A new design scheme of direct adaptive fuzzy controller for a class of perturbed pure-feedback nonlinear systems is proposed. The design is based on backstepping and the approximation capability of the first type fuzz...A new design scheme of direct adaptive fuzzy controller for a class of perturbed pure-feedback nonlinear systems is proposed. The design is based on backstepping and the approximation capability of the first type fuzzy systems. A continuous robust term is adopted to minify the influence of modeling errors or disturbances. By introducing the modified integral-type Lyapunov function, the approach is able to avoid the requirement of the upper bound of the first time derivation of the high frequency control gain. Through theoretical analysis, the closed-loop control system is proven to be semi-globally uniformly ultimately bounded, with tracking error converging to a residual set.展开更多
In order to suppress the influence of uncertain factors on robot system and enable an uncertain robot system to track the reference input accurately,a strategy of combining composite nonlinear feedback(CNF)control and...In order to suppress the influence of uncertain factors on robot system and enable an uncertain robot system to track the reference input accurately,a strategy of combining composite nonlinear feedback(CNF)control and adaptive fuzzy control is studied,and a robot CNF controller based on adaptive fuzzy compensation is proposed.The key of this strategy is to use adaptive fuzzy control to approach the uncertainty of the system online,as the compensation term of the CNF controller,and make full use of the advantages of the two control methods to reduce the influence of uncertain factors on the performance of the system.The convergence of the closed-loop system is proved by feedback linearization and Lyapunov theory.The final simulation results confirm the effectiveness of this plan.展开更多
In this paper, a direct adaptive fuzzy tracking control is proposed for a class of uncertain single-input single-output nonlinear semi-strict feedback systems. Based on Takagi-Sugeno type fuzzy systems, a direct adapt...In this paper, a direct adaptive fuzzy tracking control is proposed for a class of uncertain single-input single-output nonlinear semi-strict feedback systems. Based on Takagi-Sugeno type fuzzy systems, a direct adaptive fuzzy tracking controller is developed by using the backstepping approach. The main advantage of the developed method is that for an n-th order system, only one parameter is needed to be adjusted online. It is proven that, under the appropriate assumptions, the developed scheme can achieve that the output system converges to a small neighborhood of the reference signal and all the signals in the closed-loop system remain bounded. The efficacy of the proposed algorithm is investigated by an illustrative simulation example of one link robot.展开更多
In this paper, a new fuzzy-neural adaptive control approach is developed for a class of single-input and single-output (SISO) nonlinear systems with unmeasured states. Using fuzzy neural networks to approximate the ...In this paper, a new fuzzy-neural adaptive control approach is developed for a class of single-input and single-output (SISO) nonlinear systems with unmeasured states. Using fuzzy neural networks to approximate the unknown nonlinear functions, a fuzzy- neural adaptive observer is introduced for state estimation as well as system identification. Under the framework of the backstepping design, fuzzy-neural adaptive output feedback control is constructed recursively. It is proven that the proposed fuzzy adaptive control approach guarantees the global boundedness property for all the signals, driving the tracking error to a small neighbordhood of the origin. Simulation example is included to illustrate the effectiveness of the proposed approach.展开更多
This paper is concerned with a fuzzy robust H∞ control problem via output feedbackfor a class of uncertain nonlinear systems. The uncertain nonlinear systemsare represented by fuzzy Takagi-Sugeno (T-S) model, and a...This paper is concerned with a fuzzy robust H∞ control problem via output feedbackfor a class of uncertain nonlinear systems. The uncertain nonlinear systemsare represented by fuzzy Takagi-Sugeno (T-S) model, and a fuzzy controller is designedbased on the state observer. A sufficient condition for the existence of fuzzycontroller is given in terms of the linear matrix inequalities (LMIs) and the adaptivelaw. Based on Lyapunov stability theorem, the proposed fuzzy control scheme suchthat the desired H∞performance is achieved in the sense that all the closed-loopsignals are uniformly ultimately bounded (UUB). Simulation results indicate theeffectiveness of the developed control scheme. In this paper, a less conservativefuzzy tracking controller is proposed, where the matching condition and the upperbound are avoided. Comparing with the existing works, the dimension of the LMIsof this paper is reduced.展开更多
In this paper, a fuzzy adaptive tracking control for uncertain strict-feedback nonlinear systems with unknown bounded disturbances is proposed. The generalized fuzzy hyperbolic model (GFHM) with better approximation p...In this paper, a fuzzy adaptive tracking control for uncertain strict-feedback nonlinear systems with unknown bounded disturbances is proposed. The generalized fuzzy hyperbolic model (GFHM) with better approximation performance is used to approximate the unknown nonlinear function in the system. The dynamic surface control (DSC) is used to design the controller, which not only avoids the “explosion of complexity” problem in the process of repeated derivation, but also makes the control system simpler in structure and lower in computational cost because only one adaptive law is designed in the controller design process. Through the Lyapunov stability analysis, all signals in the closed loop system designed in this paper are semi-globally uniformly ultimately bounded (SGUUB). Finally, the effectiveness of the method is verified by a simulation example.展开更多
A novel decentralized indirect adaptive output feedback fuzzy controller is developed for a class of large-scale uncertain nonlinear systems using error filtering.By the properly filtering of the observation error dyn...A novel decentralized indirect adaptive output feedback fuzzy controller is developed for a class of large-scale uncertain nonlinear systems using error filtering.By the properly filtering of the observation error dynamics,the strictly positive-real condition is guaranteed to hold such that the proposed output feedback and adaptation mechanisms are practicable in practice owing to the fact that its implementation does not require the observation error vector itself any more,which corrects the impracticable schemes in the previous literature involved.The presented control algorithm can ensure that all the signals of the closed-loop large-scale system keep uniformly ultimately bounded and that the tracking error converges to zero asymptotically.The decentralized output feedback fuzzy controller can be applied to address the longitudinal control problem of a string of vehicles within an automated highway system(AHS) and the effectiveness of the design procedure is supported by simulation results.展开更多
In this paper,a survey of adaptive fuzzy for uncertain nonlinear systems is presented.The first part introduces adaptive fuzzy control emergence and some typical control methods for uncertain nonlinear systems with ma...In this paper,a survey of adaptive fuzzy for uncertain nonlinear systems is presented.The first part introduces adaptive fuzzy control emergence and some typical control methods for uncertain nonlinear systems with matching conditions(single-input singleoutput systems,multi-input multi-output systems).The last part presents the adaptive fuzzy state feedback and output-feedback control methods for uncertain nonlinear systems with non-matching conditions based on the backstepping technique,including strictfeedback systems,pure-feedback systems and non-strict-feedback systems.展开更多
This study is concerned with the stabilization issue of nonlinear systems subject to parameter uncertainties. An interval type-2 T-S fuzzy model is used to represent the nonlinear systems subject to parameter uncertai...This study is concerned with the stabilization issue of nonlinear systems subject to parameter uncertainties. An interval type-2 T-S fuzzy model is used to represent the nonlinear systems subject to parameter uncertainties. An interval type-2 fuzzy static output feedback controller is designed to synthesize the interval type-2 T-S fuzzy systems. The membership-function-dependent stability conditions are derived by utilizing the information of upper and lower membership functions. The proposed stability conditions are presented in the form of linear matrix inequalities(LMIs). LMI-based stability conditions for interval type-2 fuzzy static output feedback H_∞ control synthesis are also developed.Several simulation examples are given to show the superiority of the proposed approach.展开更多
In this article,the problem of event-triggered adaptive fuzzy finite time control of nonstrict feedback fractional order nonlinear systems is investigated.By using the property of fuzzy basis function,the obstacle cau...In this article,the problem of event-triggered adaptive fuzzy finite time control of nonstrict feedback fractional order nonlinear systems is investigated.By using the property of fuzzy basis function,the obstacle caused by algebraic loop problems is successfully circumvented.Moreover,a new adaptive event-triggered scheme is designed under the unified framework of backstepping control method,which can largely reduce the amount of communications.The stability of the closed-loop system is ensured through fractional Lyapunov stability analysis.Finally,the effectiveness of the proposed scheme is verified by simulation examples.展开更多
The problem of state feedback controllers for a class of Takagi-Sugeno (T-S) Lipschitz nonlinear systems is investigated. A simple systematic and useful synthesis method is proposed based on the use of the different...The problem of state feedback controllers for a class of Takagi-Sugeno (T-S) Lipschitz nonlinear systems is investigated. A simple systematic and useful synthesis method is proposed based on the use of the differential mean value theorem (DMVT) and convex theory. The proposed design approach is based on the mean value theorem (MVT) to express the nonlinear error dynamics as a convex combination of known matrices with time varying coefficients as linear parameter varying (LPV) systems. Using the Lyapunov theory, stability conditions are obtained and expressed in terms of linear matrix inequalities (LMIs). The controller gains are then obtained by solving linear matrix inequalities. The effectiveness of the proposed approach for closed loop-field oriented control (CL-FOC) of permanent magnet synchronous machine (PMSM) drives is demonstrated through an illustrative simulation for the proof of these approaches. Furthermore, an extension for controller design with parameter uncertainties and perturbation performance is discussed.展开更多
The problems of stability and state feedback control for a class of discrete-time T-S fuzzy descriptor systems are investigated in this paper. Based on fuzzy Lyapunov function,a set of slack variables is introduced to...The problems of stability and state feedback control for a class of discrete-time T-S fuzzy descriptor systems are investigated in this paper. Based on fuzzy Lyapunov function,a set of slack variables is introduced to remove the basic semi-definite matrix inequality condition to check the regularity,causality and stability of discrete-time T-S fuzzy descriptor systems; a new sufficient condition for the discrete-time T-S fuzzy descriptor systems to be admissible is proposed in terms of strict linear matrix inequalities( LMIs). And a sufficient condition is proposed for the existence of state feedback controller in terms of a set of coupled strict LMIs.Finally,an illustrative example is presented to demonstrate the effectiveness of the proposed approach.展开更多
基金This work was supported by the National Natural Science Foundation of China (No. 60074013 & 10371106)the Foundation of the Education bureau of Jiangsu Province (No. KK0310067)the Foundation of Information Science Subject Group of Yangzhou University
文摘A new design scheme of direct adaptive fuzzy controller for a class of perturbed pure-feedback nonlinear systems is proposed. The design is based on backstepping and the approximation capability of the first type fuzzy systems. A continuous robust term is adopted to minify the influence of modeling errors or disturbances. By introducing the modified integral-type Lyapunov function, the approach is able to avoid the requirement of the upper bound of the first time derivation of the high frequency control gain. Through theoretical analysis, the closed-loop control system is proven to be semi-globally uniformly ultimately bounded, with tracking error converging to a residual set.
基金Supported by the National Natural Science Foundation of China(No.61663030,61663032)Natural Science Foundation of Jiangxi Province(No.20142BAB207021)+4 种基金the Foundation of Jiangxi Educational Committee(No.GJJ150753)the Innovation Fund Designated for Graduate Students of Nanchang Hangkong University(No.YC2017027)the Open Fund of Key Laboratory of Image Processing and Pattern Recognition of Jiangxi Province(Nanchang Hangkong University)(No.TX201404003)Key Laboratory of Nondestructive Testing(Nanchang Hangkong University),Ministry of Education(No.ZD29529005)the Reform Project of Degree and Postgraduate Education in Jiangxi(No.JXYJG-2017-131)
文摘In order to suppress the influence of uncertain factors on robot system and enable an uncertain robot system to track the reference input accurately,a strategy of combining composite nonlinear feedback(CNF)control and adaptive fuzzy control is studied,and a robot CNF controller based on adaptive fuzzy compensation is proposed.The key of this strategy is to use adaptive fuzzy control to approach the uncertainty of the system online,as the compensation term of the CNF controller,and make full use of the advantages of the two control methods to reduce the influence of uncertain factors on the performance of the system.The convergence of the closed-loop system is proved by feedback linearization and Lyapunov theory.The final simulation results confirm the effectiveness of this plan.
文摘In this paper, a direct adaptive fuzzy tracking control is proposed for a class of uncertain single-input single-output nonlinear semi-strict feedback systems. Based on Takagi-Sugeno type fuzzy systems, a direct adaptive fuzzy tracking controller is developed by using the backstepping approach. The main advantage of the developed method is that for an n-th order system, only one parameter is needed to be adjusted online. It is proven that, under the appropriate assumptions, the developed scheme can achieve that the output system converges to a small neighborhood of the reference signal and all the signals in the closed-loop system remain bounded. The efficacy of the proposed algorithm is investigated by an illustrative simulation example of one link robot.
基金supported by National Natural Science Foundationof China (No. 60674056)National Key Basic Research and Devel-opment Program of China (No. 2002CB312200)+1 种基金Outstanding YouthFunds of Liaoning Province (No. 2005219001)Educational De-partment of Liaoning Province (No. 2006R29 and No. 2007T80)
文摘In this paper, a new fuzzy-neural adaptive control approach is developed for a class of single-input and single-output (SISO) nonlinear systems with unmeasured states. Using fuzzy neural networks to approximate the unknown nonlinear functions, a fuzzy- neural adaptive observer is introduced for state estimation as well as system identification. Under the framework of the backstepping design, fuzzy-neural adaptive output feedback control is constructed recursively. It is proven that the proposed fuzzy adaptive control approach guarantees the global boundedness property for all the signals, driving the tracking error to a small neighbordhood of the origin. Simulation example is included to illustrate the effectiveness of the proposed approach.
文摘This paper is concerned with a fuzzy robust H∞ control problem via output feedbackfor a class of uncertain nonlinear systems. The uncertain nonlinear systemsare represented by fuzzy Takagi-Sugeno (T-S) model, and a fuzzy controller is designedbased on the state observer. A sufficient condition for the existence of fuzzycontroller is given in terms of the linear matrix inequalities (LMIs) and the adaptivelaw. Based on Lyapunov stability theorem, the proposed fuzzy control scheme suchthat the desired H∞performance is achieved in the sense that all the closed-loopsignals are uniformly ultimately bounded (UUB). Simulation results indicate theeffectiveness of the developed control scheme. In this paper, a less conservativefuzzy tracking controller is proposed, where the matching condition and the upperbound are avoided. Comparing with the existing works, the dimension of the LMIsof this paper is reduced.
文摘In this paper, a fuzzy adaptive tracking control for uncertain strict-feedback nonlinear systems with unknown bounded disturbances is proposed. The generalized fuzzy hyperbolic model (GFHM) with better approximation performance is used to approximate the unknown nonlinear function in the system. The dynamic surface control (DSC) is used to design the controller, which not only avoids the “explosion of complexity” problem in the process of repeated derivation, but also makes the control system simpler in structure and lower in computational cost because only one adaptive law is designed in the controller design process. Through the Lyapunov stability analysis, all signals in the closed loop system designed in this paper are semi-globally uniformly ultimately bounded (SGUUB). Finally, the effectiveness of the method is verified by a simulation example.
基金supported by the National Natural Science Foundation of China (6096400460864004+2 种基金50808025)the Fok Ying Tung Education Foundation (122013)the Scientific Research Fund of Hunan Provincial Education Department (08A003)
文摘A novel decentralized indirect adaptive output feedback fuzzy controller is developed for a class of large-scale uncertain nonlinear systems using error filtering.By the properly filtering of the observation error dynamics,the strictly positive-real condition is guaranteed to hold such that the proposed output feedback and adaptation mechanisms are practicable in practice owing to the fact that its implementation does not require the observation error vector itself any more,which corrects the impracticable schemes in the previous literature involved.The presented control algorithm can ensure that all the signals of the closed-loop large-scale system keep uniformly ultimately bounded and that the tracking error converges to zero asymptotically.The decentralized output feedback fuzzy controller can be applied to address the longitudinal control problem of a string of vehicles within an automated highway system(AHS) and the effectiveness of the design procedure is supported by simulation results.
基金Thisworkwas supported in part by theNationalNatural Science Foundation ofChina[grant number 61773188].
文摘In this paper,a survey of adaptive fuzzy for uncertain nonlinear systems is presented.The first part introduces adaptive fuzzy control emergence and some typical control methods for uncertain nonlinear systems with matching conditions(single-input singleoutput systems,multi-input multi-output systems).The last part presents the adaptive fuzzy state feedback and output-feedback control methods for uncertain nonlinear systems with non-matching conditions based on the backstepping technique,including strictfeedback systems,pure-feedback systems and non-strict-feedback systems.
基金supported by the National Natural Science Foundation of China under Grant Nos.61134001,51477146the Applied Basic Research Program of Science and Technology Department of Sichuan Province,China under Grant No.2016JY0085
文摘This study is concerned with the stabilization issue of nonlinear systems subject to parameter uncertainties. An interval type-2 T-S fuzzy model is used to represent the nonlinear systems subject to parameter uncertainties. An interval type-2 fuzzy static output feedback controller is designed to synthesize the interval type-2 T-S fuzzy systems. The membership-function-dependent stability conditions are derived by utilizing the information of upper and lower membership functions. The proposed stability conditions are presented in the form of linear matrix inequalities(LMIs). LMI-based stability conditions for interval type-2 fuzzy static output feedback H_∞ control synthesis are also developed.Several simulation examples are given to show the superiority of the proposed approach.
基金the Funds of National Science of China under Grant Nos.61973146 and 61773188in part by the Distinguished Young Scientific Research Talents Plan in Liaoning Province under Grant Nos.XLYC1907077 and JQL201915402。
文摘In this article,the problem of event-triggered adaptive fuzzy finite time control of nonstrict feedback fractional order nonlinear systems is investigated.By using the property of fuzzy basis function,the obstacle caused by algebraic loop problems is successfully circumvented.Moreover,a new adaptive event-triggered scheme is designed under the unified framework of backstepping control method,which can largely reduce the amount of communications.The stability of the closed-loop system is ensured through fractional Lyapunov stability analysis.Finally,the effectiveness of the proposed scheme is verified by simulation examples.
文摘The problem of state feedback controllers for a class of Takagi-Sugeno (T-S) Lipschitz nonlinear systems is investigated. A simple systematic and useful synthesis method is proposed based on the use of the differential mean value theorem (DMVT) and convex theory. The proposed design approach is based on the mean value theorem (MVT) to express the nonlinear error dynamics as a convex combination of known matrices with time varying coefficients as linear parameter varying (LPV) systems. Using the Lyapunov theory, stability conditions are obtained and expressed in terms of linear matrix inequalities (LMIs). The controller gains are then obtained by solving linear matrix inequalities. The effectiveness of the proposed approach for closed loop-field oriented control (CL-FOC) of permanent magnet synchronous machine (PMSM) drives is demonstrated through an illustrative simulation for the proof of these approaches. Furthermore, an extension for controller design with parameter uncertainties and perturbation performance is discussed.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61004038)
文摘The problems of stability and state feedback control for a class of discrete-time T-S fuzzy descriptor systems are investigated in this paper. Based on fuzzy Lyapunov function,a set of slack variables is introduced to remove the basic semi-definite matrix inequality condition to check the regularity,causality and stability of discrete-time T-S fuzzy descriptor systems; a new sufficient condition for the discrete-time T-S fuzzy descriptor systems to be admissible is proposed in terms of strict linear matrix inequalities( LMIs). And a sufficient condition is proposed for the existence of state feedback controller in terms of a set of coupled strict LMIs.Finally,an illustrative example is presented to demonstrate the effectiveness of the proposed approach.