Diabetes mellitus is associated with foot ulcers,which frequently pave the way to lower-extremity amputation.Neuropathy,trauma,deformity,high plantar pressures,and peripheral vascular disease are the most common under...Diabetes mellitus is associated with foot ulcers,which frequently pave the way to lower-extremity amputation.Neuropathy,trauma,deformity,high plantar pressures,and peripheral vascular disease are the most common underlying causes.Around 15%of diabetic patients are affected by diabetic foot ulcer in their lifetime.64 million people are affected by diabetics in India and 40000 amputations are done every year.Foot ulcers are evaluated and classified in a systematic and thorough manner to assist in determining the best course of therapy.This paper proposes a novel model which predicts the threat of diabetic foot ulcer using independent agents for various input values and a combination of fuzzy expert systems.The proposed model uses a classification system to distinguish between each fuzzy framework and its parameters.Based on the severity levels necessary prevention,treatment,and medication are recommended.Combining the results of all the fuzzy frameworks derived from its constituent parameters,a risk-specific medication is recommended.The work also has higher accuracy when compared to other related models.展开更多
In this paper, a Takagi Sugeno (T-S) fuzzy model-based method is proposed to deal with the problem of synchronization of two identical or different hyperchaotic systems. The T S fuzzy models with a small number of f...In this paper, a Takagi Sugeno (T-S) fuzzy model-based method is proposed to deal with the problem of synchronization of two identical or different hyperchaotic systems. The T S fuzzy models with a small number of fuzzy IF-THEN rules are employed to represent many typical hyperchaotic systems exactly. The benefit of employing the T-S fuzzy models lies in mathematical simplicity of analysis. Based on the T-S fuzzy hyperchaotic models, two fuzzy controllers arc designed via parallel distributed compensation (PDC) and exact linearization (EL) techniques to synchronize two identical hyperchaotic systems with uncertain parameters and two different hyperchaotic systems, respectively. The sufficient conditions for the robust synchronization of two identical hyperchaotic systems with uncertain parameters and the asymptotic synchronization of two different hyperchaotic systems are derived by applying the Lyapunov stability theory. This method is a universal one of synchronizing two identical or different hyperchaotic systems. Numerical examples are given to demonstrate the validity of the proposed fuzzy model and hyperchaotic synchronization scheme.展开更多
This paper presents a fuzzy logic approach to efficiently perform unsupervised character classification for improvement in robustness, correctness and speed of a character recognition system. The characters are first ...This paper presents a fuzzy logic approach to efficiently perform unsupervised character classification for improvement in robustness, correctness and speed of a character recognition system. The characters are first split into eight typographical categories. The classification scheme uses pattern matching to classify the characters in each category into a set of fuzzy prototypes based on a nonlinear weighted similarity function. The fuzzy unsupervised character classification, which is natural in the repre...展开更多
Ship-mounted container cranes are challenging industrial applications of nonlinear pendulum-like systems with oscillating disturbance which can cause them unstable.Since wave-induced ship motion causes the hoisted con...Ship-mounted container cranes are challenging industrial applications of nonlinear pendulum-like systems with oscillating disturbance which can cause them unstable.Since wave-induced ship motion causes the hoisted container to swing during the transfer operation,the swing motion may be dangerously large and the operation must be stopped.In order to reduce payload pendulation of ship-mounted crane,nonlinear dynamics of ship-mounted crane is derived and a control method using T-S fuzzy model is proposed.Simulation results are given to illustrate the validity of the proposed design method and pendulation of ship-mounted crane is reduced significantly.展开更多
An extended robust model predictive control approach for input constrained discrete uncertain nonlinear systems with time-delay based on a class of uncertain T-S fuzzy models that satisfy sector bound condition is pre...An extended robust model predictive control approach for input constrained discrete uncertain nonlinear systems with time-delay based on a class of uncertain T-S fuzzy models that satisfy sector bound condition is presented. In this approach, the minimization problem of the “worst-case” objective function is converted into the linear objective minimization problem in- volving linear matrix inequalities (LMIs) constraints. The state feedback control law is obtained by solving convex optimization of a set of LMIs. Sufficient condition for stability and a new upper bound on robust performance index are given for these kinds of uncertain fuzzy systems with state time-delay. Simulation results of CSTR process show that the proposed robust predictive control approach is effective and feasible.展开更多
A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and th...A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and the orthogonalleast square method is constructed to approach the nonlinear system. Since its consequence is linear, it can divide the nonlinear system into a number of linear or nearly linear subsystems. For this T-S fuzzy model, a GPC algorithm with input constraints is presented. This strategy takes into account all the constraints of the control signal and its increment, and does not require the calculation of the Diophantine equations. So it needs only a small computer memory and the computational speed is high. The simulation results show a good performance for the nonlinear systems.展开更多
AIM: To investigate whether a fuzzy logic model could predict colorectal cancer (CRC) risk engendered by smoking in hereditary non-polyposis colorectal cancer (HNPCC) patients. METHODS: Three hundred and forty H...AIM: To investigate whether a fuzzy logic model could predict colorectal cancer (CRC) risk engendered by smoking in hereditary non-polyposis colorectal cancer (HNPCC) patients. METHODS: Three hundred and forty HNPCC mismatch repair (MMR) mutation carriers from the Creighton University Hereditary Cancer Institute Registry were selected for modeling. Age-dependent curves were generated to elucidate the joint effects between gene mutation (hMLH1 or hMSH2), gender, and smoking status on the probability of developing CRC. RESULTS: Smoking significantly increased CRC risk in male hMSH2 mutation carriers (P 〈 0.05). hMLH1 mutations augmented CRC risk relative to hMSH2 mutation carriers for males (P 〈 0.05). Males had a significantly higher risk of CRC than females for hMLH1 non smokers (P 〈 0.05), hMLH1 smokers (P 〈 0.1) and hMSH2 smokers (P 〈 0.1). Smoking promoted CRC in a dose-dependent manner in hMSH2 in males (P 〈 0.05). Females with hMSH2 mutations and both sexes with the hMLH1 groups only demonstrated a smoking effect after an extensive smoking history (P 〈 0.05). CONCLUSION: CRC promotion by smoking in HNPCC patients is dependent on gene mutation, gender and age. These data demonstrate that fuzzy modeling may enable formulation of clinical risk scores, thereby allowing individualization of CRC prevention strategies.展开更多
Current research on lane-keeping systems ignores the effect of the driver and external resistance on the accuracy of tracking the lane centerline.To reduce the lateral deviation of the vehicle,a lane-keeping control m...Current research on lane-keeping systems ignores the effect of the driver and external resistance on the accuracy of tracking the lane centerline.To reduce the lateral deviation of the vehicle,a lane-keeping control method based on the fuzzy Takagi-Sugeno(T-S)model is proposed.The method adopts a driver model based on near and far visual angles,and a driver-road-vehicle closed-loop model based on longitudinal nonlinear velocity variation,obtaining the expected assist torque with a robust H∞controller which is designed based on parallel distributed compensation and linear matrix inequality.Considering the external influences of tire adhesion and aligning torque when the vehicle is steering,a feedforward compensation control is designed.The electric power steering system is adopted as the actuator for lane-keeping,and active steering redressing is realized by a control motor.Simulation results based on Carsim/Simulink and real vehicle test results demonstrate that the method helps to maintain the vehicle in the lane centerline and ensures driving safety.展开更多
The projection of the chaotic attractor observed from the Lorenz system in the X-Z plane is like a butterfly, hence the classical Lorenz system is widely known as the butterfly attractor, and has served as a prototype...The projection of the chaotic attractor observed from the Lorenz system in the X-Z plane is like a butterfly, hence the classical Lorenz system is widely known as the butterfly attractor, and has served as a prototype model for studying chaotic behaviour since it was coined. In this work we take one step further to investigate some fundamental dynamic behaviours of a novel hybrid Takagi-Sugeno (TS) fuzzy Lorenz-type system, which is essentially derived from the delta-operator-based TS fuzzy modelling for complex nonlinear systems, and contains the original Lorenz system of continuous-time TS fuzzy form as a special case. By simply and appropriately tuning the additional parametric perturbations in the two-rule hybrid TS fuzzy Lorenz-type system, complex (two-wing) butterfly attractors observed from this system in the three dimensional (3D) X-Y-Z space are created, which have not yet been reported in the literature, and the forming mechanism of the compound structures have been numerically investigated.展开更多
A new robust proportional-integral-derivative (PID) tracking control framework is considered for stochastic systems with non-Gaussian variable based on B-spline neural network approximation and T-S fuzzy model ident...A new robust proportional-integral-derivative (PID) tracking control framework is considered for stochastic systems with non-Gaussian variable based on B-spline neural network approximation and T-S fuzzy model identification. The tracked object is the statistical information of a given target probability density function (PDF), rather than a deterministic signal. Following B-spline approximation to the integrated performance function, the concerned problem is transferred into the tracking of given weights. Different from the previous related works, the time delay T-S fuzzy models with the exogenous disturbances are applied to identify the nonlinear weighting dynamics. Meanwhile, the generalized PID controller structure and the improved convex linear matrix inequalities (LMI) algorithms are proposed to fulfil the tracking problem. Furthermore, in order to enhance the robust performance, the peak-to-peak measure index is applied to optimize the tracking performance. Simulations are given to demonstrate the efficiency of the proposed approach.展开更多
This paper presents a novel approach to hyperchaos control of hyperchaotic systems based on impulsive control and the Takagi-Sugeno (T-S) fuzzy model. In this study, the hyperchaotic Lu system is exactly represented...This paper presents a novel approach to hyperchaos control of hyperchaotic systems based on impulsive control and the Takagi-Sugeno (T-S) fuzzy model. In this study, the hyperchaotic Lu system is exactly represented by the T-S fuzzy model and an impulsive control framework is proposed for stabilizing the hyperchaotic Lu system, which is also suitable for classes of T-S fuzzy hyperchaotic systems, such as the hyperchaotic Rossler, Chen, Chua systems and so on. Sufficient conditions for achieving stability in impulsive T-S fuzzy hyperchaotic systems are derived by using Lyapunov stability theory in the form of the linear matrix inequality, and are less conservative in comparison with existing results. Numerical simulations are given to demonstrate the effectiveness of the proposed method.展开更多
In this paper the fault tolerant synchronization of two chaotic systems based on fuzzy model and sample data is investigated. The problem of fault tolerant synchronization is formulated to study the global asymptotica...In this paper the fault tolerant synchronization of two chaotic systems based on fuzzy model and sample data is investigated. The problem of fault tolerant synchronization is formulated to study the global asymptotical stability of the error system with the fuzzy sampled-data controller which contains a state feedback controller and a fault compensator. The synchronization can be achieved no matter whether the fault occurs or not. To investigate the stability of the error system and facilitate the design of the fuzzy sampled-data controller, a Takagi Sugeno (T-S) fuzzy model is employed to represent the chaotic system dynamics. To acquire good performance and produce a less conservative analysis result, a new parameter-dependent Lyapunov-Krasovksii functional and a relaxed stabilization technique are considered. The stability conditions based on linear matrix inequality are obtained to achieve the fault tolerant synchronization of the chaotic systems. Finally, a numerical simulation is shown to verify the results.展开更多
A design method is presented for Takagi-Sugeno (T-S) fuzzy model based nonlinear sliding model controller. First, the closed-loop fuzzy system is divided into a set of dominant local linear systems according to oper...A design method is presented for Takagi-Sugeno (T-S) fuzzy model based nonlinear sliding model controller. First, the closed-loop fuzzy system is divided into a set of dominant local linear systems according to operating sub-regions. In each sub-region the fuzzy system consists of nominal linear system and a group of interacting systems. Then the controller composed two parts is designed. One part is designed to control the nominal system, the other is designed to control the interacting systems with sliding mode theory. The proposed controller can improve the robusmess and gnarantee tracking performance of the fuzzy system. Stability is guaranteed without finding a common positive definite matrix.展开更多
Based on the multi-model principle, the fuzzy identification for nonlinear systems with multirate sampled data is studied.Firstly, the nonlinear system with multirate sampled data can be shown as the nonlinear weighte...Based on the multi-model principle, the fuzzy identification for nonlinear systems with multirate sampled data is studied.Firstly, the nonlinear system with multirate sampled data can be shown as the nonlinear weighted combination of some linear models at multiple local working points. On this basis, the fuzzy model of the multirate sampled nonlinear system is built. The premise structure of the fuzzy model is confirmed by using fuzzy competitive learning, and the conclusion parameters of the fuzzy model are estimated by the random gradient descent algorithm. The convergence of the proposed identification algorithm is given by using the martingale theorem and lemmas. The fuzzy model of the PH neutralization process of acid-base titration for hair quality detection is constructed to demonstrate the effectiveness of the proposed method.展开更多
A robust control for uncertain nonlinear systems based on T-S fuzzy model is discussed in this paper. First, a T-S fuzzy system is adopted to model the uncertain nonlinear systems. Then, for the system with input vari...A robust control for uncertain nonlinear systems based on T-S fuzzy model is discussed in this paper. First, a T-S fuzzy system is adopted to model the uncertain nonlinear systems. Then, for the system with input variables adopting standard fuzzy partitions, the efficient maximal overlapped-rules group (EMORG) is presented, and a new sufficient condition to check the stability of T-S fuzzy system with uncertainty is derived, which is expressed in terms of Linear Matrix Inequalities. The derived stability condition, which only requires a local common positive definite matrix in each EMORG, can reduce the conservatism and difficulty in existing stability conditions. Finally, a simulation example shows the proposed approach is effective.展开更多
This paper proposes an impulsive control scheme for chaotic systems consisting of Van der Pol oscillators coupled to linear oscillators (VDPL) based on their Takagi-Sugeno (T-S) fuzzy models. A T-S fuzzy model is ...This paper proposes an impulsive control scheme for chaotic systems consisting of Van der Pol oscillators coupled to linear oscillators (VDPL) based on their Takagi-Sugeno (T-S) fuzzy models. A T-S fuzzy model is utilized to represent the chaotic VDPL system. By using comparison method, a general asymptotical stability criterion by means of linear matrix inequality (LMI) is derived for the T-S fuzzy model of VDPL system with impulsive effects. The simulation results demonstrate the effectiveness of the proposed scheme.展开更多
A method of fuzzy modeling based on fuzzy clustering and Kalman filtering was proposed for predicting M s temperature from chemical composition for martensitic stainless steel. The membership degree of each sample wa...A method of fuzzy modeling based on fuzzy clustering and Kalman filtering was proposed for predicting M s temperature from chemical composition for martensitic stainless steel. The membership degree of each sample was calculated by the fuzzy clustering algorithm. Kalman filtering was used to identify the consequent parameters. Only Grade 95 steel are available for training and validation, and the fuzzy model is valid for the following element concentration ranges (wt%): 0.01<C<0.7; 0<Si<1.0; 0.10<Mn<1.25; 11.5<Cr< 17.5; 0<Ni<2.5; 0<Mo<1.0. Compared with that of several empirical models reported, the accuracy of the fuzzy model was almost 5 times higher than that of the best empirical model. Furthermore, the compositional dependences of Ms were successfully determined and compared with those of the empirical formulae. It was found that the specific element dependences were a function of the overall composition, something could not easily be found using conventional statistics.展开更多
A control approach where the fuzzy logic methodology is combined with impulsive control is developed for controlling some time-delay chaotic systems in this paper. We first introduce impulses into each subsystem with ...A control approach where the fuzzy logic methodology is combined with impulsive control is developed for controlling some time-delay chaotic systems in this paper. We first introduce impulses into each subsystem with delay of the Takagi-Sugeno (TS) fuzzy IF-THEN rules and then present a unified TS impulsive fuzzy model with delay for chaos control. Based on the new model, a simple and unified set of conditions for controlling chaotic systems is derived by the Lyapunov Razumikhin method, and a design procedure for estimating bounds on control matrices is also given. Several numerical examples are presented to illustrate the effectiveness of this method.展开更多
This paper investigates the chaotification problem of a stable continuous-time T S fuzzy system. A simple nonlinear state time-delay feedback controller is designed by parallel distributed compensation technique. Then...This paper investigates the chaotification problem of a stable continuous-time T S fuzzy system. A simple nonlinear state time-delay feedback controller is designed by parallel distributed compensation technique. Then, the asymptotically approximate relationship between the controlled continuous-time T-S fuzzy system with time-delay and a discrete-time T-S fuzzy system is established. Based on the discrete-time T-S fuzzy system, it proves that the chaos in the discrete- time T-S fuzzy system satisfies the Li-Yorke definition by choosing appropriate controller parameters via the revised Marotto theorem. Finally, the effectiveness of the proposed chaotic anticontrol method is verified by a practical example.展开更多
Attitude identification method for unmanned helicopter based on fuzzy model at hovering is presented. The dynamical attitude model is considered as basis for attitude control and it is very complex. To reduce the comp...Attitude identification method for unmanned helicopter based on fuzzy model at hovering is presented. The dynamical attitude model is considered as basis for attitude control and it is very complex. To reduce the complexity of model, nonlinear model of unmanned helicopter with unknown parameters are to be determined by fuzzy system first and then derivative based gradient method is used to identify unknown parameters of model. Gradient method is used due to ability that fuzzy system is not necessarily to be linear in parameters, therefore all fuzzy sets for input and output can be adjusted. The validity of the proposed model was verified using experimental data obtained by the commercially available flight simulator X-Plane. The simulation results showed high accuracy of the modeling method and attitude dynamics data matched well with experimental data.展开更多
文摘Diabetes mellitus is associated with foot ulcers,which frequently pave the way to lower-extremity amputation.Neuropathy,trauma,deformity,high plantar pressures,and peripheral vascular disease are the most common underlying causes.Around 15%of diabetic patients are affected by diabetic foot ulcer in their lifetime.64 million people are affected by diabetics in India and 40000 amputations are done every year.Foot ulcers are evaluated and classified in a systematic and thorough manner to assist in determining the best course of therapy.This paper proposes a novel model which predicts the threat of diabetic foot ulcer using independent agents for various input values and a combination of fuzzy expert systems.The proposed model uses a classification system to distinguish between each fuzzy framework and its parameters.Based on the severity levels necessary prevention,treatment,and medication are recommended.Combining the results of all the fuzzy frameworks derived from its constituent parameters,a risk-specific medication is recommended.The work also has higher accuracy when compared to other related models.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60534010, 60572070, 60774048 and 60728307)the Program for Changjiang Scholars and Innovative Research Groups of China (Grant No 60521003)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20070145015)the National High Technology Research and Development Program of China (Grant No 2006AA04Z183)
文摘In this paper, a Takagi Sugeno (T-S) fuzzy model-based method is proposed to deal with the problem of synchronization of two identical or different hyperchaotic systems. The T S fuzzy models with a small number of fuzzy IF-THEN rules are employed to represent many typical hyperchaotic systems exactly. The benefit of employing the T-S fuzzy models lies in mathematical simplicity of analysis. Based on the T-S fuzzy hyperchaotic models, two fuzzy controllers arc designed via parallel distributed compensation (PDC) and exact linearization (EL) techniques to synchronize two identical hyperchaotic systems with uncertain parameters and two different hyperchaotic systems, respectively. The sufficient conditions for the robust synchronization of two identical hyperchaotic systems with uncertain parameters and the asymptotic synchronization of two different hyperchaotic systems are derived by applying the Lyapunov stability theory. This method is a universal one of synchronizing two identical or different hyperchaotic systems. Numerical examples are given to demonstrate the validity of the proposed fuzzy model and hyperchaotic synchronization scheme.
文摘This paper presents a fuzzy logic approach to efficiently perform unsupervised character classification for improvement in robustness, correctness and speed of a character recognition system. The characters are first split into eight typographical categories. The classification scheme uses pattern matching to classify the characters in each category into a set of fuzzy prototypes based on a nonlinear weighted similarity function. The fuzzy unsupervised character classification, which is natural in the repre...
基金work supported by Changwon National University in 2011-2012work partly supported by the second stage of Brain Korea 21 Projects
文摘Ship-mounted container cranes are challenging industrial applications of nonlinear pendulum-like systems with oscillating disturbance which can cause them unstable.Since wave-induced ship motion causes the hoisted container to swing during the transfer operation,the swing motion may be dangerously large and the operation must be stopped.In order to reduce payload pendulation of ship-mounted crane,nonlinear dynamics of ship-mounted crane is derived and a control method using T-S fuzzy model is proposed.Simulation results are given to illustrate the validity of the proposed design method and pendulation of ship-mounted crane is reduced significantly.
基金Project (No. 60421002) supported by the National Natural ScienceFoundation of China
文摘An extended robust model predictive control approach for input constrained discrete uncertain nonlinear systems with time-delay based on a class of uncertain T-S fuzzy models that satisfy sector bound condition is presented. In this approach, the minimization problem of the “worst-case” objective function is converted into the linear objective minimization problem in- volving linear matrix inequalities (LMIs) constraints. The state feedback control law is obtained by solving convex optimization of a set of LMIs. Sufficient condition for stability and a new upper bound on robust performance index are given for these kinds of uncertain fuzzy systems with state time-delay. Simulation results of CSTR process show that the proposed robust predictive control approach is effective and feasible.
基金This Project was supported by the National Natural Science Foundation of China (60374037 and 60574036)the Opening Project Foundation of National Lab of Industrial Control Technology (0708008).
文摘A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and the orthogonalleast square method is constructed to approach the nonlinear system. Since its consequence is linear, it can divide the nonlinear system into a number of linear or nearly linear subsystems. For this T-S fuzzy model, a GPC algorithm with input constraints is presented. This strategy takes into account all the constraints of the control signal and its increment, and does not require the calculation of the Diophantine equations. So it needs only a small computer memory and the computational speed is high. The simulation results show a good performance for the nonlinear systems.
基金Supported by a grant from the American College of Gastroenterology
文摘AIM: To investigate whether a fuzzy logic model could predict colorectal cancer (CRC) risk engendered by smoking in hereditary non-polyposis colorectal cancer (HNPCC) patients. METHODS: Three hundred and forty HNPCC mismatch repair (MMR) mutation carriers from the Creighton University Hereditary Cancer Institute Registry were selected for modeling. Age-dependent curves were generated to elucidate the joint effects between gene mutation (hMLH1 or hMSH2), gender, and smoking status on the probability of developing CRC. RESULTS: Smoking significantly increased CRC risk in male hMSH2 mutation carriers (P 〈 0.05). hMLH1 mutations augmented CRC risk relative to hMSH2 mutation carriers for males (P 〈 0.05). Males had a significantly higher risk of CRC than females for hMLH1 non smokers (P 〈 0.05), hMLH1 smokers (P 〈 0.1) and hMSH2 smokers (P 〈 0.1). Smoking promoted CRC in a dose-dependent manner in hMSH2 in males (P 〈 0.05). Females with hMSH2 mutations and both sexes with the hMLH1 groups only demonstrated a smoking effect after an extensive smoking history (P 〈 0.05). CONCLUSION: CRC promotion by smoking in HNPCC patients is dependent on gene mutation, gender and age. These data demonstrate that fuzzy modeling may enable formulation of clinical risk scores, thereby allowing individualization of CRC prevention strategies.
基金National Natural Science Foundation of China(Grant Nos.51675151,U1564201)Open Fund of the Key Laboratory of Advanced Perception and Intelligent Control of High-end Equipment of Ministry of Education(Grant No.GDSC202013).
文摘Current research on lane-keeping systems ignores the effect of the driver and external resistance on the accuracy of tracking the lane centerline.To reduce the lateral deviation of the vehicle,a lane-keeping control method based on the fuzzy Takagi-Sugeno(T-S)model is proposed.The method adopts a driver model based on near and far visual angles,and a driver-road-vehicle closed-loop model based on longitudinal nonlinear velocity variation,obtaining the expected assist torque with a robust H∞controller which is designed based on parallel distributed compensation and linear matrix inequality.Considering the external influences of tire adhesion and aligning torque when the vehicle is steering,a feedforward compensation control is designed.The electric power steering system is adopted as the actuator for lane-keeping,and active steering redressing is realized by a control motor.Simulation results based on Carsim/Simulink and real vehicle test results demonstrate that the method helps to maintain the vehicle in the lane centerline and ensures driving safety.
基金Project partially supported by the Natural Science Foundation of Educational Committee of Anhui Province, China (Grant No 2006kj250B).
文摘The projection of the chaotic attractor observed from the Lorenz system in the X-Z plane is like a butterfly, hence the classical Lorenz system is widely known as the butterfly attractor, and has served as a prototype model for studying chaotic behaviour since it was coined. In this work we take one step further to investigate some fundamental dynamic behaviours of a novel hybrid Takagi-Sugeno (TS) fuzzy Lorenz-type system, which is essentially derived from the delta-operator-based TS fuzzy modelling for complex nonlinear systems, and contains the original Lorenz system of continuous-time TS fuzzy form as a special case. By simply and appropriately tuning the additional parametric perturbations in the two-rule hybrid TS fuzzy Lorenz-type system, complex (two-wing) butterfly attractors observed from this system in the three dimensional (3D) X-Y-Z space are created, which have not yet been reported in the literature, and the forming mechanism of the compound structures have been numerically investigated.
基金supported by National Natural Science Foundationof China (No. 60472065, No. 60774013).
文摘A new robust proportional-integral-derivative (PID) tracking control framework is considered for stochastic systems with non-Gaussian variable based on B-spline neural network approximation and T-S fuzzy model identification. The tracked object is the statistical information of a given target probability density function (PDF), rather than a deterministic signal. Following B-spline approximation to the integrated performance function, the concerned problem is transferred into the tracking of given weights. Different from the previous related works, the time delay T-S fuzzy models with the exogenous disturbances are applied to identify the nonlinear weighting dynamics. Meanwhile, the generalized PID controller structure and the improved convex linear matrix inequalities (LMI) algorithms are proposed to fulfil the tracking problem. Furthermore, in order to enhance the robust performance, the peak-to-peak measure index is applied to optimize the tracking performance. Simulations are given to demonstrate the efficiency of the proposed approach.
基金supported by the National Natural Science Foundation of China(Grant No 60604007)
文摘This paper presents a novel approach to hyperchaos control of hyperchaotic systems based on impulsive control and the Takagi-Sugeno (T-S) fuzzy model. In this study, the hyperchaotic Lu system is exactly represented by the T-S fuzzy model and an impulsive control framework is proposed for stabilizing the hyperchaotic Lu system, which is also suitable for classes of T-S fuzzy hyperchaotic systems, such as the hyperchaotic Rossler, Chen, Chua systems and so on. Sufficient conditions for achieving stability in impulsive T-S fuzzy hyperchaotic systems are derived by using Lyapunov stability theory in the form of the linear matrix inequality, and are less conservative in comparison with existing results. Numerical simulations are given to demonstrate the effectiveness of the proposed method.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50977008,60774048,and 60774093)the National High Technology Research and Development Program of China (Grant No. 2009AA04Z127)+1 种基金the Special Grant of Financial Support from China Postdoctoral Science Foundation (Grant No. 200902547)Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 200801451096)
文摘In this paper the fault tolerant synchronization of two chaotic systems based on fuzzy model and sample data is investigated. The problem of fault tolerant synchronization is formulated to study the global asymptotical stability of the error system with the fuzzy sampled-data controller which contains a state feedback controller and a fault compensator. The synchronization can be achieved no matter whether the fault occurs or not. To investigate the stability of the error system and facilitate the design of the fuzzy sampled-data controller, a Takagi Sugeno (T-S) fuzzy model is employed to represent the chaotic system dynamics. To acquire good performance and produce a less conservative analysis result, a new parameter-dependent Lyapunov-Krasovksii functional and a relaxed stabilization technique are considered. The stability conditions based on linear matrix inequality are obtained to achieve the fault tolerant synchronization of the chaotic systems. Finally, a numerical simulation is shown to verify the results.
文摘A design method is presented for Takagi-Sugeno (T-S) fuzzy model based nonlinear sliding model controller. First, the closed-loop fuzzy system is divided into a set of dominant local linear systems according to operating sub-regions. In each sub-region the fuzzy system consists of nominal linear system and a group of interacting systems. Then the controller composed two parts is designed. One part is designed to control the nominal system, the other is designed to control the interacting systems with sliding mode theory. The proposed controller can improve the robusmess and gnarantee tracking performance of the fuzzy system. Stability is guaranteed without finding a common positive definite matrix.
基金supported by the National Natural Science Foundation of China(61863034)。
文摘Based on the multi-model principle, the fuzzy identification for nonlinear systems with multirate sampled data is studied.Firstly, the nonlinear system with multirate sampled data can be shown as the nonlinear weighted combination of some linear models at multiple local working points. On this basis, the fuzzy model of the multirate sampled nonlinear system is built. The premise structure of the fuzzy model is confirmed by using fuzzy competitive learning, and the conclusion parameters of the fuzzy model are estimated by the random gradient descent algorithm. The convergence of the proposed identification algorithm is given by using the martingale theorem and lemmas. The fuzzy model of the PH neutralization process of acid-base titration for hair quality detection is constructed to demonstrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (No.70471087)China Postdoctoral Science Foundation Funded Project(No.20080430929)Liaoning Province Education Bureau Foundation (No.20060106)
文摘A robust control for uncertain nonlinear systems based on T-S fuzzy model is discussed in this paper. First, a T-S fuzzy system is adopted to model the uncertain nonlinear systems. Then, for the system with input variables adopting standard fuzzy partitions, the efficient maximal overlapped-rules group (EMORG) is presented, and a new sufficient condition to check the stability of T-S fuzzy system with uncertainty is derived, which is expressed in terms of Linear Matrix Inequalities. The derived stability condition, which only requires a local common positive definite matrix in each EMORG, can reduce the conservatism and difficulty in existing stability conditions. Finally, a simulation example shows the proposed approach is effective.
文摘This paper proposes an impulsive control scheme for chaotic systems consisting of Van der Pol oscillators coupled to linear oscillators (VDPL) based on their Takagi-Sugeno (T-S) fuzzy models. A T-S fuzzy model is utilized to represent the chaotic VDPL system. By using comparison method, a general asymptotical stability criterion by means of linear matrix inequality (LMI) is derived for the T-S fuzzy model of VDPL system with impulsive effects. The simulation results demonstrate the effectiveness of the proposed scheme.
文摘A method of fuzzy modeling based on fuzzy clustering and Kalman filtering was proposed for predicting M s temperature from chemical composition for martensitic stainless steel. The membership degree of each sample was calculated by the fuzzy clustering algorithm. Kalman filtering was used to identify the consequent parameters. Only Grade 95 steel are available for training and validation, and the fuzzy model is valid for the following element concentration ranges (wt%): 0.01<C<0.7; 0<Si<1.0; 0.10<Mn<1.25; 11.5<Cr< 17.5; 0<Ni<2.5; 0<Mo<1.0. Compared with that of several empirical models reported, the accuracy of the fuzzy model was almost 5 times higher than that of the best empirical model. Furthermore, the compositional dependences of Ms were successfully determined and compared with those of the empirical formulae. It was found that the specific element dependences were a function of the overall composition, something could not easily be found using conventional statistics.
基金supported by the Natural Science Foundation of Guandong Province,China (Grant No 8351009001000002)the National Natural Science Foundation of China (Grant Nos 60572073 and 60871025)
文摘A control approach where the fuzzy logic methodology is combined with impulsive control is developed for controlling some time-delay chaotic systems in this paper. We first introduce impulses into each subsystem with delay of the Takagi-Sugeno (TS) fuzzy IF-THEN rules and then present a unified TS impulsive fuzzy model with delay for chaos control. Based on the new model, a simple and unified set of conditions for controlling chaotic systems is derived by the Lyapunov Razumikhin method, and a design procedure for estimating bounds on control matrices is also given. Several numerical examples are presented to illustrate the effectiveness of this method.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60904101,60972164 and 60904046)the Fundamental Research Funds for the Central Universities (Grant No. N090404009)the Research Foundation of Education Bureau of Liaoning Province,China (Grant No. 2009A544)
文摘This paper investigates the chaotification problem of a stable continuous-time T S fuzzy system. A simple nonlinear state time-delay feedback controller is designed by parallel distributed compensation technique. Then, the asymptotically approximate relationship between the controlled continuous-time T-S fuzzy system with time-delay and a discrete-time T-S fuzzy system is established. Based on the discrete-time T-S fuzzy system, it proves that the chaos in the discrete- time T-S fuzzy system satisfies the Li-Yorke definition by choosing appropriate controller parameters via the revised Marotto theorem. Finally, the effectiveness of the proposed chaotic anticontrol method is verified by a practical example.
文摘Attitude identification method for unmanned helicopter based on fuzzy model at hovering is presented. The dynamical attitude model is considered as basis for attitude control and it is very complex. To reduce the complexity of model, nonlinear model of unmanned helicopter with unknown parameters are to be determined by fuzzy system first and then derivative based gradient method is used to identify unknown parameters of model. Gradient method is used due to ability that fuzzy system is not necessarily to be linear in parameters, therefore all fuzzy sets for input and output can be adjusted. The validity of the proposed model was verified using experimental data obtained by the commercially available flight simulator X-Plane. The simulation results showed high accuracy of the modeling method and attitude dynamics data matched well with experimental data.