寻常型银屑病在样本分布不平衡的数据中可能会导致的深度学习模型诊断效果下降等问题,通过结合改进模糊KMeans聚类算法对高聚类复杂度数据的处理能力以及Visual Geometry Group 13(VGG13)深度卷积神经网络模型的预测能力,提出一种基于改进模糊KMeans聚类算法的VGG13深度卷积神经网络(VGG13-KMeans)模型,并将其应用于寻常型银屑病的诊断任务中。实验结果表明,相较于VGG13以及ResNet18两种方法,本文方法更适用于对银屑病特征的识别。展开更多
基金Supported by Guangxi Science Research and Technology Explora-tion Plan Project(0815001-10)~~
文摘Aimed to the characters of pests forecast such as fuzziness, correlation, nonlinear and real-time as well as decline of generalization capacity of neural network in prediction with few observations, a method of pests forecasting using the method of neural network based on fuzzy clustering was proposed in this experiment. The simulation results demonstrated that the method was simple and practical and could forecast pests fast and accurately, particularly, the method could obtain good results with few samples and samples correlation.
文摘The slagging/fouling due to the accession of fireside deposits on the steam boilers decreases boiler efficiency and availability which leads to unexpected shut-downs. Since it is inevitably associated with the three major factors namely the fuel characteristics, boiler operating conditions and ash behavior, this serious slagging/fouling may be reduced by varying the above three factors. The research develops a generic slagging/fouling prediction tool based on hybrid fuzzy clustering and Artificial Neural Networks (FCANN). The FCANN model presents a good accuracy of 99.85% which makes this model fast in response and easy to be updated with lesser time when compared to single ANN. The comparison between predictions and observations is found to be satisfactory with less input parameters. This should be capable of giving relatively quick responses while being easily implemented for various furnace types.
文摘With the progress of computer technology, data mining has become a hot research area in the computer science community. In this paper, we undertake theoretical research on the novel data mining algorithm based on fuzzy clustering theory and deep neural network. The focus of data mining in seeking the visualization methods in the process of data mining, knowledge discovery process can be users to understand, to facilitate human-computer interaction in knowledge discovery process. Inspired by the brain structure layers, neural network researchers have been trying to multilayer neural network research. The experiment result shows that out algorithm is effective and robust.
文摘Wireless sensor networks(WSN)gather information and sense information samples in a certain region and communicate these readings to a base station(BS).Energy efficiency is considered a major design issue in the WSNs,and can be addressed using clustering and routing techniques.Information is sent from the source to the BS via routing procedures.However,these routing protocols must ensure that packets are delivered securely,guaranteeing that neither adversaries nor unauthentic individuals have access to the sent information.Secure data transfer is intended to protect the data from illegal access,damage,or disruption.Thus,in the proposed model,secure data transmission is developed in an energy-effective manner.A low-energy adaptive clustering hierarchy(LEACH)is developed to efficiently transfer the data.For the intrusion detection systems(IDS),Fuzzy logic and artificial neural networks(ANNs)are proposed.Initially,the nodes were randomly placed in the network and initialized to gather information.To ensure fair energy dissipation between the nodes,LEACH randomly chooses cluster heads(CHs)and allocates this role to the various nodes based on a round-robin management mechanism.The intrusion-detection procedure was then utilized to determine whether intruders were present in the network.Within the WSN,a Fuzzy interference rule was utilized to distinguish the malicious nodes from legal nodes.Subsequently,an ANN was employed to distinguish the harmful nodes from suspicious nodes.The effectiveness of the proposed approach was validated using metrics that attained 97%accuracy,97%specificity,and 97%sensitivity of 95%.Thus,it was proved that the LEACH and Fuzzy-based IDS approaches are the best choices for securing data transmission in an energy-efficient manner.
基金This project was supported by National Natural Science Foundation of China
文摘This paper advances a new approach based on wavelet and wavelet packet transforms in tandem with a fuzzy cluster neural network,abbreviated WPFCNN.Wavelets and wavelet packets decompose a vibration signal into different bands at different levels and provides multiresolution or multiscale views of a signal which is stationary or nonstationary. Fuzzy mathematics processes uncertain problems in engineering and converts the attributes extracted by wavelet packets to fuzzy membership degree.To achieve self-organizing classification,the MAXNET neural network is employed.WPFCNN integrates the advantages of wavelet packets and fuzzy cluster with MAXNET.The approach is adopted to process and classify vibration signal of a NH_3 compressor in a petrochemical plant.The results indicate that it is a useful and effective intelligence classification in the field of condition monitoring and fault diagnosis.
基金Supported by the National Natural Science Foundation of China(No.29975004)
文摘The three speciations(water extract, adsorption and organic speciations) of Cu, Zn, Fe and Mn in geo-chemical samples were determined by fuzzy cluster-artificial neural network(FC-ANN) method coupled with atomic absorption spectrometry. A back-propagation artificial neural network with one input node and three export nodes was constructed, which could forecaste three speciations of heavy metals simultaneously. In the learning sample set, the three speciations of each element were allowed to change in a wide concentration range and the accuracy of the analysis was apparently increased via the learning sample set optimized with the help of the fuzzy cluster analysis. The average relative errors of the three speciations of Cu, Zn, Fe or Mn from 100 geo-chemical samples were less than 5%. The relative standard deviations of the three speciations of each of four heavy metals were 0.008%―4.43%.
基金supported by National High-Tech Research & Development Program of China (Grant No. 2008AA12Z305)
文摘A novel radio-map establishment based on fuzzy clustering for hybrid K-Nearest Neighbor (KNN) and Artifi cial Neural Network (ANN) position algorithm in WLAN indoor environment is proposed. First of all, the Principal Component Analysis (PCA) is utilized for the purpose of simplifying input dimensions of position estimation algorithm and saving storage cost for the establishment of radio-map. Then, reference points (RPs) calibrated in the off-line phase are divided into separate clusters by Fuzzy C-means clustering (FCM), and membership degrees (MDs) for different clusters are also allocated to each RPs. However, the singular RPs cased by the multi-path effect signifi cantly decreases the clustering performance. Therefore, a novel radio-map establishment method is presented based on the modifi cation of signal samples recorded at singular RPs by surface fitting. In the on-line phase, the region which the mobile terminal (MT) belongs to is estimated according to the MDs firstly. Then, in estimated small dimensional regions, MT's coordinates are calculated byKNN positioning method for efficiency purpose. However, for the regions including singular RPs, ANN method is utilized because ofits great pattern matching ability. Furthermore, compared with other typical indoor positioning methods, feasibility and effectiveness of this hybrid KNN/ANN method are also verified by the experimental results in static and tracking situations.
基金Supported by the National Natural Science Foundation of China(61203099,61034008,61225016)Beijing Science and Technology Project(Z141100001414005)+3 种基金Beijing Science and Technology Special Project(Z141101004414058)Ph.D.Program Foundation from Ministry of Chinese Education(20121103120020)Beijing Nova Program(Z131104000413007)Hong Kong Scholar Program(XJ2013018)
文摘It is difficult to measure the online values of biochemical oxygen demand(BOD) due to the characteristics of nonlinear dynamics, large lag and uncertainty in wastewater treatment process. In this paper, based on the knowledge representation ability and learning capability, an improved T–S fuzzy neural network(TSFNN) is introduced to predict BOD values by the soft computing method. In this improved TSFNN, a K-means clustering is used to initialize the structure of TSFNN, including the number of fuzzy rules and parameters of membership function. For training TSFNN, a gradient descent method with the momentum item is used to adjust antecedent parameters and consequent parameters. This improved TSFNN is applied to predict the BOD values in effluent of the wastewater treatment process. The simulation results show that the TSFNN with K-means clustering algorithm can measure the BOD values accurately. The algorithm presents better approximation performance than some other methods.
基金supported by the National Science Foundation for Distinguished Young Scholars of China(61225016)the State Key Program of National Natural Science of China(61533002)
文摘Modeling of energy consumption(EC) and effluent quality(EQ) are very essential problems that need to be solved for the multiobjective optimal control in the wastewater treatment process(WWTP). To address this issue, a density peaks-based adaptive fuzzy neural network(DP-AFNN) is proposed in this study. To obtain suitable fuzzy rules, a DP-based clustering method is applied to fit the cluster centers to process nonlinearity.The parameters of the extracted fuzzy rules are fine-tuned based on the improved Levenberg-Marquardt algorithm during the training process. Furthermore, the analysis of convergence is performed to guarantee the successful application of the DPAFNN. Finally, the proposed DP-AFNN is utilized to develop the models of EC and EQ in the WWTP. The experimental results show that the proposed DP-AFNN can achieve fast convergence speed and high prediction accuracy in comparison with some existing methods.
文摘Multiple sensor registration is an important link in multi-sensors data fusion. The existed algorithm is all based on the assumption that system errors come from a fixed deviation set. But there are many other factors, which can result system errors. So traditional registration algorithms have limitation. This paper presents a registration algorithm for sensor alignment based on stochastic fuzzy neural network (SNFF), and utilized fuzzy clustering algorithm obtaining the number of fuzzy rules. Finally, the simulative result illuminate that this way could gain a satisfing result.
文摘FAM(Fuzzy Associative Memory) Network Model, FAM Adaptive Learning Algorithm and Principal of FAM Inference Machine are introduced, and successfully application to ″New Generation Expert System for Earthquake Prediction″ (NGESEP). This system has good function for knowledge learning without disadvantages of neural network, which the learned knowledge implied in network is difficult to be understood or interpreted by expert system.
基金supported by the Natural Science Foundation of Changzhou City,China(Grants No.CE20195026 and CE20205031)the Teaching Steering Committee of Electronics Information Specialty in Colleges and Universities of the Ministry of Education(Grant No.2020-YB-42)the Jiangsu Overseas Visiting Scholar Program for University Prominent Young and Middle Aged Teachers and Presidents.
文摘Dissolved oxygen(DO)content is an important index of river water quality.Water quality sensors have been used in China for urban river water monitoring and DO content prediction.However,water quality sensors are expensive and difficult to maintain,and have a short operation period and difficult to maintain.This study developed a scientific and accurate method for prediction of DO content changes using fish school features.The behavioral features of the Carassius auratus fish school were described using two-dimensional fish school images.The degree of DO content decline was graded into five levels,and the corresponding numerical ranges of cluster characteristic parameters were determined by considering the opinions of ichthyologists.Finally,the variation of DO content was predicted using the characteristic parameters of the fish school and the multiple-input single-output Takagi-Sugeno fuzzy neural network.The prediction results were basically consistent with the actual variations of DO content.Therefore,it is feasible to use the behavioral features of the fish school to dynamically predict the level of DO content in water,and this method is especially suitable for prediction of sharp decline of DO content in a relatively short time.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 61673295the Natural Science Foundation of Tianjin under Grant 18JCYBJC85200by the National College Students’ innovation and entrepreneurship project under Grant 201710060041.
文摘In this paper, polynomial fuzzy neural network classifiers (PFNNCs) is proposed by means of density fuzzy c-means and L2-norm regularization. The overall design of PFNNCs was realized by means of fuzzy rules that come in form of three parts, namely premise part, consequence part and aggregation part. The premise part was developed by density fuzzy c-means that helps determine the apex parameters of membership functions, while the consequence part was realized by means of two types of polynomials including linear and quadratic. L2-norm regularization that can alleviate the overfitting problem was exploited to estimate the parameters of polynomials, which constructed the aggregation part. Experimental results of several data sets demonstrate that the proposed classifiers show higher classification accuracy in comparison with some other classifiers reported in the literature.
文摘This paper proposes an approach to detecting diseases in neem leaf that uses a Fuzzy-Higher Order Biologically Inspired Neuron Model(F-HOBINM)and adaptive neuro classifier(ANFIS).India exports USD 0.28-million worth of neem leaf to the UK,USA,UAE,and Europe in the form of dried leaves and powder,both of which help reduce diabetesrelated issues,cardiovascular problems,and eye disorders.Diagnosing neem leaf disease is difficult through visual interpretation,owing to similarity in their color and texture patterns.The most common diseases include bacterial blight,Colletotrichum and Alternaria leaf spot,blight,damping-off,powdery mildew,Pseudocercospora leaf spot,leaf web blight,and seedling wilt.However,traditional color and texture algorithms fail to identify leaf diseases due to irregular lumps and surfaces,and rough ridges,as the classification time involved takes as long as a week.The proposed F-HOBINM algorithm recognizes the leaf intensity through the leaky capacitor,and uses subjective intensity and physical stimulus to interpret the diagnosis.Further,the processed leaf images from the HOBINM algorithm are applied to the ANFIS classifier to identify neem leaf diseases.The experimental results show 92.18%accuracy from a database of 1,462 neem leaves.
文摘为了解决寻常型银屑病在样本分布不平衡的数据中可能会导致的深度学习模型诊断效果下降等问题,通过结合改进模糊KMeans聚类算法对高聚类复杂度数据的处理能力以及Visual Geometry Group 13(VGG13)深度卷积神经网络模型的预测能力,提出一种基于改进模糊KMeans聚类算法的VGG13深度卷积神经网络(VGG13-KMeans)模型,并将其应用于寻常型银屑病的诊断任务中。实验结果表明,相较于VGG13以及ResNet18两种方法,本文方法更适用于对银屑病特征的识别。