期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Non-probabilistic Hydraulic Turbine Blade Vibration Reliability Research Based on Fuzzy Failure Criterion
1
作者 庞煜 张翔 赖喜德 《Journal of Donghua University(English Edition)》 EI CAS 2016年第2期336-339,共4页
In hydraulic turbine engineering,turbine blade vibration reliability assessment is of great significance. Based on the interval mathematical theory, the variables existing in hydraulic turbine blade are described as i... In hydraulic turbine engineering,turbine blade vibration reliability assessment is of great significance. Based on the interval mathematical theory, the variables existing in hydraulic turbine blade are described as interval variables. Considering the fuzzy failure criterion of turbine blade distancing from resonance and vibration fatigue stress,fuzzy possibilistic reliability is expressed and analyzed qualitatively taking normal bathtub function as the membership function of blade resonance failure and deflection major type function as the membership function of the intensity failure. As a result,hydraulic turbine blade vibration reliability is analyzed based on the fuzziness of variables and failure criterion. A safer working environment is provided under possibility context by comparing with the qualitative conclusions in the past literature. 展开更多
关键词 fuzzy failure criterion interval variable fuzzy reliability membership function
下载PDF
Dynamic Stability and Fuzzy Reliability Analysis of Toppling Perilous Rock Under Seismic Excitation
2
作者 Linfeng Wang Jixu Zhang +2 位作者 Wanchun Xia Xiaoming Huang Guojin Tan 《Journal of Earth Science》 SCIE CAS CSCD 2024年第1期248-262,共15页
To predict the occurrence of the collapse disaster in toppling perilous rock under the action of bidirectional earthquakes,the dynamic stability and fuzzy reliability calculation method of toppling perilous rock under... To predict the occurrence of the collapse disaster in toppling perilous rock under the action of bidirectional earthquakes,the dynamic stability and fuzzy reliability calculation method of toppling perilous rock under the action of bidirectional earthquakes is proposed.First,the mass viscoelasticity model is used to simulate two main control surfaces of toppling perilous rock,the seismic dynamic response model and motion equation of toppling perilous rock are established based on the D'Alembert principle,and the Newmark-β method is used to solve the dynamic motion equation.Then,the instability event of toppling perilous rock is considered a fuzzy event,the membership function expression of the stability coefficient of toppling perilous rock is determined based on the fuzzy failure criterion,the calculation equations of the toppling perilous rock dynamic stability coefficient and fuzzy reliability are established,and the fuzzy reliability evaluation method based on the probability distribution of reliability is proposed.Finally,the influence of different superposition modes of seismic excitation on the fuzzy reliability of toppling perilous rock is analyzed.The calculation results of toppling perilous rock in the engineering case show that the fuzzy reliability calculated after considering the fuzzy failure criterion is reduced by 10.73% to 25.66% compared with the classical reliability.Considering the bidirectional seismic excitation,the fuzzy reliability of toppling perilous rock is reduced by 5.46% to 14.89%.Compared with using the acceleration peak time encounter mode to superpose the seismic excitation,the fuzzy reliability of toppling perilous rock is reduced by 3.4% when the maximum action effect time encounter mode is adopted. 展开更多
关键词 toppling perilous rock bidirectional earthquake fuzzy failure criterion dynamic stability fuzzy reliability Newmark-βmethod probability distribution function
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部