A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming probl...A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming problem can be converted into the single objective function by various methods as Chandra Sen’s method, weighted sum method, ranking function method, statistical averaging method. In this paper, Chandra Sen’s method and statistical averaging method both are used here for making single objective function from multi-objective function. Two multi-objective programming problems are solved to verify the result. One is numerical example and the other is real life example. Then the problems are solved by ordinary simplex method and fuzzy programming method. It can be seen that fuzzy programming method gives better optimal values than the ordinary simplex method.展开更多
We investigate the decision-making problem with a finite set of alternatives,in which the decision information takes the form of a fuzzy preference relation. We develop asimple and practical approach to obtaining the ...We investigate the decision-making problem with a finite set of alternatives,in which the decision information takes the form of a fuzzy preference relation. We develop asimple and practical approach to obtaining the priority vector of a fuzzy preference relation. Theprominent characteristic of the developed approach is that the priority vector can generally beobtained by a simple formula, which is derived from a quadratic programming model. We utilize theconsistency ratio to check the consistency of fuzzy preference relation. If the fuzzy preferencerelation is of unacceptable consistency, then we can return it to the decision maker to reconsiderstructuring a new fuzzy preference relation until the fuzzy preference relation with acceptableconsistency is obtained. We finally illustrate the priority approach by two numerical examples. Thenumerical results show that the developed approach is straightforward, effective, and can easily beperformed on a computer.展开更多
Based on the theory of fuzzy decision making, a two phrase approach is proposed for the decentralized bi level linear programming problem(DBLPP). The approach considers the conflicts between the upper and lower leve...Based on the theory of fuzzy decision making, a two phrase approach is proposed for the decentralized bi level linear programming problem(DBLPP). The approach considers the conflicts between the upper and lower levels decision makers (DMs), and among the lower level DMs themselves, a satisfactory solution is got with the non conflict matrix and decision power distribution. Compared with the other methods that have ever been proposed, the solution process is more fit to a kind of real decision making processes.展开更多
This paper proposes an adaptive chaos quantum honey bee algorithm (CQHBA) for solving chance-constrained program- ming in random fuzzy environment based on random fuzzy simulations. Random fuzzy simulation is design...This paper proposes an adaptive chaos quantum honey bee algorithm (CQHBA) for solving chance-constrained program- ming in random fuzzy environment based on random fuzzy simulations. Random fuzzy simulation is designed to estimate the chance of a random fuzzy event and the optimistic value to a random fuzzy variable. In CQHBA, each bee carries a group of quantum bits representing a solution. Chaos optimization searches space around the selected best-so-far food source. In the marriage process, random interferential discrete quantum crossover is done between selected drones and the queen. Gaussian quantum mutation is used to keep the diversity of whole population. New methods of computing quantum rotation angles are designed based on grads. A proof of con- vergence for CQHBA is developed and a theoretical analysis of the computational overhead for the algorithm is presented. Numerical examples are presented to demonstrate its superiority in robustness and stability, efficiency of computational complexity, success rate, and accuracy of solution quality. CQHBA is manifested to be highly robust under various conditions and capable of handling most random fuzzy programmings with any parameter settings, variable initializations, system tolerance and confidence level, perturbations, and noises.展开更多
The multiple attribute decision making problems are studied, in which the information about attribute weights is partly known and the attribute values take the form of intuitionistic fuzzy numbers. The operational law...The multiple attribute decision making problems are studied, in which the information about attribute weights is partly known and the attribute values take the form of intuitionistic fuzzy numbers. The operational laws of intuitionistic fuzzy numbers are introduced, and the score function and accuracy function are presented to compare the intuitionistic fuzzy numbers. The intuitionistic fuzzy ordered weighted averaging (IFOWA) operator which is an extension of the well-known ordered weighted averaging (OWA) operator is investigated to aggregate the intuitionistic fuzzy information. In order to determine the weights of intuitionistic fuzzy ordered weighted averaging operator, a linear goal programming procedure is proposed for learning the weights from data. Finally, an example is illustrated to verify the effectiveness and practicability of the developed method.展开更多
Due to the nonlinearity and uncertainty, the precise control of underwater vehicles in some intelligent operations hasn’t been solved very well yet. A novel method of control based on desired state programming was pr...Due to the nonlinearity and uncertainty, the precise control of underwater vehicles in some intelligent operations hasn’t been solved very well yet. A novel method of control based on desired state programming was presented, which used the technique of fuzzy neural network. The structure of fuzzy neural network was constructed according to the moving characters and the back propagation algorithm was deduced. Simulation experiments were conducted on general detection remotely operated vehicle. The results show that there is a great improvement in response and precision over traditional control, and good robustness to the model’s uncertainty and external disturbance, which has theoretical and practical value.展开更多
Intuitionistic Fuzzy Set (IFS) can be used as a general tool for modeling problems of decision making under uncertainty where, the degree of rejection is defined simultaneously with the degree of acceptance of a piece...Intuitionistic Fuzzy Set (IFS) can be used as a general tool for modeling problems of decision making under uncertainty where, the degree of rejection is defined simultaneously with the degree of acceptance of a piece of information in such a way that these degrees are not complement to each other. Accordingly, an attempt is made to solve intuitionistic fuzzy linear programming problems using a technique based on an earlier technique proposed by Zimmermann to solve fuzzy linear programming problem. Our proposed technique does not require the existing ranking of intuitionistic fuzzy numbers. This method is also different from the existing weight assignment method or the Angelov’s method. A comparative study is undertaken and interesting results have been presented.展开更多
This paper is comprised of the modeling and optimization of a multi objective linear programming problem in fuzzy environment in which some goals are fractional and some are linear. Here, we present a new approach for...This paper is comprised of the modeling and optimization of a multi objective linear programming problem in fuzzy environment in which some goals are fractional and some are linear. Here, we present a new approach for its solution by using α-cut of fuzzy numbers. In this proposed method, we first define membership function for goals by introducing non-deviational variables for each of objective functions with effective use of α-cut intervals to deal with uncertain parameters being represented by fuzzy numbers. In the optimization process the under deviational variables are minimized for finding a most satisfactory solution. The developed method has also been implemented on a problem for illustration and comparison.展开更多
In this paper, at first, the single input rule modules(SIRMs) dynamically connected fuzzy inference model is used to stabilize a double inverted pendulum system. Then, a multiobjective particle swarm optimization(MOPS...In this paper, at first, the single input rule modules(SIRMs) dynamically connected fuzzy inference model is used to stabilize a double inverted pendulum system. Then, a multiobjective particle swarm optimization(MOPSO) is implemented to optimize the fuzzy controller parameters in order to decrease the distance error of the cart and summation of the angle errors of the pendulums, simultaneously. The feasibility and efficiency of the proposed Pareto front is assessed in comparison with results reported in literature and obtained from other algorithms.Finally, the Java programming with applets is utilized to simulate the stability of the nonlinear system and explain the internetbased control.展开更多
Under non-random uncertainty, a new idea of finding a possibly optimal solution for linear programming problem is examined in this paper. It is an application of the intuitionistic fuzzy set concept within scope of th...Under non-random uncertainty, a new idea of finding a possibly optimal solution for linear programming problem is examined in this paper. It is an application of the intuitionistic fuzzy set concept within scope of the existing fuzzy optimization. Here, we solve a linear programming problem (LPP) in an intuitionistic fuzzy environment and compare the result with the solution obtained from other existing techniques. In the process, the result of associated fuzzy LPP is also considered for a better understanding.展开更多
Two existing methods for solving a class of fuzzy linear programming (FLP) problems involving symmetric trapezoidal fuzzy numbers without converting them to crisp linear programming problems are the fuzzy primal simpl...Two existing methods for solving a class of fuzzy linear programming (FLP) problems involving symmetric trapezoidal fuzzy numbers without converting them to crisp linear programming problems are the fuzzy primal simplex method proposed by Ganesan and Veeramani [1] and the fuzzy dual simplex method proposed by Ebrahimnejad and Nasseri [2]. The former method is not applicable when a primal basic feasible solution is not easily at hand and the later method needs to an initial dual basic feasible solution. In this paper, we develop a novel approach namely the primal-dual simplex algorithm to overcome mentioned shortcomings. A numerical example is given to illustrate the proposed approach.展开更多
A new fully fuzzy linear programming (FFLP) problem with fuzzy equality constraints is discussed. Using deviation degree measures, the FFLP problem is transformed into a crisp 6-parametric linear programming (LP) ...A new fully fuzzy linear programming (FFLP) problem with fuzzy equality constraints is discussed. Using deviation degree measures, the FFLP problem is transformed into a crisp 6-parametric linear programming (LP) problem. Giving the value of deviation degree in each constraint, the 6-fuzzy optimal solution of the FFLP problem can be obtained by solving this LP problem. An algorithm is also proposed to find a balance-fuzzy optimal solution between two goals in conflict: to improve the values of the objective function and to decrease the values of the deviation degrees. A numerical example is solved to illustrate the proposed method.展开更多
Planning for water quality management is important for facilitating sustainable socio-economic development;however, the planning is also complicated by a variety of uncertainties and nonlinearities. In this study, an ...Planning for water quality management is important for facilitating sustainable socio-economic development;however, the planning is also complicated by a variety of uncertainties and nonlinearities. In this study, an interval-parameter fuzzy robust nonlinear programming (IFRNP) model was developed for water quality management to deal with such difficulties. The developed model incorporated interval nonlinear programming (INP) and fuzzy robust programming (FRP) methods within a general optimization framework. The developed IFRNP model not only could explicitly deal with uncertainties represented as discrete interval numbers and fuzzy membership functions, but also was able to deal with nonlinearities in the objective function.展开更多
A new prioritization method in the analytic hierarchy process (AHP), which improves the group fuzzy preference programming (GFPP) method, is proposed. The fuzzy random theory is applied in the new prioritization m...A new prioritization method in the analytic hierarchy process (AHP), which improves the group fuzzy preference programming (GFPP) method, is proposed. The fuzzy random theory is applied in the new prioritization method. By modifying the principle of decision making implied in the GFPP method, the improved group fuzzy preference programming (IGFPP) method is formulated as a fuzzy linear programming problem to maximize the average degree of the group satisfaction with all possible group priority vectors. The IGFPP method inherits the advantages of the GFPP method, and solves the weighting trouble existed in the GFPP method. Numerical tests indicate that the IGFPP method performs more effectively than the GFPP method in the case of very contradictive comparison judgments from decision makers.展开更多
This paper considers two-level integer programming problems involving random fuzzy variables with cooperative behavior of the decision makers. Considering the probabilities that the decision makers’ objective functio...This paper considers two-level integer programming problems involving random fuzzy variables with cooperative behavior of the decision makers. Considering the probabilities that the decision makers’ objective function values are smaller than or equal to target variables, fuzzy goals of the decision makers are introduced. Using the fractile criteria to optimize the target variables under the condition that the degrees of possibility with respect to the attained probabilities are greater than or equal to certain permissible levels, the original random fuzzy two-level integer programming problems are reduced to deterministic ones. Through the introduction of genetic algorithms with double strings for nonlinear integer programming problems, interactive fuzzy programming to derive a satisfactory solution for the decision maker at the upper level in consideration of the cooperative relation between decision makers is presented. An illustrative numerical example demonstrates the feasibility and efficiency of the proposed method.展开更多
A fuzzy bi-matrix game(FBG),namely a two-person non-zero-sum game with fuzzy strategies and fuzzy payoffs is proposed.We have defined and analyzed the optimal strategies of this FBG,and shown that it can be transfor...A fuzzy bi-matrix game(FBG),namely a two-person non-zero-sum game with fuzzy strategies and fuzzy payoffs is proposed.We have defined and analyzed the optimal strategies of this FBG,and shown that it can be transformed into a corresponding fuzzy mathematical programming issue,for which a ranking function approach can be applied.In addition,optimal strategies of FBG for both Player I and Player II can be gotten.展开更多
This paper considers multiobjective integer programming problems involving random variables in constraints. Using the concept of simple recourse, the formulated multiobjective stochastic simple recourse problems are t...This paper considers multiobjective integer programming problems involving random variables in constraints. Using the concept of simple recourse, the formulated multiobjective stochastic simple recourse problems are transformed into deterministic ones. For solving transformed deterministic problems efficiently, we also introduce genetic algorithms with double strings for nonlinear integer programming problems. Taking into account vagueness of judgments of the decision maker, an interactive fuzzy satisficing method is presented. In the proposed interactive method, after determineing the fuzzy goals of the decision maker, a satisficing solution for the decision maker is derived efficiently by updating the reference membership levels of the decision maker. An illustrative numerical example is provided to demonstrate the feasibility and efficiency of the proposed method.展开更多
The objective of the present study is to develop the irrigation planning model and to apply the same in the form of Two-Phase Multi Objective Fuzzy Linear Programming (TPMOFLP) approach for crop planning in command ar...The objective of the present study is to develop the irrigation planning model and to apply the same in the form of Two-Phase Multi Objective Fuzzy Linear Programming (TPMOFLP) approach for crop planning in command area of Jayakwadi Project Stage I, Maharashtra State, India. The development of TPMOFLP model is on the basis of various Linear Programming (LP) models and Multi Objective Fuzzy Linear Programming (MOFLP) models, these models have been applied for maximization of the Net Benefits (NB), Crop production (CP), Employment Generation (EG) and Manure Utilization (MU) respectively. The significant increase in the value of level of satisfaction (λ) has been found from 0.58 to 0.65 by using the TPMOFLP approach as compare to that of MOFLP model based on maxmin approach. The two-phase approach solution provides NB = 1503.56 Million Rupees, CP = 335729.30 Tons, EG = 29.74 Million Man days and MU = 160233.70 Tons respectively. The proposed model will be helpful for the Decision Maker (DM) to take a decision under conflicting situation while planning for different conflicting objectives simultaneously and has potential to find out an integrated irrigation planning with prime consideration for economic, social and environmental issue.展开更多
Quadratic Programming (QP) is a mathematical modeling technique designed to optimize the usage of limited resources and has been widely applied to solve real world problems. In conventional quadratic programming model...Quadratic Programming (QP) is a mathematical modeling technique designed to optimize the usage of limited resources and has been widely applied to solve real world problems. In conventional quadratic programming model the parameters are known constants. However in many practical situations, it is not reasonable to require that the constraints or the objective function in quadratic programming problems be specified in precise, crisp terms. In such situations, it is desirable to use some type of Fuzzy Quadratic Programming (FQP) problem. In this paper a new approach is proposed to derive the fuzzy objective value of fuzzy quadratic programming problem, where the constraints coefficients and the right-hand sides are all triangular fuzzy numbers. The proposed method is solved using MATLABTM toolbox and the numerical results are presented.展开更多
In this paper, the problem of non-response with significant travel costs in multivariate stratified sample surveys has been formulated of as a Multi-Objective Geometric Programming Problem (MOGPP). The fuzzy programmi...In this paper, the problem of non-response with significant travel costs in multivariate stratified sample surveys has been formulated of as a Multi-Objective Geometric Programming Problem (MOGPP). The fuzzy programming approach has been described for solving the formulated MOGPP. The formulated MOGPP has been solved with the help of LINGO Software and the dual solution is obtained. The optimum allocations of sample sizes of respondents and non respondents are obtained with the help of dual solutions and primal-dual relationship theorem. A numerical example is given to illustrate the procedure.展开更多
文摘A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming problem can be converted into the single objective function by various methods as Chandra Sen’s method, weighted sum method, ranking function method, statistical averaging method. In this paper, Chandra Sen’s method and statistical averaging method both are used here for making single objective function from multi-objective function. Two multi-objective programming problems are solved to verify the result. One is numerical example and the other is real life example. Then the problems are solved by ordinary simplex method and fuzzy programming method. It can be seen that fuzzy programming method gives better optimal values than the ordinary simplex method.
文摘We investigate the decision-making problem with a finite set of alternatives,in which the decision information takes the form of a fuzzy preference relation. We develop asimple and practical approach to obtaining the priority vector of a fuzzy preference relation. Theprominent characteristic of the developed approach is that the priority vector can generally beobtained by a simple formula, which is derived from a quadratic programming model. We utilize theconsistency ratio to check the consistency of fuzzy preference relation. If the fuzzy preferencerelation is of unacceptable consistency, then we can return it to the decision maker to reconsiderstructuring a new fuzzy preference relation until the fuzzy preference relation with acceptableconsistency is obtained. We finally illustrate the priority approach by two numerical examples. Thenumerical results show that the developed approach is straightforward, effective, and can easily beperformed on a computer.
文摘Based on the theory of fuzzy decision making, a two phrase approach is proposed for the decentralized bi level linear programming problem(DBLPP). The approach considers the conflicts between the upper and lower levels decision makers (DMs), and among the lower level DMs themselves, a satisfactory solution is got with the non conflict matrix and decision power distribution. Compared with the other methods that have ever been proposed, the solution process is more fit to a kind of real decision making processes.
基金supported by National High Technology Research and Development Program of China (863 Program) (No. 2007AA041603)National Natural Science Foundation of China (No. 60475035)+2 种基金Key Technologies Research and Development Program Foundation of Hunan Province of China (No. 2007FJ1806)Science and Technology Research Plan of National University of Defense Technology (No. CX07-03-01)Top Class Graduate Student Innovation Sustentation Fund of National University of Defense Technology (No. B070302.)
文摘This paper proposes an adaptive chaos quantum honey bee algorithm (CQHBA) for solving chance-constrained program- ming in random fuzzy environment based on random fuzzy simulations. Random fuzzy simulation is designed to estimate the chance of a random fuzzy event and the optimistic value to a random fuzzy variable. In CQHBA, each bee carries a group of quantum bits representing a solution. Chaos optimization searches space around the selected best-so-far food source. In the marriage process, random interferential discrete quantum crossover is done between selected drones and the queen. Gaussian quantum mutation is used to keep the diversity of whole population. New methods of computing quantum rotation angles are designed based on grads. A proof of con- vergence for CQHBA is developed and a theoretical analysis of the computational overhead for the algorithm is presented. Numerical examples are presented to demonstrate its superiority in robustness and stability, efficiency of computational complexity, success rate, and accuracy of solution quality. CQHBA is manifested to be highly robust under various conditions and capable of handling most random fuzzy programmings with any parameter settings, variable initializations, system tolerance and confidence level, perturbations, and noises.
基金supported by the National Natural Science Foundation of China (70771025)the Fundamental Research Funds for the Central Universities of Hohai University (2009B04514)Humanities and Social Sciences Foundations of Ministry of Education of China(10YJA630067)
文摘The multiple attribute decision making problems are studied, in which the information about attribute weights is partly known and the attribute values take the form of intuitionistic fuzzy numbers. The operational laws of intuitionistic fuzzy numbers are introduced, and the score function and accuracy function are presented to compare the intuitionistic fuzzy numbers. The intuitionistic fuzzy ordered weighted averaging (IFOWA) operator which is an extension of the well-known ordered weighted averaging (OWA) operator is investigated to aggregate the intuitionistic fuzzy information. In order to determine the weights of intuitionistic fuzzy ordered weighted averaging operator, a linear goal programming procedure is proposed for learning the weights from data. Finally, an example is illustrated to verify the effectiveness and practicability of the developed method.
基金Supported by the National High Technology and Development Program Foundation of China under Grant No. 2002AA420090.
文摘Due to the nonlinearity and uncertainty, the precise control of underwater vehicles in some intelligent operations hasn’t been solved very well yet. A novel method of control based on desired state programming was presented, which used the technique of fuzzy neural network. The structure of fuzzy neural network was constructed according to the moving characters and the back propagation algorithm was deduced. Simulation experiments were conducted on general detection remotely operated vehicle. The results show that there is a great improvement in response and precision over traditional control, and good robustness to the model’s uncertainty and external disturbance, which has theoretical and practical value.
文摘Intuitionistic Fuzzy Set (IFS) can be used as a general tool for modeling problems of decision making under uncertainty where, the degree of rejection is defined simultaneously with the degree of acceptance of a piece of information in such a way that these degrees are not complement to each other. Accordingly, an attempt is made to solve intuitionistic fuzzy linear programming problems using a technique based on an earlier technique proposed by Zimmermann to solve fuzzy linear programming problem. Our proposed technique does not require the existing ranking of intuitionistic fuzzy numbers. This method is also different from the existing weight assignment method or the Angelov’s method. A comparative study is undertaken and interesting results have been presented.
文摘This paper is comprised of the modeling and optimization of a multi objective linear programming problem in fuzzy environment in which some goals are fractional and some are linear. Here, we present a new approach for its solution by using α-cut of fuzzy numbers. In this proposed method, we first define membership function for goals by introducing non-deviational variables for each of objective functions with effective use of α-cut intervals to deal with uncertain parameters being represented by fuzzy numbers. In the optimization process the under deviational variables are minimized for finding a most satisfactory solution. The developed method has also been implemented on a problem for illustration and comparison.
文摘In this paper, at first, the single input rule modules(SIRMs) dynamically connected fuzzy inference model is used to stabilize a double inverted pendulum system. Then, a multiobjective particle swarm optimization(MOPSO) is implemented to optimize the fuzzy controller parameters in order to decrease the distance error of the cart and summation of the angle errors of the pendulums, simultaneously. The feasibility and efficiency of the proposed Pareto front is assessed in comparison with results reported in literature and obtained from other algorithms.Finally, the Java programming with applets is utilized to simulate the stability of the nonlinear system and explain the internetbased control.
文摘Under non-random uncertainty, a new idea of finding a possibly optimal solution for linear programming problem is examined in this paper. It is an application of the intuitionistic fuzzy set concept within scope of the existing fuzzy optimization. Here, we solve a linear programming problem (LPP) in an intuitionistic fuzzy environment and compare the result with the solution obtained from other existing techniques. In the process, the result of associated fuzzy LPP is also considered for a better understanding.
文摘Two existing methods for solving a class of fuzzy linear programming (FLP) problems involving symmetric trapezoidal fuzzy numbers without converting them to crisp linear programming problems are the fuzzy primal simplex method proposed by Ganesan and Veeramani [1] and the fuzzy dual simplex method proposed by Ebrahimnejad and Nasseri [2]. The former method is not applicable when a primal basic feasible solution is not easily at hand and the later method needs to an initial dual basic feasible solution. In this paper, we develop a novel approach namely the primal-dual simplex algorithm to overcome mentioned shortcomings. A numerical example is given to illustrate the proposed approach.
基金supported by the National Natural Science Foundation of China(71202140)the Fundamental Research for the Central Universities(HUST:2013QN099)
文摘A new fully fuzzy linear programming (FFLP) problem with fuzzy equality constraints is discussed. Using deviation degree measures, the FFLP problem is transformed into a crisp 6-parametric linear programming (LP) problem. Giving the value of deviation degree in each constraint, the 6-fuzzy optimal solution of the FFLP problem can be obtained by solving this LP problem. An algorithm is also proposed to find a balance-fuzzy optimal solution between two goals in conflict: to improve the values of the objective function and to decrease the values of the deviation degrees. A numerical example is solved to illustrate the proposed method.
文摘Planning for water quality management is important for facilitating sustainable socio-economic development;however, the planning is also complicated by a variety of uncertainties and nonlinearities. In this study, an interval-parameter fuzzy robust nonlinear programming (IFRNP) model was developed for water quality management to deal with such difficulties. The developed model incorporated interval nonlinear programming (INP) and fuzzy robust programming (FRP) methods within a general optimization framework. The developed IFRNP model not only could explicitly deal with uncertainties represented as discrete interval numbers and fuzzy membership functions, but also was able to deal with nonlinearities in the objective function.
基金Sponsored by the National Natural Science Foundation of China (70471063)
文摘A new prioritization method in the analytic hierarchy process (AHP), which improves the group fuzzy preference programming (GFPP) method, is proposed. The fuzzy random theory is applied in the new prioritization method. By modifying the principle of decision making implied in the GFPP method, the improved group fuzzy preference programming (IGFPP) method is formulated as a fuzzy linear programming problem to maximize the average degree of the group satisfaction with all possible group priority vectors. The IGFPP method inherits the advantages of the GFPP method, and solves the weighting trouble existed in the GFPP method. Numerical tests indicate that the IGFPP method performs more effectively than the GFPP method in the case of very contradictive comparison judgments from decision makers.
文摘This paper considers two-level integer programming problems involving random fuzzy variables with cooperative behavior of the decision makers. Considering the probabilities that the decision makers’ objective function values are smaller than or equal to target variables, fuzzy goals of the decision makers are introduced. Using the fractile criteria to optimize the target variables under the condition that the degrees of possibility with respect to the attained probabilities are greater than or equal to certain permissible levels, the original random fuzzy two-level integer programming problems are reduced to deterministic ones. Through the introduction of genetic algorithms with double strings for nonlinear integer programming problems, interactive fuzzy programming to derive a satisfactory solution for the decision maker at the upper level in consideration of the cooperative relation between decision makers is presented. An illustrative numerical example demonstrates the feasibility and efficiency of the proposed method.
基金Sponsored by the National Natural Science Foundation of China(70471063,70771010)
文摘A fuzzy bi-matrix game(FBG),namely a two-person non-zero-sum game with fuzzy strategies and fuzzy payoffs is proposed.We have defined and analyzed the optimal strategies of this FBG,and shown that it can be transformed into a corresponding fuzzy mathematical programming issue,for which a ranking function approach can be applied.In addition,optimal strategies of FBG for both Player I and Player II can be gotten.
文摘This paper considers multiobjective integer programming problems involving random variables in constraints. Using the concept of simple recourse, the formulated multiobjective stochastic simple recourse problems are transformed into deterministic ones. For solving transformed deterministic problems efficiently, we also introduce genetic algorithms with double strings for nonlinear integer programming problems. Taking into account vagueness of judgments of the decision maker, an interactive fuzzy satisficing method is presented. In the proposed interactive method, after determineing the fuzzy goals of the decision maker, a satisficing solution for the decision maker is derived efficiently by updating the reference membership levels of the decision maker. An illustrative numerical example is provided to demonstrate the feasibility and efficiency of the proposed method.
文摘The objective of the present study is to develop the irrigation planning model and to apply the same in the form of Two-Phase Multi Objective Fuzzy Linear Programming (TPMOFLP) approach for crop planning in command area of Jayakwadi Project Stage I, Maharashtra State, India. The development of TPMOFLP model is on the basis of various Linear Programming (LP) models and Multi Objective Fuzzy Linear Programming (MOFLP) models, these models have been applied for maximization of the Net Benefits (NB), Crop production (CP), Employment Generation (EG) and Manure Utilization (MU) respectively. The significant increase in the value of level of satisfaction (λ) has been found from 0.58 to 0.65 by using the TPMOFLP approach as compare to that of MOFLP model based on maxmin approach. The two-phase approach solution provides NB = 1503.56 Million Rupees, CP = 335729.30 Tons, EG = 29.74 Million Man days and MU = 160233.70 Tons respectively. The proposed model will be helpful for the Decision Maker (DM) to take a decision under conflicting situation while planning for different conflicting objectives simultaneously and has potential to find out an integrated irrigation planning with prime consideration for economic, social and environmental issue.
文摘Quadratic Programming (QP) is a mathematical modeling technique designed to optimize the usage of limited resources and has been widely applied to solve real world problems. In conventional quadratic programming model the parameters are known constants. However in many practical situations, it is not reasonable to require that the constraints or the objective function in quadratic programming problems be specified in precise, crisp terms. In such situations, it is desirable to use some type of Fuzzy Quadratic Programming (FQP) problem. In this paper a new approach is proposed to derive the fuzzy objective value of fuzzy quadratic programming problem, where the constraints coefficients and the right-hand sides are all triangular fuzzy numbers. The proposed method is solved using MATLABTM toolbox and the numerical results are presented.
文摘In this paper, the problem of non-response with significant travel costs in multivariate stratified sample surveys has been formulated of as a Multi-Objective Geometric Programming Problem (MOGPP). The fuzzy programming approach has been described for solving the formulated MOGPP. The formulated MOGPP has been solved with the help of LINGO Software and the dual solution is obtained. The optimum allocations of sample sizes of respondents and non respondents are obtained with the help of dual solutions and primal-dual relationship theorem. A numerical example is given to illustrate the procedure.