期刊文献+
共找到2,597篇文章
< 1 2 130 >
每页显示 20 50 100
Direct-Torque Neuro-Fuzzy Control of Induction Motor 被引量:3
1
作者 XU Jun - peng CHEN Yan- feng LI Guo - hou 《河南科技学院学报》 2007年第3期62-65,共4页
Fuzzy systems are currently being used in a wide field of industrial and scientific applications.Since the design and especially the optimization process of fuzzy systems can be very time consuming,it is convenient to... Fuzzy systems are currently being used in a wide field of industrial and scientific applications.Since the design and especially the optimization process of fuzzy systems can be very time consuming,it is convenient to have algorithms which construct and optimize them automatically.In order to improve the system stability and raise the response speed,a new control scheme,direct-torque neuro-fuzzy control for induction motor drive,was put forward.The design and tuning procedure have been described.Also,the improved stator flux estimation algorithm,which guarantees eccentric estimated flux has been proposed. 展开更多
关键词 感应电动机 神经模糊系统 神经网络 直接转矩控制
下载PDF
A Stable Fuzzy-Based Computational Model and Control for Inductions Motors
2
作者 Yongqiu Liu Shaohui Zhong +3 位作者 Nasreen Kausar Chunwei Zhang Ardashir Mohammadzadeh Dragan Pamucar 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期793-812,共20页
In this paper,a stable and adaptive sliding mode control(SMC)method for induction motors is introduced.Determining the parameters of this system has been one of the existing challenges.To solve this challenge,a new se... In this paper,a stable and adaptive sliding mode control(SMC)method for induction motors is introduced.Determining the parameters of this system has been one of the existing challenges.To solve this challenge,a new self-tuning type-2 fuzzy neural network calculates and updates the control system parameters with a fast mechanism.According to the dynamic changes of the system,in addition to the parameters of the SMC,the parameters of the type-2 fuzzy neural network are also updated online.The conditions for guaranteeing the convergence and stability of the control system are provided.In the simulation part,in order to test the proposed method,several uncertain models and load torque have been applied.Also,the results have been compared to the SMC based on the type-1 fuzzy system,the traditional SMC,and the PI controller.The average RMSE in different scenarios,for type-2 fuzzy SMC,is 0.0311,for type-1 fuzzy SMC is 0.0497,for traditional SMC is 0.0778,and finally for PI controller is 0.0997. 展开更多
关键词 Sliding mode control self-tuning type-2 fuzzy systems inductions motor parameters uncertainty
下载PDF
Enhanced Fuzzy Logic Control Model and Sliding Mode Based on Field Oriented Control of Induction Motor
3
作者 Alaa Tahhan Feyzullah Temurtaş 《World Journal of Engineering and Technology》 2024年第1期65-79,共15页
In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transfo... In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transforming the three-phase currents and voltages into a rotating reference frame, commonly referred to as the “dq” frame. In this frame, the torque/speed and flux components are decoupled, allowing for independent control, by doing so, the motor’s speed can be regulated accurately and maintain a constant flux which is crucial to ensure optimal motor performance and efficiency. The research focused on studying and simulating a field-oriented control system using fuzzy control techniques for an induction motor. The aim was to address the issue of parameter variations, particularly the change in rotor resistance during motor operation, which causes the control system to deviate from the desired direction. This deviation implies to an increase in the magnetic flux value, specifically the flux component on the q-axis. By employing fuzzy logic techniques to regulate flux vector’s components in the dq frame, this problem was successfully resolved, ensuring that the magnetic flux value remains within the nominal limits. To enhance the control system’s performance, response speed, and efficiency of the motor, sliding mode controllers were implemented to regulate the current in the inner loop. The simulation results demonstrated the proficiency of the proposed methodology. 展开更多
关键词 Induction motor Vector control fuzzy Logic control Sliding Mode
下载PDF
INDUCTION MOTOR SPEED CONTROL SYSTEM BASED ON FUZZY NEURAL NETWORK 被引量:1
4
作者 徐小增 李叶松 秦忆 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第3期195-199,共5页
A fuzzy neural network controller with the teaching controller guidance and parameter regulations for vector-controlled induction motor is proposed. The design procedures of the fuzzy neural controller and the teachin... A fuzzy neural network controller with the teaching controller guidance and parameter regulations for vector-controlled induction motor is proposed. The design procedures of the fuzzy neural controller and the teaching controller are described. The parameters of the membership function are regulated by an on-line learning algorithm. The speed responses of the system under the condition, where the target functions are chosen as I qs and ω, are analyzed. The system responses with the variant of parameter moment of inertial J, viscous coefficients B and torque constant K tare also analyzed. Simulation results show that the control scheme and the controller have the advantages of rapid speed response and good robustness. 展开更多
关键词 induction motor fuzzy neural network vector control speed control system
下载PDF
A novel fuzzy logic direct torque controller for a permanent magnet synchronous motor with a field programmable gate array 被引量:1
5
作者 陈永军 《Journal of Chongqing University》 CAS 2008年第3期228-233,共6页
A high-performance digital servo system built on the platform of a field programmable gate array (FPGA),a fully digitized hardware design scheme of a direct torque control (DTC) and a low speed permanent magnet synchr... A high-performance digital servo system built on the platform of a field programmable gate array (FPGA),a fully digitized hardware design scheme of a direct torque control (DTC) and a low speed permanent magnet synchronous motor (PMSM) is proposed. The DTC strategy of PMSM is described with Verilog hardware description language and is employed on-chip FPGA in accordance with the electronic design automation design methodology. Due to large torque ripples in low speed PMSM,the hysteresis controller in a conventional PMSM DTC was replaced by a fuzzy controller. This FPGA scheme integrates the direct torque controller strategy,the time speed measurement algorithm,the fuzzy regulating technique and the space vector pulse width modulation principle. Experimental results indicate the fuzzy controller can provide a controllable speed at 20 r min-1 and torque at 330 N m with satisfactory dynamic and static performance. Furthermore,the results show that this new control strategy decreases the torque ripple drastically and enhances control performance. 展开更多
关键词 fuzzy control direct torque control field programmable gate array permanent magnet synchronous motor
下载PDF
Full-order sliding mode control of uncertain chaos in a permanent magnet synchronous motor based on a fuzzy extended state observer 被引量:9
6
作者 陈强 南余荣 +1 位作者 郑恒火 任雪梅 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第11期157-162,共6页
A full-order sliding mode control based on a fuzzy extended state observer is proposed to control the uncertain chaos in the permanent magnet synchronous motor. Through a simple coordinate transformation, the chaotic ... A full-order sliding mode control based on a fuzzy extended state observer is proposed to control the uncertain chaos in the permanent magnet synchronous motor. Through a simple coordinate transformation, the chaotic PMSM model is transformed into the Brunovsky canonical form, which is more suitable for the controller design. Based on the fuzzy control theory, a fuzzy extended state observer is developed to estimate the unknown states and uncertainties, and the restriction that all the system states should be completely measurable is avoided. Thereafter, a full-order sliding mode controller is designed to ensure the convergence of all system states without any chattering problem. Comparative simulations show the effectiveness and superior performance of the proposed control method. 展开更多
关键词 permanent magnet synchronous motor chaotic system sliding mode control fuzzy extended stateobserver
下载PDF
Genetic algorithm and particle swarm optimization tuned fuzzy PID controller on direct torque control of dual star induction motor 被引量:13
7
作者 BOUKHALFA Ghoulemallah BELKACEM Sebti +1 位作者 CHIKHI Abdesselem BENAGGOUNE Said 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第7期1886-1896,共11页
This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different he... This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance. 展开更多
关键词 dual star induction motor drive direct torque control particle swarm optimization (PSO) fuzzy logic control genetic algorithms
下载PDF
Fuzzy Sliding Mode Control Based on Longitudinal Force Estimation for Electro-mechanical Braking Systems using BLDC Motor 被引量:4
8
作者 Xiaoyan Peng Mingfei Jia +2 位作者 Lei He Xiang Yu Yibin Lv 《CES Transactions on Electrical Machines and Systems》 2018年第1期142-151,共10页
This paper focuses on the controller design using fuzzy sliding mode control(FSMC)with application to electro-mechanical brake(EMB)systems using BLDC Motor.The EMB controller transmits the control signal to the motor ... This paper focuses on the controller design using fuzzy sliding mode control(FSMC)with application to electro-mechanical brake(EMB)systems using BLDC Motor.The EMB controller transmits the control signal to the motor driver to rotate the motor.The torque distribution of motors is studied in this paper actually.Firstly,the model of the EMB system is established.Then the state observer is developed to estimate the vehicle states including the vehicle velocity and longitudinal force.Due to the fact that the EMB system is nonlinear and uncertain,a FSMC strategy based on wheel slip ratio is proposed,where both the normal and emergency braking conditions are taken into account.The equivalent control law of sliding mode controller is designed on the basis of the variation of the front axle and rear axle load during the brake process,while the switching control law is adjusted by the fuzzy corrector.The simulation results illustrate that the FSMC strategy has the superior performance,better adaptability to various types of roads,and shorter braking distance,as compared to PID control and traditional sliding mode control technologies.Finally,the hardware-in-loop(HIL)experimental results have exemplified the validation of the developed methodology. 展开更多
关键词 BLDC motor electro-mechanical brake fuzzy sliding mode control longitudinal force estimation hardware-in-loop experiments wheel slip ratio
下载PDF
DC–DC Converter with Pi Controller for BLDC Motor Fuzzy Drive System
9
作者 S.Pandeeswari S.Jaganathan 《Computer Systems Science & Engineering》 SCIE EI 2023年第6期2811-2825,共15页
The Brushless DC Motor drive systems are used widely with renewable energy resources.The power converter controlling technique increases the performance by novel techniques and algorithms.Conventional approaches are m... The Brushless DC Motor drive systems are used widely with renewable energy resources.The power converter controlling technique increases the performance by novel techniques and algorithms.Conventional approaches are mostly focused on buck converter,Fuzzy logic control with various switching activity.In this proposed research work,the QPSO(Quantum Particle Swarm Optimization algorithm)is used on the switching state of converter from the generation unit of solar module.Through the duty cycle pulse from optimization function,the MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)of the Boost converter gets switched when BLDC(Brushless Direct Current Motor)motor drive system requires power.Voltage Source three phase inverter and Boost converter is controlled by proportional-integral(PI)controller.Based on the BLDC drive,the load utilized from the solar generating module.Experimental results analyzed every module of the proposed grid system,which are solar generation utilizes the irradiance and temperature depends on this the Photovoltaics(PV)power is generated and the QPSO with Duty cycle switching state is determined.The Boost converter module is boost stage based on generation and load is obtained.Single Ended Primary Inductor Converter(SEPIC)and Zeta converter model is compared with the proposed logic;the proposed boost converter achieves the results.Three phase inverter control,PI,and BLDC motor drive results.Thus the proposed grid model is constructed to obtain the better performance results than most recent literatures.Overall design model is done by using MATLAB/Simulink 2020a. 展开更多
关键词 Solar module fuzzy QPSO boost DC-DC converter BLDC motor drive three phase inverter PI controller
下载PDF
Fuzzy PID Controllers Using FPGA Technique for Real Time DC Motor Speed Control 被引量:4
10
作者 Basil Hamed Moayed Almobaied 《Intelligent Control and Automation》 2011年第3期233-240,共8页
The design of intelligent control systems has become an area of intense research interest. The development of an effective methodology for the design of such control systems undoubtedly requires the synthesis of many ... The design of intelligent control systems has become an area of intense research interest. The development of an effective methodology for the design of such control systems undoubtedly requires the synthesis of many concepts from artificial intelligence. The most commonly used controller in the industry field is the proportional-plus-integral-plus-derivative (PID) controller. Fuzzy logic controller (FLC) provides an alternative to PID controller, especially when the available system models are inexact or unavailable. Also rapid advances in digital technologies have given designers the option of implementing controllers using Field Programmable Gate Array (FPGA) which depends on parallel programming. This method has many advantages over classical microprocessors. In this research, A model of the fuzzy PID control system is implemented in real time with a Xilinx FPGA (Spartan-3A, Xilinx Company, 2007). It is introduced to maintain a constant speed to when the load varies.,The model of a DC motor is considered as a second order system with load variation as a an example for complex model systems. For comparison purpose, two widely used controllers “PID and Fuzzy” have been implemented in the same FPGA card to examine the performance of the proposed system. These controllers have been tested using Matlab/Simulink program under speed and load variation conditions. The controllers were implemented to run the motor as real time application under speed and load variation conditions and showed the superiority of Fuzzy-PID. 展开更多
关键词 DC motor fuzzy LOGIC control PID controlLER REAL Time FPGA
下载PDF
Comparative Study between the PID Regulator and the Fuzzy Regulator Applied to the Operation of a Brushless DC Motor 被引量:2
11
作者 Mamadou Sall Abdoulaye Kebe +1 位作者 Ibrahima Gueye Moustapha Diop 《Energy and Power Engineering》 2021年第11期365-376,共12页
This paper presents the results of research on speed regulation of a brushless DC motor</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">&l... This paper presents the results of research on speed regulation of a brushless DC motor</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">. </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">This is mainly a comparative study between a PID regulator and a fuzzy regulator applied to the operation of this type of engine in order to find the best control. The BLDC engine must operate under various speed and load conditions with improved performance and robust and complex speed control. Because of this complexity, the traditional PID command encounters difficulties in controlling the speed of a BLDC. Another control technique is currently developing and is producing good results. This is the fuzzy controller that handles process control problems, that is, managing a process based on a given set point per action on the variables that describe the process. To achieve the desired results, the brushless DC machine model will be studied. With the model obtained, both types of regulator will be tested. A synthesis of the observed comparison results will enable a conclusion to be drawn on the performance of the two types of regulators driving a BLDC (Brushless DC)</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">. 展开更多
关键词 fuzzy Logic controller PID controller Brushless DC motor DC motor
下载PDF
Type-2 Fuzzy Logic Controllers Based Genetic Algorithm for the Position Control of DC Motor 被引量:1
12
作者 Mohammed Zeki Al-Faiz Mohammed S. Saleh Ahmed A. Oglah 《Intelligent Control and Automation》 2013年第1期108-113,共6页
Type-2 fuzzy logic systems have recently been utilized in many control processes due to their ability to model uncertainty. This research article proposes the position control of (DC) motor. The proposed algorithm of ... Type-2 fuzzy logic systems have recently been utilized in many control processes due to their ability to model uncertainty. This research article proposes the position control of (DC) motor. The proposed algorithm of this article lies in the application of a genetic algorithm interval type-2 fuzzy logic controller (GAIT2FLC) in the design of fuzzy controller for the position control of DC Motor. The entire system has been modeled using MATLAB R11a. The performance of the proposed GAIT2FLC is compared with that of its corresponding conventional genetic algorithm type-1 FLC in terms of several performance measures such as rise time, peak overshoot, settling time, integral absolute error (IAE) and integral of time multiplied absolute error (ITAE) and in each case, the proposed scheme shows improved performance over its conventional counterpart. Extensive simulation studies are conducted to compare the response of the given system with the conventional genetic algorithm type-1 fuzzy controller to the response given with the proposed GAIT2FLC scheme. 展开更多
关键词 Type-2 fuzzy LOGIC controlLER GENETIC Algorithm DC motor
下载PDF
Robust fuzzy sliding-mode control for T-S model based permanent magnet synchronous motor
13
作者 张细政 王耀南 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第S1期68-73,共6页
A fuzzy sliding-mode control (FSMC) scheme based on T-S fuzzy models was proposed for the permanent magnet synchronous motor (PMSM) drive system to solve the speed tracking problem. A T-S fuzzy model was firstly forme... A fuzzy sliding-mode control (FSMC) scheme based on T-S fuzzy models was proposed for the permanent magnet synchronous motor (PMSM) drive system to solve the speed tracking problem. A T-S fuzzy model was firstly formed to represent the nonlinear system of PMSM. For converting the tracking control into a stabilization problem, a new control design was proposed to define the internal desired states. Then, the FSMC controller for PMSM system with parameter variation and load disturbance was designed based on the fuzzy model. The performance of the proposed controller was verified by experimental results on PMSM system. The results show that the FSMC scheme can drive the dynamics of PMSM into a designated sliding surface in finite time and guarantee the property of asymptotical stability. The information of upper bound of modeling errors as well as perturbations is not required when using the FSMC controller. 展开更多
关键词 PERMANENT MAGNET SYNCHRONOUS motor (PMSM) uncertain T-S nonlinear systems sliding-mode control fuzzy SLIDING surfaces linear matrix INEQUALITIES (LMIs)
下载PDF
Fuzzy-Logic Based Speed Control of Induction Motor Considering Core Loss into Account
14
作者 Mohammad Abdul Mannan Asif Islam +3 位作者 Mohammad Nasir Uddin Mohammad Kamrul Hassan Toshiaki Murata Junji Tamura 《Intelligent Control and Automation》 2012年第3期229-235,共7页
Rotor flux and torque of an induction motor (IM) are decoupled to obtain performance of DC motor. The decoupling strategy has been developed in terms of stator current components where the core loss is neglected. Many... Rotor flux and torque of an induction motor (IM) are decoupled to obtain performance of DC motor. The decoupling strategy has been developed in terms of stator current components where the core loss is neglected. Many different controllers including fuzzy logic controller (FLC) with neglecting core loss have been designed to control the speed of induction motor. The outcome of investigation about the effect of core loss on indirect field oriented control (IFOC) has been concluded that the actual flux and torque are not reached to the reference flux and torque if core loss is neglected. Thus, the purpose of this paper is to propose a fuzzy logic speed controller of induction motor where flux and torque decoupling strategy is decoupled in terms of magnetizing current instead of stator current to alleviate the effects of core loss. The performances of proposed fuzzy-logic-based controller have been verified by computer simulation. The simulation of speed control of IM using PI and FLC are performed. The simulation study for high-performance control of IM drive shows the superiority of the proposed fuzzy logic controller over the conventional PI controller. 展开更多
关键词 Indirect-Field-Oriented control PI controlLER fuzzy LOGIC controlLER INDUCTION motor Speed control
下载PDF
Implementation of Adaptive Neuro Fuzzy Inference System in Speed Control of Induction Motor Drives
15
作者 K. Naga Sujatha K. Vaisakh 《Journal of Intelligent Learning Systems and Applications》 2010年第2期110-118,共9页
A new speed control approach based on the Adaptive Neuro-Fuzzy Inference System (ANFIS) to a closed-loop, variable speed induction motor (IM) drive is proposed in this paper. ANFIS provides a nonlinear modeling of mot... A new speed control approach based on the Adaptive Neuro-Fuzzy Inference System (ANFIS) to a closed-loop, variable speed induction motor (IM) drive is proposed in this paper. ANFIS provides a nonlinear modeling of motor drive system and the motor speed can accurately track the reference signal. ANFIS has the advantages of employing expert knowledge from the fuzzy inference system and the learning capability of neural networks. The various functional blocks of the system which govern the system behavior for small variations about the operating point are derived, and the transient responses are presented. The proposed (ANFIS) controller is compared with PI controller by computer simulation through the MATLAB/SIMULINK software. The obtained results demonstrate the effectiveness of the proposed control scheme. 展开更多
关键词 ANFIS controlLER PI controlLER fuzzy LOGIC controlLER Artificial NEURAL Network controlLER INDUCTION motor Drive
下载PDF
Minimizing torque ripple in a brushless DC motor with fuzzy logic: applied to control rod driving mechanism of MNSR
16
作者 Mohammad Divandari Mehdi Hashemi-Tilehnoee +2 位作者 Bahram Asgari-Ziarati Mohammadreza Hosseinkhah Khashayar Sabagh 《Nuclear Science and Techniques》 SCIE CAS CSCD 2015年第1期50-56,共7页
A permanent magnet BLDC(brushless direct current) motor is used to move the control rod of a miniature neutron source reactor(MNSR). The BLDC motor drive is modeled using MATLAB/SIMULINK. Two main parts of the modelin... A permanent magnet BLDC(brushless direct current) motor is used to move the control rod of a miniature neutron source reactor(MNSR). The BLDC motor drive is modeled using MATLAB/SIMULINK. Two main parts of the modeling are the inverter switching and the current control. Current control with chopping used to minimize the torque ripple of the MNSR control rod drive. Fuzzy logic current control together with soft chopping control shows the best response of all the three strategies. The prototype drive mechanism has an ATmega32 controller and power MOSFET switches. The simulation results are compared with experimental drive mechanism. 展开更多
关键词 永磁无刷直流电机 控制棒驱动机构 微型反应堆 模糊逻辑 最小化 转矩波动 机用 SIMULINK模型
下载PDF
Thermal Compensation and Fuzzy Control for Developing a High-Precision Optical Lens Mold
17
作者 Chung-Ching Huang Fu Zhang Yi-Jen Yang 《Journal of Mechanics Engineering and Automation》 2018年第5期189-197,共9页
Precision plastic lenses often exhibit dimensional deviations due to the thermal expansion of the mold during injection molding.Although this deviation is smaller in micron-sized(1–5μm)lenses,it exceeds the toleranc... Precision plastic lenses often exhibit dimensional deviations due to the thermal expansion of the mold during injection molding.Although this deviation is smaller in micron-sized(1–5μm)lenses,it exceeds the tolerance requirement of such lenses.It is difficult to resolve this dimensional issue by using injection molding parameters(e.g.,melt temperature,injection speed,and hold pressure).In this study,the thermal analysis of a mold was conducted,and it was confirmed that the deviation of lens dimension was caused by the thermal instability and thermal expansion of the mold.Due to the inconsistent heat distribution of the fixed and the movable side of the mold,the position of the location system was displaced approximately 1 to 5μm.In this study,thermal compensation technology for this the mold was investigated.The temperature on both sides of the mold was measured,and mold temperature could be adjusted automatically using a control strategy based on fuzzy theory.During the mold preheating or mass production stage,the temperature on both sides of the mold could be easily adjusted to quickly obtain the required temperature range.The dilatation on both sides of the mold was revised to improve the alignment accuracy of the cavity,and the decenter error of these injection lenses was reduced to 1μm.This technology can markedly improve the production yield and efficiency of plastic products requiring an extremely high dimensional accuracy. 展开更多
关键词 fuzzy control temperature compensation decenter ERROR
下载PDF
Application of Fuzzy Control to Improve Flow Balance of Multi-Cavity Hot Runner System 被引量:2
18
作者 Chung-Ching Huang Shin-Min Hung +5 位作者 Wen-Wang Wu Yi-Jen Yang His-Jung Chang Jui-Wen Chang Chih-Husiung Chung Shen-Houng Chen 《Journal of Mechanics Engineering and Automation》 2012年第12期726-741,共16页
In this study, we propose a new temperature compensation control strategy for a multi-cavity hot runner injection molding system, At first, the melt filling time of each cavity can be measured by installing temperatur... In this study, we propose a new temperature compensation control strategy for a multi-cavity hot runner injection molding system, At first, the melt filling time of each cavity can be measured by installing temperature sensors on the position around end filling area, and filling time difference between the various cavities can be calculated. Then the melt temperature of each hot nozzle can be adjusted automatically by a control strategy established based on the Fuzzy Theory and a program compiled with LABVIEW software. Temperature changes the melt mobility, so the adjustment of temperature can equalize the filling time of the melt in each cavity, which can reduced the mass deviation between each cavity and make product properties of each cavity consistent. The conclusion of the experiment is as follows: For this contact lens box of a four-cavity Hot Runner mold, by applying hot runner temperature compensation control system, time difference can be reduced from 0.05 s to 0.01 s at each cavity, and the mass Standard deviation of the four cavity can be improved from 0.006 to 0.002. The ratio of imbalance can be reduced from 20% to 4%. Hence, the hot runner temperature compensation control system has significant feasibility and high potential in improving melt flow balance of multi-cavity molding application. 展开更多
关键词 fuzzy control MULTI-CAVITY flow balance hot runner molding technology temperature compensation.
下载PDF
Learning fuzzy controller and extended Kalman filter for sensorless induction motor robust against resistance variation 被引量:2
19
作者 Moulay Rachid DOUIRI Mohamed CHERKAOUI 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2012年第3期347-355,共9页
This paper presents a new sensorless vector controlled induction motor drive robust against rotor resistance variation. Indeed, the speed and rotor resistance are estimated using extended Kalman filter (EKF). Then, ... This paper presents a new sensorless vector controlled induction motor drive robust against rotor resistance variation. Indeed, the speed and rotor resistance are estimated using extended Kalman filter (EKF). Then, we introduce a new fuzzy logic speed controller based on learning by minimizing cost function. This strategy is based on a topology control self-organized and an algorithm for modifying the knowledge base of fuzzy corrector. The learning mechanism addresses the con- sequences of corrector rules, which are modified according to the comparison between the current speed of machine and an output signal or a desired trajectory. Thus, fuzzy associative memory is constructed to meet the criteria imposed in problems either control or pursuit. The consequent algorithm updating consists of a regulator mechanism allowing a fast and robust learning without unnecessarily compromising the control signal and steady- state performance. The performance of this new strategy is satisfactory, even in the presence of noise or when there are variations in the parameters of induction motor drive. 展开更多
关键词 extended Kalman filter induction motor learning fuzzy control rotor resistance sensorless control
原文传递
Fuzzy Controller Based 3Phase 4Wire Shunt Active Filter for Mitigation of Current Harmonics with Combined p-q and Id-Iq Control Strategies 被引量:4
20
作者 Mikkili Suresh Anup Kumar Panda Y. Suresh 《Energy and Power Engineering》 2011年第1期43-52,共10页
As more and more variable frequency drives (VFDs), electronic ballasts, battery chargers, and static Var compensators are installed in facilities, the problems related to harmonics are expected to get worse. As a resu... As more and more variable frequency drives (VFDs), electronic ballasts, battery chargers, and static Var compensators are installed in facilities, the problems related to harmonics are expected to get worse. As a result Active power filter (APF) gains much more attention due to excellent harmonic compensation. But still the performance of the active filter seems to be in contradictions with different control strategies. This paper presents detailed analysis to compare and elevate the performance of two control strategies for ex-tracting reference currents of shunt active filters under balanced, un-balanced and non-sinusoidal conditions by using Fuzzy controller. The well known methods, instantaneous real active and reactive power method (p-q) and active and reactive current method (id-iq) are two control methods which are extensively used in active filters. Extensive Simulations are carried out with fuzzy controller for both p-q and Id-Iq methods for different voltage conditions and adequate results were presented. Simulation results validate the superior per-formance of active and reactive current control strategy (id-iq) with fuzzy controller over active and reactive power control strategy (p-q) with fuzzy controller. 展开更多
关键词 HARMONIC compensation SHUNT Active Power Filter p-q control STRATEGY id-iq control STRATEGY fuzzy controller
下载PDF
上一页 1 2 130 下一页 到第
使用帮助 返回顶部