In this paper,a stable and adaptive sliding mode control(SMC)method for induction motors is introduced.Determining the parameters of this system has been one of the existing challenges.To solve this challenge,a new se...In this paper,a stable and adaptive sliding mode control(SMC)method for induction motors is introduced.Determining the parameters of this system has been one of the existing challenges.To solve this challenge,a new self-tuning type-2 fuzzy neural network calculates and updates the control system parameters with a fast mechanism.According to the dynamic changes of the system,in addition to the parameters of the SMC,the parameters of the type-2 fuzzy neural network are also updated online.The conditions for guaranteeing the convergence and stability of the control system are provided.In the simulation part,in order to test the proposed method,several uncertain models and load torque have been applied.Also,the results have been compared to the SMC based on the type-1 fuzzy system,the traditional SMC,and the PI controller.The average RMSE in different scenarios,for type-2 fuzzy SMC,is 0.0311,for type-1 fuzzy SMC is 0.0497,for traditional SMC is 0.0778,and finally for PI controller is 0.0997.展开更多
This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative ...This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.展开更多
In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transfo...In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transforming the three-phase currents and voltages into a rotating reference frame, commonly referred to as the “dq” frame. In this frame, the torque/speed and flux components are decoupled, allowing for independent control, by doing so, the motor’s speed can be regulated accurately and maintain a constant flux which is crucial to ensure optimal motor performance and efficiency. The research focused on studying and simulating a field-oriented control system using fuzzy control techniques for an induction motor. The aim was to address the issue of parameter variations, particularly the change in rotor resistance during motor operation, which causes the control system to deviate from the desired direction. This deviation implies to an increase in the magnetic flux value, specifically the flux component on the q-axis. By employing fuzzy logic techniques to regulate flux vector’s components in the dq frame, this problem was successfully resolved, ensuring that the magnetic flux value remains within the nominal limits. To enhance the control system’s performance, response speed, and efficiency of the motor, sliding mode controllers were implemented to regulate the current in the inner loop. The simulation results demonstrated the proficiency of the proposed methodology.展开更多
This paper proposes a novel sampled-data asynchronous fuzzy output feedback control approach for active suspension systems in restricted frequency domain.In order to better investigate uncertain suspension dynamics,th...This paper proposes a novel sampled-data asynchronous fuzzy output feedback control approach for active suspension systems in restricted frequency domain.In order to better investigate uncertain suspension dynamics,the sampleddata Takagi-Sugeno(T-S)fuzzy half-car active suspension(HCAS)system is considered,which is further modelled as a continuous system with an input delay.Firstly,considering that the fuzzy system and the fuzzy controller cannot share the identical premises due to the existence of input delay,a reconstructed method is employed to synchronize the time scales of membership functions between the fuzzy controller and the fuzzy system.Secondly,since external disturbances often belong to a restricted frequency range,a finite frequency control criterion is presented for control synthesis to reduce conservatism.Thirdly,given a full information of state variables is hardly available in practical suspension systems,a two-stage method is proposed to calculate the static output feedback control gains.Moreover,an iterative algorithm is proposed to compute the optimum solution.Finally,numerical simulations verify the effectiveness of the proposed controllers.展开更多
A fuzzy neural network controller with the teaching controller guidance and parameter regulations for vector-controlled induction motor is proposed. The design procedures of the fuzzy neural controller and the teachin...A fuzzy neural network controller with the teaching controller guidance and parameter regulations for vector-controlled induction motor is proposed. The design procedures of the fuzzy neural controller and the teaching controller are described. The parameters of the membership function are regulated by an on-line learning algorithm. The speed responses of the system under the condition, where the target functions are chosen as I qs and ω, are analyzed. The system responses with the variant of parameter moment of inertial J, viscous coefficients B and torque constant K tare also analyzed. Simulation results show that the control scheme and the controller have the advantages of rapid speed response and good robustness.展开更多
It is crucial for implementing force/position control of robotic manipulator under the constraint of unknown environment to determine the force control and the position control directions. This paper presents an on l...It is crucial for implementing force/position control of robotic manipulator under the constraint of unknown environment to determine the force control and the position control directions. This paper presents an on line algorithm to real timely estimate the tangent and the normal vectors of the constraint surface based on the measured contact force under the consideration of frictional force. A fuzzy synthesis policy is proposed to coordinate the conflict between the compliant force control and the stiff position control. An experimental study on an AdeptThree, a SCARA type robotic manipulator, is conducted. The experimental results show that the policy presented in the paper is effective.展开更多
Aim To analyse the influence of knowledge base on the performance of the fuzzy controller of the electrohydraulic position control system,and to determine their selection cri- teria. Methods Experiments based on diffe...Aim To analyse the influence of knowledge base on the performance of the fuzzy controller of the electrohydraulic position control system,and to determine their selection cri- teria. Methods Experiments based on different membership functions,scaling factors and con-trol rules were done separately.The experiment results and the influence of different know- ledge base on the control performance were analysed in theory so that criteria of selcting knowledge base can be summarized correctly.Results Knowledge base,including membershipfunctions, scaling factors and control rules,has a crucial effect on the fuzzy control system.Suitably selected knowledge base can lead to good control performance of fuzzy control sys-tem. Conclusion Being symmetric,having an intersection ratio of 1 and satisfying width con- dition are three necessities for selecting membership functions.Selecting scaling factors dependson both the system requirement and a comprehensive analysis in the overshoot,oscillation, rising time and stability. Integrity and continuity must be guaranteed when determining control rules.展开更多
A full-order sliding mode control based on a fuzzy extended state observer is proposed to control the uncertain chaos in the permanent magnet synchronous motor. Through a simple coordinate transformation, the chaotic ...A full-order sliding mode control based on a fuzzy extended state observer is proposed to control the uncertain chaos in the permanent magnet synchronous motor. Through a simple coordinate transformation, the chaotic PMSM model is transformed into the Brunovsky canonical form, which is more suitable for the controller design. Based on the fuzzy control theory, a fuzzy extended state observer is developed to estimate the unknown states and uncertainties, and the restriction that all the system states should be completely measurable is avoided. Thereafter, a full-order sliding mode controller is designed to ensure the convergence of all system states without any chattering problem. Comparative simulations show the effectiveness and superior performance of the proposed control method.展开更多
This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different he...This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance.展开更多
The design of intelligent control systems has become an area of intense research interest. The development of an effective methodology for the design of such control systems undoubtedly requires the synthesis of many ...The design of intelligent control systems has become an area of intense research interest. The development of an effective methodology for the design of such control systems undoubtedly requires the synthesis of many concepts from artificial intelligence. The most commonly used controller in the industry field is the proportional-plus-integral-plus-derivative (PID) controller. Fuzzy logic controller (FLC) provides an alternative to PID controller, especially when the available system models are inexact or unavailable. Also rapid advances in digital technologies have given designers the option of implementing controllers using Field Programmable Gate Array (FPGA) which depends on parallel programming. This method has many advantages over classical microprocessors. In this research, A model of the fuzzy PID control system is implemented in real time with a Xilinx FPGA (Spartan-3A, Xilinx Company, 2007). It is introduced to maintain a constant speed to when the load varies.,The model of a DC motor is considered as a second order system with load variation as a an example for complex model systems. For comparison purpose, two widely used controllers “PID and Fuzzy” have been implemented in the same FPGA card to examine the performance of the proposed system. These controllers have been tested using Matlab/Simulink program under speed and load variation conditions. The controllers were implemented to run the motor as real time application under speed and load variation conditions and showed the superiority of Fuzzy-PID.展开更多
A fuzzy control algorithm of asymmetric fuzzy strategy is introduced for a servo-pneumatic position system. It can effectively solve the difficult problems of single rod low friction cylinders, which are mainly caused...A fuzzy control algorithm of asymmetric fuzzy strategy is introduced for a servo-pneumatic position system. It can effectively solve the difficult problems of single rod low friction cylinders, which are mainly caused by asymmetric structures and different friction characteristics in two directions. On the basis of this algorithm, a traditional PID control is used to improve dynamic performance. Furthermore, a new asymmetric fuzzy PID control with α factor is advanced to improve the self-adaptability and robustness of the system. Both the theoretical analyses and experimental results prove that, with this control strategy, the dynamic performance of the system can be greatly improved. The system using this control algorithm has strong robustness and it obtains desired overshoot and repeatability in both transient and steady-state responses.展开更多
This paper provided a fuzzy-PI control. It makes use of the advantages of fuzzy controller for dynamic characteristics, and the advantages of PI control for steady characteristics of pneumatic position servo. Experime...This paper provided a fuzzy-PI control. It makes use of the advantages of fuzzy controller for dynamic characteristics, and the advantages of PI control for steady characteristics of pneumatic position servo. Experimental results show that positioning accuracy meets the conventional industrial needs, and prove that the fuzzy-PI controller to be correct and more effective than the usual PID controller. The control method improve the dynamic and steady characteristics of the system.展开更多
Aimed at the problems of large torque ripple,obvious chattering and poor estimation accuracy of back-EMFs in traditional permanent magnet synchronous motor(PMSM)control system with sliding mode observer(SMO),an improv...Aimed at the problems of large torque ripple,obvious chattering and poor estimation accuracy of back-EMFs in traditional permanent magnet synchronous motor(PMSM)control system with sliding mode observer(SMO),an improved control strategy for PMSM based on a fuzzy sliding mode control(FSMC)and a two-stage filter sliding mode observer(TFSMO)is proposed.Firstly,a novel reaching law(NRL)used in the speed loop based on hyperbolic sine function is studied,and fuzzy control ideal is shown to achieve the self-turning of the parameter for the reaching law,thus a fuzzy integral sliding mode controller based on the novel reaching law is designed in speed loop.Then the suppression effect upon chattering caused by the novel reaching law is analyzed strictly by discrete equation.Secondly,in order to restrain the high frequency components and measurement noise in back-EMFs,a two-stage filter structure based on a variable cut-off frequency low-pass filter(VCF-LPF)and a modified back-EMF observer(MBO)is conceived,and the rotor position is compensated reasonably.As a result,a TFSMO is designed.The stability of the proposed control strategy is proved by Lyapunov Criterion.The simulation and experiment results show that,compared with traditional SMO,the controller suggested above can obtain very nice system respond when the motor starts and is subjected to external disturbances,and effectively improve the problems about torque ripple,chattering and the estimation accuracy of back-EMF.展开更多
A high-performance digital servo system built on the platform of a field programmable gate array (FPGA),a fully digitized hardware design scheme of a direct torque control (DTC) and a low speed permanent magnet synchr...A high-performance digital servo system built on the platform of a field programmable gate array (FPGA),a fully digitized hardware design scheme of a direct torque control (DTC) and a low speed permanent magnet synchronous motor (PMSM) is proposed. The DTC strategy of PMSM is described with Verilog hardware description language and is employed on-chip FPGA in accordance with the electronic design automation design methodology. Due to large torque ripples in low speed PMSM,the hysteresis controller in a conventional PMSM DTC was replaced by a fuzzy controller. This FPGA scheme integrates the direct torque controller strategy,the time speed measurement algorithm,the fuzzy regulating technique and the space vector pulse width modulation principle. Experimental results indicate the fuzzy controller can provide a controllable speed at 20 r min-1 and torque at 330 N m with satisfactory dynamic and static performance. Furthermore,the results show that this new control strategy decreases the torque ripple drastically and enhances control performance.展开更多
Robotic manipulators are widely used in applications that require fast and precise motion.Such devices,however,are prompt to nonlinear control issues due to the flexibility in joints and the friction in the motors wit...Robotic manipulators are widely used in applications that require fast and precise motion.Such devices,however,are prompt to nonlinear control issues due to the flexibility in joints and the friction in the motors within the dynamics of their rigid part.To address these issues,the Linear Matrix Inequalities(LMIs)and Parallel Distributed Compensation(PDC)approaches are implemented in the Takagy–Sugeno Fuzzy Model(T-SFM).We propose the following methodology;initially,the state space equations of the nonlinear manipulator model are derived.Next,a Takagy–Sugeno Fuzzy Model(T-SFM)technique is used for linearizing the state space equations of the nonlinear manipulator.The T-SFM controller is developed using the Parallel Distributed Compensation(PDC)method.The prime concept of the designed controller is to compensate for all the fuzzy rules.Furthermore,the Linear Matrix Inequalities(LMIs)are applied to generate adequate cases to ensure stability and control.Convex programming methods are applied to solve the developed LMIs problems.Simulations developed for the proposed model show that the proposed controller stabilized the system with zero tracking error in less than 1.5 s.展开更多
DC motors are widely used in industry such as mechanics, robotics, and aerospace engineering. In this paper, we present a high performance control method for position control of DC motors. Fault-tolerant control model...DC motors are widely used in industry such as mechanics, robotics, and aerospace engineering. In this paper, we present a high performance control method for position control of DC motors. Fault-tolerant control model are also addressed to combine with neuro-robust control approach. It is shown that with the proposed control algorithms, external disturbances and coupled dynamics inherent in the system are effectively compensated using neural network unit in which no analytical estimation on the upper bound of the reconstruction error and uncertainties is needed. Simulations on various flight conditions also confirm the effectiveness of the proposed methods.展开更多
Type-2 fuzzy logic systems have recently been utilized in many control processes due to their ability to model uncertainty. This research article proposes the position control of (DC) motor. The proposed algorithm of ...Type-2 fuzzy logic systems have recently been utilized in many control processes due to their ability to model uncertainty. This research article proposes the position control of (DC) motor. The proposed algorithm of this article lies in the application of a genetic algorithm interval type-2 fuzzy logic controller (GAIT2FLC) in the design of fuzzy controller for the position control of DC Motor. The entire system has been modeled using MATLAB R11a. The performance of the proposed GAIT2FLC is compared with that of its corresponding conventional genetic algorithm type-1 FLC in terms of several performance measures such as rise time, peak overshoot, settling time, integral absolute error (IAE) and integral of time multiplied absolute error (ITAE) and in each case, the proposed scheme shows improved performance over its conventional counterpart. Extensive simulation studies are conducted to compare the response of the given system with the conventional genetic algorithm type-1 fuzzy controller to the response given with the proposed GAIT2FLC scheme.展开更多
This paper focuses on the controller design using fuzzy sliding mode control(FSMC)with application to electro-mechanical brake(EMB)systems using BLDC Motor.The EMB controller transmits the control signal to the motor ...This paper focuses on the controller design using fuzzy sliding mode control(FSMC)with application to electro-mechanical brake(EMB)systems using BLDC Motor.The EMB controller transmits the control signal to the motor driver to rotate the motor.The torque distribution of motors is studied in this paper actually.Firstly,the model of the EMB system is established.Then the state observer is developed to estimate the vehicle states including the vehicle velocity and longitudinal force.Due to the fact that the EMB system is nonlinear and uncertain,a FSMC strategy based on wheel slip ratio is proposed,where both the normal and emergency braking conditions are taken into account.The equivalent control law of sliding mode controller is designed on the basis of the variation of the front axle and rear axle load during the brake process,while the switching control law is adjusted by the fuzzy corrector.The simulation results illustrate that the FSMC strategy has the superior performance,better adaptability to various types of roads,and shorter braking distance,as compared to PID control and traditional sliding mode control technologies.Finally,the hardware-in-loop(HIL)experimental results have exemplified the validation of the developed methodology.展开更多
基金This research is financially supported by the Ministry of Science and Technology of China(Grant No.2019YFE0112400)the Department of Science and Technology of Shandong Province(Grant No.2021CXGC011204).
文摘In this paper,a stable and adaptive sliding mode control(SMC)method for induction motors is introduced.Determining the parameters of this system has been one of the existing challenges.To solve this challenge,a new self-tuning type-2 fuzzy neural network calculates and updates the control system parameters with a fast mechanism.According to the dynamic changes of the system,in addition to the parameters of the SMC,the parameters of the type-2 fuzzy neural network are also updated online.The conditions for guaranteeing the convergence and stability of the control system are provided.In the simulation part,in order to test the proposed method,several uncertain models and load torque have been applied.Also,the results have been compared to the SMC based on the type-1 fuzzy system,the traditional SMC,and the PI controller.The average RMSE in different scenarios,for type-2 fuzzy SMC,is 0.0311,for type-1 fuzzy SMC is 0.0497,for traditional SMC is 0.0778,and finally for PI controller is 0.0997.
基金supported by the National Natural Science Foundation of China (62073303,61673356)Hubei Provincial Natural Science Foundation of China (2015CFA010)the 111 Project(B17040)。
文摘This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.
文摘In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transforming the three-phase currents and voltages into a rotating reference frame, commonly referred to as the “dq” frame. In this frame, the torque/speed and flux components are decoupled, allowing for independent control, by doing so, the motor’s speed can be regulated accurately and maintain a constant flux which is crucial to ensure optimal motor performance and efficiency. The research focused on studying and simulating a field-oriented control system using fuzzy control techniques for an induction motor. The aim was to address the issue of parameter variations, particularly the change in rotor resistance during motor operation, which causes the control system to deviate from the desired direction. This deviation implies to an increase in the magnetic flux value, specifically the flux component on the q-axis. By employing fuzzy logic techniques to regulate flux vector’s components in the dq frame, this problem was successfully resolved, ensuring that the magnetic flux value remains within the nominal limits. To enhance the control system’s performance, response speed, and efficiency of the motor, sliding mode controllers were implemented to regulate the current in the inner loop. The simulation results demonstrated the proficiency of the proposed methodology.
基金supported by the National Natural Science Foundation of China(51705084)the Natural Science Foundation of Guangdong Province of China(2018A030313999,2019A1515011602)+2 种基金the Fundamental Research Funds for the Central Universities(2018MS46,N2003032)the Opening Project of Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing,South China University of Technology(2019kfkt06)the Research Grants of the University of Macao(MYRG2017-00135-FST,MYRG2019-00028-FST)。
文摘This paper proposes a novel sampled-data asynchronous fuzzy output feedback control approach for active suspension systems in restricted frequency domain.In order to better investigate uncertain suspension dynamics,the sampleddata Takagi-Sugeno(T-S)fuzzy half-car active suspension(HCAS)system is considered,which is further modelled as a continuous system with an input delay.Firstly,considering that the fuzzy system and the fuzzy controller cannot share the identical premises due to the existence of input delay,a reconstructed method is employed to synchronize the time scales of membership functions between the fuzzy controller and the fuzzy system.Secondly,since external disturbances often belong to a restricted frequency range,a finite frequency control criterion is presented for control synthesis to reduce conservatism.Thirdly,given a full information of state variables is hardly available in practical suspension systems,a two-stage method is proposed to calculate the static output feedback control gains.Moreover,an iterative algorithm is proposed to compute the optimum solution.Finally,numerical simulations verify the effectiveness of the proposed controllers.
文摘A fuzzy neural network controller with the teaching controller guidance and parameter regulations for vector-controlled induction motor is proposed. The design procedures of the fuzzy neural controller and the teaching controller are described. The parameters of the membership function are regulated by an on-line learning algorithm. The speed responses of the system under the condition, where the target functions are chosen as I qs and ω, are analyzed. The system responses with the variant of parameter moment of inertial J, viscous coefficients B and torque constant K tare also analyzed. Simulation results show that the control scheme and the controller have the advantages of rapid speed response and good robustness.
文摘It is crucial for implementing force/position control of robotic manipulator under the constraint of unknown environment to determine the force control and the position control directions. This paper presents an on line algorithm to real timely estimate the tangent and the normal vectors of the constraint surface based on the measured contact force under the consideration of frictional force. A fuzzy synthesis policy is proposed to coordinate the conflict between the compliant force control and the stiff position control. An experimental study on an AdeptThree, a SCARA type robotic manipulator, is conducted. The experimental results show that the policy presented in the paper is effective.
文摘Aim To analyse the influence of knowledge base on the performance of the fuzzy controller of the electrohydraulic position control system,and to determine their selection cri- teria. Methods Experiments based on different membership functions,scaling factors and con-trol rules were done separately.The experiment results and the influence of different know- ledge base on the control performance were analysed in theory so that criteria of selcting knowledge base can be summarized correctly.Results Knowledge base,including membershipfunctions, scaling factors and control rules,has a crucial effect on the fuzzy control system.Suitably selected knowledge base can lead to good control performance of fuzzy control sys-tem. Conclusion Being symmetric,having an intersection ratio of 1 and satisfying width con- dition are three necessities for selecting membership functions.Selecting scaling factors dependson both the system requirement and a comprehensive analysis in the overshoot,oscillation, rising time and stability. Integrity and continuity must be guaranteed when determining control rules.
基金supported by the National Natural Science Foundation of China(Grant Nos.61403343 and 61433003)the Scientific Research Foundation of Education Department of Zhejiang Province,China(Grant No.Y201329260)the Natural Science Foundation of Zhejiang University of Technology,China(Grant No.1301103053408)
文摘A full-order sliding mode control based on a fuzzy extended state observer is proposed to control the uncertain chaos in the permanent magnet synchronous motor. Through a simple coordinate transformation, the chaotic PMSM model is transformed into the Brunovsky canonical form, which is more suitable for the controller design. Based on the fuzzy control theory, a fuzzy extended state observer is developed to estimate the unknown states and uncertainties, and the restriction that all the system states should be completely measurable is avoided. Thereafter, a full-order sliding mode controller is designed to ensure the convergence of all system states without any chattering problem. Comparative simulations show the effectiveness and superior performance of the proposed control method.
基金Project supported by Faculty of Technology,Department of Electrical Engineering,University of Batna,Algeria
文摘This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance.
文摘The design of intelligent control systems has become an area of intense research interest. The development of an effective methodology for the design of such control systems undoubtedly requires the synthesis of many concepts from artificial intelligence. The most commonly used controller in the industry field is the proportional-plus-integral-plus-derivative (PID) controller. Fuzzy logic controller (FLC) provides an alternative to PID controller, especially when the available system models are inexact or unavailable. Also rapid advances in digital technologies have given designers the option of implementing controllers using Field Programmable Gate Array (FPGA) which depends on parallel programming. This method has many advantages over classical microprocessors. In this research, A model of the fuzzy PID control system is implemented in real time with a Xilinx FPGA (Spartan-3A, Xilinx Company, 2007). It is introduced to maintain a constant speed to when the load varies.,The model of a DC motor is considered as a second order system with load variation as a an example for complex model systems. For comparison purpose, two widely used controllers “PID and Fuzzy” have been implemented in the same FPGA card to examine the performance of the proposed system. These controllers have been tested using Matlab/Simulink program under speed and load variation conditions. The controllers were implemented to run the motor as real time application under speed and load variation conditions and showed the superiority of Fuzzy-PID.
文摘A fuzzy control algorithm of asymmetric fuzzy strategy is introduced for a servo-pneumatic position system. It can effectively solve the difficult problems of single rod low friction cylinders, which are mainly caused by asymmetric structures and different friction characteristics in two directions. On the basis of this algorithm, a traditional PID control is used to improve dynamic performance. Furthermore, a new asymmetric fuzzy PID control with α factor is advanced to improve the self-adaptability and robustness of the system. Both the theoretical analyses and experimental results prove that, with this control strategy, the dynamic performance of the system can be greatly improved. The system using this control algorithm has strong robustness and it obtains desired overshoot and repeatability in both transient and steady-state responses.
文摘This paper provided a fuzzy-PI control. It makes use of the advantages of fuzzy controller for dynamic characteristics, and the advantages of PI control for steady characteristics of pneumatic position servo. Experimental results show that positioning accuracy meets the conventional industrial needs, and prove that the fuzzy-PI controller to be correct and more effective than the usual PID controller. The control method improve the dynamic and steady characteristics of the system.
基金National Key R&D Program of China(No.2018YFB1201602)。
文摘Aimed at the problems of large torque ripple,obvious chattering and poor estimation accuracy of back-EMFs in traditional permanent magnet synchronous motor(PMSM)control system with sliding mode observer(SMO),an improved control strategy for PMSM based on a fuzzy sliding mode control(FSMC)and a two-stage filter sliding mode observer(TFSMO)is proposed.Firstly,a novel reaching law(NRL)used in the speed loop based on hyperbolic sine function is studied,and fuzzy control ideal is shown to achieve the self-turning of the parameter for the reaching law,thus a fuzzy integral sliding mode controller based on the novel reaching law is designed in speed loop.Then the suppression effect upon chattering caused by the novel reaching law is analyzed strictly by discrete equation.Secondly,in order to restrain the high frequency components and measurement noise in back-EMFs,a two-stage filter structure based on a variable cut-off frequency low-pass filter(VCF-LPF)and a modified back-EMF observer(MBO)is conceived,and the rotor position is compensated reasonably.As a result,a TFSMO is designed.The stability of the proposed control strategy is proved by Lyapunov Criterion.The simulation and experiment results show that,compared with traditional SMO,the controller suggested above can obtain very nice system respond when the motor starts and is subjected to external disturbances,and effectively improve the problems about torque ripple,chattering and the estimation accuracy of back-EMF.
基金the Natural Science Foundation of Hubei Province (No.2005ABA301)
文摘A high-performance digital servo system built on the platform of a field programmable gate array (FPGA),a fully digitized hardware design scheme of a direct torque control (DTC) and a low speed permanent magnet synchronous motor (PMSM) is proposed. The DTC strategy of PMSM is described with Verilog hardware description language and is employed on-chip FPGA in accordance with the electronic design automation design methodology. Due to large torque ripples in low speed PMSM,the hysteresis controller in a conventional PMSM DTC was replaced by a fuzzy controller. This FPGA scheme integrates the direct torque controller strategy,the time speed measurement algorithm,the fuzzy regulating technique and the space vector pulse width modulation principle. Experimental results indicate the fuzzy controller can provide a controllable speed at 20 r min-1 and torque at 330 N m with satisfactory dynamic and static performance. Furthermore,the results show that this new control strategy decreases the torque ripple drastically and enhances control performance.
文摘Robotic manipulators are widely used in applications that require fast and precise motion.Such devices,however,are prompt to nonlinear control issues due to the flexibility in joints and the friction in the motors within the dynamics of their rigid part.To address these issues,the Linear Matrix Inequalities(LMIs)and Parallel Distributed Compensation(PDC)approaches are implemented in the Takagy–Sugeno Fuzzy Model(T-SFM).We propose the following methodology;initially,the state space equations of the nonlinear manipulator model are derived.Next,a Takagy–Sugeno Fuzzy Model(T-SFM)technique is used for linearizing the state space equations of the nonlinear manipulator.The T-SFM controller is developed using the Parallel Distributed Compensation(PDC)method.The prime concept of the designed controller is to compensate for all the fuzzy rules.Furthermore,the Linear Matrix Inequalities(LMIs)are applied to generate adequate cases to ensure stability and control.Convex programming methods are applied to solve the developed LMIs problems.Simulations developed for the proposed model show that the proposed controller stabilized the system with zero tracking error in less than 1.5 s.
文摘DC motors are widely used in industry such as mechanics, robotics, and aerospace engineering. In this paper, we present a high performance control method for position control of DC motors. Fault-tolerant control model are also addressed to combine with neuro-robust control approach. It is shown that with the proposed control algorithms, external disturbances and coupled dynamics inherent in the system are effectively compensated using neural network unit in which no analytical estimation on the upper bound of the reconstruction error and uncertainties is needed. Simulations on various flight conditions also confirm the effectiveness of the proposed methods.
文摘Type-2 fuzzy logic systems have recently been utilized in many control processes due to their ability to model uncertainty. This research article proposes the position control of (DC) motor. The proposed algorithm of this article lies in the application of a genetic algorithm interval type-2 fuzzy logic controller (GAIT2FLC) in the design of fuzzy controller for the position control of DC Motor. The entire system has been modeled using MATLAB R11a. The performance of the proposed GAIT2FLC is compared with that of its corresponding conventional genetic algorithm type-1 FLC in terms of several performance measures such as rise time, peak overshoot, settling time, integral absolute error (IAE) and integral of time multiplied absolute error (ITAE) and in each case, the proposed scheme shows improved performance over its conventional counterpart. Extensive simulation studies are conducted to compare the response of the given system with the conventional genetic algorithm type-1 fuzzy controller to the response given with the proposed GAIT2FLC scheme.
基金This work was supported by the National Natural Science Foundation of China under Grant[number 51575167]。
文摘This paper focuses on the controller design using fuzzy sliding mode control(FSMC)with application to electro-mechanical brake(EMB)systems using BLDC Motor.The EMB controller transmits the control signal to the motor driver to rotate the motor.The torque distribution of motors is studied in this paper actually.Firstly,the model of the EMB system is established.Then the state observer is developed to estimate the vehicle states including the vehicle velocity and longitudinal force.Due to the fact that the EMB system is nonlinear and uncertain,a FSMC strategy based on wheel slip ratio is proposed,where both the normal and emergency braking conditions are taken into account.The equivalent control law of sliding mode controller is designed on the basis of the variation of the front axle and rear axle load during the brake process,while the switching control law is adjusted by the fuzzy corrector.The simulation results illustrate that the FSMC strategy has the superior performance,better adaptability to various types of roads,and shorter braking distance,as compared to PID control and traditional sliding mode control technologies.Finally,the hardware-in-loop(HIL)experimental results have exemplified the validation of the developed methodology.