A class of implicit fuzzy differential inclusions (IFDIs) are introduced and studied. Some existence theorems under different conditions are proved with the selection theorems for the open situation and the closed s...A class of implicit fuzzy differential inclusions (IFDIs) are introduced and studied. Some existence theorems under different conditions are proved with the selection theorems for the open situation and the closed situation, respectively. A viable solution for a closed IFDI is proved to exist under the tangential condition. As an application, an implicit fuzzy differential equation, which comes from the drilling dynamics in petroleum engineering, is analyzed numerically. The obtained results can improve and extend some known results for fuzzy differential inclusions (FDIs) and fuzzy differential equations (FDEs), which might be helpful in the analysis of fuzzy dynamic systems.展开更多
In this paper, the numerical solution of the boundary value problem that is two-order fuzzy linear differential equations is discussed. Based on the generalized Hukuhara difference, the fuzzy differential equation is ...In this paper, the numerical solution of the boundary value problem that is two-order fuzzy linear differential equations is discussed. Based on the generalized Hukuhara difference, the fuzzy differential equation is converted into a fuzzy difference equation by means of decentralization. The numerical solution of the boundary value problem is obtained by calculating the fuzzy differential equation. Finally, an example is given to verify the effectiveness of the proposed method.展开更多
Solutions of fuzzy differential equations provide a noteworthy example of time-dependent fuzzy sets The purpose of this paper is to introduce functions of a suitable Lyapunov-like type and to show the existence and ...Solutions of fuzzy differential equations provide a noteworthy example of time-dependent fuzzy sets The purpose of this paper is to introduce functions of a suitable Lyapunov-like type and to show the existence and uniqueness theorem for the Cauchy problem of fuzzy differential equations under non-Lipschitz conditions The comparison principles and the existence and uniqueness theorems of this paper generalize many well-known results up to now展开更多
The Laplace transformation is a very important integral transform,and it is extensively used in solving ordinary differential equations,partial differential equations,and several types of integro-differential equation...The Laplace transformation is a very important integral transform,and it is extensively used in solving ordinary differential equations,partial differential equations,and several types of integro-differential equations.Our purpose in this study is to introduce the notion of fuzzy double Laplace transform,fuzzy conformable double Laplace transform(FCDLT).We discuss some basic properties of FCDLT.We obtain the solutions of fuzzy partial differential equations(both one-dimensional and two-dimensional cases)through the double Laplace approach.We demonstrate through numerical examples that our proposed method is very successful and convenient for resolving partial differential equations.展开更多
Uemura [1] discovered a mapping formula that transforms and maps the state of nature into fuzzy events with a membership function that expresses the degree of attribution. In decision theory in no-data problems, seque...Uemura [1] discovered a mapping formula that transforms and maps the state of nature into fuzzy events with a membership function that expresses the degree of attribution. In decision theory in no-data problems, sequential Bayesian inference is an example of this mapping formula, and Hori et al. [2] made the mapping formula multidimensional, introduced the concept of time, to Markov (decision) processes in fuzzy events under ergodic conditions, and derived stochastic differential equations in fuzzy events, although in reverse. In this paper, we focus on type 2 fuzzy. First, assuming that Type 2 Fuzzy Events are transformed and mapped onto the state of nature by a quadratic mapping formula that simultaneously considers longitudinal and transverse ambiguity, the joint stochastic differential equation representing these two ambiguities can be applied to possibility principal factor analysis if the weights of the equations are orthogonal. This indicates that the type 2 fuzzy is a two-dimensional possibility multivariate error model with longitudinal and transverse directions. Also, when the weights are oblique, it is a general possibility oblique factor analysis. Therefore, an example of type 2 fuzzy system theory is the possibility factor analysis. Furthermore, we show the initial and stopping condition on possibility factor rotation, on the base of possibility theory.展开更多
In this paper, the exponential stability of fuzzy differential equations with delay is investigated. By employing the formula for the variation of parameters, inequality technique and the norm and measure of matrix, a...In this paper, the exponential stability of fuzzy differential equations with delay is investigated. By employing the formula for the variation of parameters, inequality technique and the norm and measure of matrix, an algebraic criterion for the exponential stability is obtained.展开更多
基金Project supported by the National Science Fund for Distinguished Young Scholars of China(No.51125019)the National Natural Science Foundation of China(No.11171237)the Scientific Research Fund of Sichuan Provincial Education Department(No.11ZA024)
文摘A class of implicit fuzzy differential inclusions (IFDIs) are introduced and studied. Some existence theorems under different conditions are proved with the selection theorems for the open situation and the closed situation, respectively. A viable solution for a closed IFDI is proved to exist under the tangential condition. As an application, an implicit fuzzy differential equation, which comes from the drilling dynamics in petroleum engineering, is analyzed numerically. The obtained results can improve and extend some known results for fuzzy differential inclusions (FDIs) and fuzzy differential equations (FDEs), which might be helpful in the analysis of fuzzy dynamic systems.
文摘In this paper, the numerical solution of the boundary value problem that is two-order fuzzy linear differential equations is discussed. Based on the generalized Hukuhara difference, the fuzzy differential equation is converted into a fuzzy difference equation by means of decentralization. The numerical solution of the boundary value problem is obtained by calculating the fuzzy differential equation. Finally, an example is given to verify the effectiveness of the proposed method.
文摘Solutions of fuzzy differential equations provide a noteworthy example of time-dependent fuzzy sets The purpose of this paper is to introduce functions of a suitable Lyapunov-like type and to show the existence and uniqueness theorem for the Cauchy problem of fuzzy differential equations under non-Lipschitz conditions The comparison principles and the existence and uniqueness theorems of this paper generalize many well-known results up to now
基金Manar A.Alqudah would like to thank Princess Nourah bint Abdulrahman University Researchers Supporting Project No.(PNURSP2022R14),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia。
文摘The Laplace transformation is a very important integral transform,and it is extensively used in solving ordinary differential equations,partial differential equations,and several types of integro-differential equations.Our purpose in this study is to introduce the notion of fuzzy double Laplace transform,fuzzy conformable double Laplace transform(FCDLT).We discuss some basic properties of FCDLT.We obtain the solutions of fuzzy partial differential equations(both one-dimensional and two-dimensional cases)through the double Laplace approach.We demonstrate through numerical examples that our proposed method is very successful and convenient for resolving partial differential equations.
文摘Uemura [1] discovered a mapping formula that transforms and maps the state of nature into fuzzy events with a membership function that expresses the degree of attribution. In decision theory in no-data problems, sequential Bayesian inference is an example of this mapping formula, and Hori et al. [2] made the mapping formula multidimensional, introduced the concept of time, to Markov (decision) processes in fuzzy events under ergodic conditions, and derived stochastic differential equations in fuzzy events, although in reverse. In this paper, we focus on type 2 fuzzy. First, assuming that Type 2 Fuzzy Events are transformed and mapped onto the state of nature by a quadratic mapping formula that simultaneously considers longitudinal and transverse ambiguity, the joint stochastic differential equation representing these two ambiguities can be applied to possibility principal factor analysis if the weights of the equations are orthogonal. This indicates that the type 2 fuzzy is a two-dimensional possibility multivariate error model with longitudinal and transverse directions. Also, when the weights are oblique, it is a general possibility oblique factor analysis. Therefore, an example of type 2 fuzzy system theory is the possibility factor analysis. Furthermore, we show the initial and stopping condition on possibility factor rotation, on the base of possibility theory.
基金the National Natural Science Foundation of China under Grant 10671133Doctor's Foundation of Chongqing University of Posts and Telecommunications under Grant A2007-41
文摘In this paper, the exponential stability of fuzzy differential equations with delay is investigated. By employing the formula for the variation of parameters, inequality technique and the norm and measure of matrix, an algebraic criterion for the exponential stability is obtained.