Although various types of anti-roll torsion bars have been developed to inhibit excessive roll angle of the electric multiple unit(EMU)car body,it is critical to ensure the reliability of structural design due to the ...Although various types of anti-roll torsion bars have been developed to inhibit excessive roll angle of the electric multiple unit(EMU)car body,it is critical to ensure the reliability of structural design due to the complexity of the problems involving time and uncertainties.To address this issue,amulti-objective fuzzy design optimization model is constructed considering time-variant stiffness and strength reliability constraints for the anti-roll torsion bar.A hybrid optimization strategy combining the design of experiment(DoE)sampling and non-linear programming by quadratic lagrangian(NLPQL)is presented to deal with the design optimization model.To characterize the effect of time on the structural performance of the torsion bar,the continuous-time model combined with Ito lemma is proposed to establish the time-variant stiffness and strength reliability constraints.Fuzzy mathematics is employed to conduct uncertainty quantification for the design parameters of the torsion bar.A physical programming approach is used to improve the designer’s preference and to make the optimization results more consistent with engineering practices.Moreover,the effectiveness of the proposed method has been validated by comparing with current methods in a practical engineering case.展开更多
Separation-recycle system is an important part in chemical process, and its optimization is a multiobjective problem. In this paper the process optimization procedure is proposed. The fuzzy optimization algorithm with...Separation-recycle system is an important part in chemical process, and its optimization is a multiobjective problem. In this paper the process optimization procedure is proposed. The fuzzy optimization algorithm with the concept of relative importance degree (RID) is utilized to transfer multi-objective optimization (MO-O) model into a single-objective optimization (SO-O) framework. The treatment of process condensate in synthesisa mmonia plant is taken as example to illustrate the optimization procedure, and the satisfactory result demonstrates feasibility and effectiveness of the suggested method.展开更多
Selecting optimization ship form scheme is an important content in the process of concept design of ship. Multi-objective fuzzy decision-making model for ship form demonstration is set up according to the fuzzy patter...Selecting optimization ship form scheme is an important content in the process of concept design of ship. Multi-objective fuzzy decision-making model for ship form demonstration is set up according to the fuzzy pattern-recognition theory. Weight coefficients of each target of ship form scheme are determined by information entropy and individual subjective partiality. This model is used to select the optimal ship form scheme, the example shows that the model is exact and the resuh is credible. It can provide a reference for choosing the optimization scheme of ship form.展开更多
A vague-set-based fuzzy multi-objective decision making model is developed for evaluating bidding plans in a bid- ding purchase process. A group of decision-makers (DMs) first independently assess bidding plans accord...A vague-set-based fuzzy multi-objective decision making model is developed for evaluating bidding plans in a bid- ding purchase process. A group of decision-makers (DMs) first independently assess bidding plans according to their experience and preferences, and these assessments may be expressed as linguistic terms, which are then converted to fuzzy numbers. The resulting decision matrices are then transformed to objective membership grade matrices. The lower bound of satisfaction and upper bound of dissatisfaction are used to determine each bidding plan’s supporting, opposing, and neutral objective sets, which together determine the vague value of a bidding plan. Finally, a score function is employed to rank all bidding plans. A new score function based on vague sets is introduced in the model and a novel method is presented for calculating the lower bound of sat- isfaction and upper bound of dissatisfaction. In a vague-set-based fuzzy multi-objective decision making model, different valua- tions for upper and lower bounds of satisfaction usually lead to distinct ranking results. Therefore, it is crucial to effectively contain DMs’ arbitrariness and subjectivity when these values are determined.展开更多
A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy glob...A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy global best and fuzzy personal best are given on basis of the new operator. After that, particle updating equations are revised on the basis of the two new concepts to discourage the premature convergence and enlarge the potential search space; second, the elite archiving technique is used during the process of evolution, namely, the elite particles are introduced into the swarm, whereas the inferior particles are deleted. Therefore, the quality of the swarm is ensured. Finally, the convergence of this swarm is proved. The experimental results show that the nondominated solutions found by the proposed algorithm are uniformly distributed and widely spread along the Pareto front.展开更多
Supplier selection is a multi-objective decision problem, which must be considered many objectives, some objectives are qualitative, and others are quantitative. Meanwhile, manufacturer has preference for different su...Supplier selection is a multi-objective decision problem, which must be considered many objectives, some objectives are qualitative, and others are quantitative. Meanwhile, manufacturer has preference for different suppliers. In this paper, a new multi-objective decision model with preference information of supplier is established. A practical example of supplier selection problem utilizing this model is studied. The result demonstrates the feasibility and effectiveness of the methods proposed in the paper.展开更多
This study presented a multi-objective linear fractional inventory (LFI) problem with generalised intuitionistic fuzzy numbers. In modelling, the authors have assumed the ambiances where generalised trapezoidal intuit...This study presented a multi-objective linear fractional inventory (LFI) problem with generalised intuitionistic fuzzy numbers. In modelling, the authors have assumed the ambiances where generalised trapezoidal intuitionistic fuzzy numbers (GTIFNs) used to handle the uncertain information in the data. Then, the given multi-objective generalised intuitionistic fuzzy LFI model was transformed into its equivalent deterministic linear fractional programming problem by employing the possibility and necessity measures. Finally, the applicability of the model is demonstrated with a numerical example and the sensitivity analysis under several parameters is investigated to explore the study.展开更多
We propose a multi-objective Pareto-optimal technique using Genetic Algorithm (GA) for group communication, which determines a min-cost multicast tree satisfying end-to-end delay, jitter, packet loss rate and blocking...We propose a multi-objective Pareto-optimal technique using Genetic Algorithm (GA) for group communication, which determines a min-cost multicast tree satisfying end-to-end delay, jitter, packet loss rate and blocking probability constraints. The model incorporates a fuzzy-based selection technique for initialization of QoS parameter values at each instance of multicasting. The simulation results show that the proposed algorithm satisfies on-demand QoS requirements (like high availability, good load balancing and fault-tolerance) made by the hosts in varying topology and bursty data traffic in multimedia communication networks.展开更多
A new fuzzification method for multi-objective decision-making and selective sorting is proposed on the basis of the fuzzy consistent relation, and the specific algorithm is presented. The method is applied to the eva...A new fuzzification method for multi-objective decision-making and selective sorting is proposed on the basis of the fuzzy consistent relation, and the specific algorithm is presented. The method is applied to the evaluation of highway planning of Zhanjiang city. To decrease the subjectivity in the process of decision-making, the LOWA operator is introduced, and a discussion on how to select appropriate weights involved in multi-objective sorting is made. It is concluded that it is feasible to apply the fuzzy consistent relation to multi-objective decision-making analysis, and the improved fuzzication method is workable.展开更多
This paper presents a modified method to solve multi-objective nonlinear programming problems with fuzzy parameters in its objective functions and these fuzzy parameters are characterized by fuzzy numbers. The modifie...This paper presents a modified method to solve multi-objective nonlinear programming problems with fuzzy parameters in its objective functions and these fuzzy parameters are characterized by fuzzy numbers. The modified method is based on normalized trade-off weights. The obtained stability set corresponding to α-Pareto optimal solution, using our method, is investigated. Moreover, an algorithm for obtaining any subset of the parametric space which has the same corresponding α-Pareto optimal solution is presented. Finally, a numerical example to illustrate our method is also given.展开更多
A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming probl...A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming problem can be converted into the single objective function by various methods as Chandra Sen’s method, weighted sum method, ranking function method, statistical averaging method. In this paper, Chandra Sen’s method and statistical averaging method both are used here for making single objective function from multi-objective function. Two multi-objective programming problems are solved to verify the result. One is numerical example and the other is real life example. Then the problems are solved by ordinary simplex method and fuzzy programming method. It can be seen that fuzzy programming method gives better optimal values than the ordinary simplex method.展开更多
In this paper, the statistical averaging method and the new statistical averaging methods have been used to solve the fuzzy multi-objective linear programming problems. These methods have been applied to form a single...In this paper, the statistical averaging method and the new statistical averaging methods have been used to solve the fuzzy multi-objective linear programming problems. These methods have been applied to form a single objective function from the fuzzy multi-objective linear programming problems. At first, a numerical example of solving fuzzy multi-objective linear programming problem has been provided to validate the maximum risk reduction by the proposed method. The proposed method has been applied to assess the risk of damage due to natural calamities like flood, cyclone, sidor, and storms at the coastal areas in Bangladesh. The proposed method of solving the fuzzy multi-objective linear programming problems by the statistical method has been compared with the Chandra Sen’s method. The numerical results show that the proposed method maximizes the risk reduction capacity better than Chandra Sen’s method.展开更多
To assist readers to have a comprehensive understanding, the classical and intelligent methods roundly based on precursory research achievements are summarized in this paper. First, basic conception and description ab...To assist readers to have a comprehensive understanding, the classical and intelligent methods roundly based on precursory research achievements are summarized in this paper. First, basic conception and description about multi-objective (MO) optimization are introduced. Then some definitions and related terminologies are given. Furthermore several MO optimization methods including classical and current intelligent methods are discussed one by one succinctly. Finally evaluations on advantages and disadvantages about these methods are made at the end of the paper.展开更多
This paper studies a time-variant multi-objective linear fractional transportation problem. In reality, transported goods should reach in destinations within a specific time. Considering the importance of time, a time...This paper studies a time-variant multi-objective linear fractional transportation problem. In reality, transported goods should reach in destinations within a specific time. Considering the importance of time, a time-variant multi-objective linear fractional transportation problem is formulated here. We take into account the parameters as cost, supply and demand are interval valued that involved in the proposed model, so we treat the model as a multi-objective linear fractional interval transportation problem. To solve the formulated model, we first convert it into a deterministic form using a new transformation technique and then apply fuzzy programming to solve it. The applicability of our proposed method is shown by considering two numerical examples. At last, conclusions and future research directions regarding our study is included.展开更多
This paper proposes a multi-objective optimization design method based on the coalition cooperative game theory where the three design goals have been seen as three game players. By calculating the affecting factors a...This paper proposes a multi-objective optimization design method based on the coalition cooperative game theory where the three design goals have been seen as three game players. By calculating the affecting factors and fuzzy clustering, the design variables are divided into different strategic spaces which belong to each player, then it constructs a payoff function based on the coalition mechanism. Each game player takes its own revenue function as a target and obtains the best strategy versus other players. The best strategies of all players consist of the strategy permutation of a round game and it obtains the final game solutions through multi-round games according to the convergence criterion. A multi-objective optimization example of the luff mechanism of compensative sheave block shows the effectiveness of the coalition cooperative game method.展开更多
Increasing demand for water from all sectors presents a challenge for policy makers to improve water allocation policies for storage reservoirs. In addition, there are many other organisms and species present in river...Increasing demand for water from all sectors presents a challenge for policy makers to improve water allocation policies for storage reservoirs. In addition, there are many other organisms and species present in river waters that also require water for their survival. Due to the lack of awareness many times the minimum required quantity and quality of water for river ecosystem is not made available at downstream of storage reservoirs. So, a sustainable approach is required in reservoir operations to maintain the river ecosystem with environmental flow while meeting the other demands. Multi-objective, multi-reservoir operation model developed with Python programming using Fuzzy Linear Programing method incorporating environmental flow requirement of river is presented in this paper. Objective of maximization of irrigation release is considered for first run. In second run maximization of releases for hydropower generation is considered as objective. Further both objectives are fuzzified by incorporating linear membership function and solved to maximize fuzzified objective function simultaneously by maximizing satisfaction level indicator (λ). The optimal reservoir operation policy is presented considering constraints including Irrigation release, Turbine release, Reservoir storage, Environmental flow release and hydrologic continuity. Model applied for multi-reservoir system consists of four reservoirs, i.e., Jayakwadi Stage-I Reservoir (R1), Jayakwadi Stage-II Reservoir (R2), Yeldari Reservoir (R3), Siddheshwar Reservoir (R4) in Godavari River sub-basin from Marathwada region of Maharashtra State, India.展开更多
This paper puts forward a new integrated design met ho d based on fuzzy matter-element optimization.On the based of analyzing the mod el of multi-objective fuzzy matter-element , the paper defines the m atter-element ...This paper puts forward a new integrated design met ho d based on fuzzy matter-element optimization.On the based of analyzing the mod el of multi-objective fuzzy matter-element , the paper defines the m atter-element weightily and changes solving multi-objective fuzzy optimization into solving dependent function K(x) of the single-objective optimization according to the optimization criterion. The paper particularly describes the realization approach of GA process of multi -objective fuzzy matter-element optimization: encode, produce initial populati on, confirm fitness function, select operator, etc. In the process, the adaptive macro genetic algorithms (AMGA) is applied to enhancing the evolution speed. Th e paper improves the two genetic operators: crossover and mutation operator. The modified adaptive macro genetic algorithms (MAMGA) is put forward simultane ously. It is adopted to solve the optimization problem. Three optimization methods, namely fuzzy matter-element optimization method, li nearity weighted method and fuzzy optimization method, are compared by using the table and figure, it shows that not only MAMGA is a little better than the AMGA , but also it reaches the extent to which the effective iteration generation is 62.2% of simple genetic algorithms (SGA). By the calculation of optimum exam ple, the improved method of genetic in the paper is much better than the method in reference of paper.展开更多
A novel centralized approach for Dynamic Spectrum Allocation (DSA) in the Cognitive Radio (CR) network is presented in this paper. Instead of giving the solution in terms of formulas modeling network environment such ...A novel centralized approach for Dynamic Spectrum Allocation (DSA) in the Cognitive Radio (CR) network is presented in this paper. Instead of giving the solution in terms of formulas modeling network environment such as linear programming or convex optimization, the new approach obtains the capability of iteratively on-line learning environment performance by using Reinforcement Learning (RL) algorithm after observing the variability and uncertainty of the heterogeneous wireless networks. Appropriate decision-making access actions can then be obtained by employing Fuzzy Inference System (FIS) which ensures the strategy being able to explore the possible status and exploit the experiences sufficiently. The new approach considers multi-objective such as spectrum efficiency and fairness between CR Access Points (AP) effectively. By interacting with the environment and accumulating comprehensive advantages, it can achieve the largest long-term reward expected on the desired objectives and implement the best action. Moreover, the present algorithm is relatively simple and does not require complex calculations. Simulation results show that the proposed approach can get better performance with respect to fixed frequency planning scheme or general dynamic spectrum allocation policy.展开更多
This paper is comprised of the modeling and optimization of a multi objective linear programming problem in fuzzy environment in which some goals are fractional and some are linear. Here, we present a new approach for...This paper is comprised of the modeling and optimization of a multi objective linear programming problem in fuzzy environment in which some goals are fractional and some are linear. Here, we present a new approach for its solution by using α-cut of fuzzy numbers. In this proposed method, we first define membership function for goals by introducing non-deviational variables for each of objective functions with effective use of α-cut intervals to deal with uncertain parameters being represented by fuzzy numbers. In the optimization process the under deviational variables are minimized for finding a most satisfactory solution. The developed method has also been implemented on a problem for illustration and comparison.展开更多
In this paper, at first, the single input rule modules(SIRMs) dynamically connected fuzzy inference model is used to stabilize a double inverted pendulum system. Then, a multiobjective particle swarm optimization(MOPS...In this paper, at first, the single input rule modules(SIRMs) dynamically connected fuzzy inference model is used to stabilize a double inverted pendulum system. Then, a multiobjective particle swarm optimization(MOPSO) is implemented to optimize the fuzzy controller parameters in order to decrease the distance error of the cart and summation of the angle errors of the pendulums, simultaneously. The feasibility and efficiency of the proposed Pareto front is assessed in comparison with results reported in literature and obtained from other algorithms.Finally, the Java programming with applets is utilized to simulate the stability of the nonlinear system and explain the internetbased control.展开更多
基金This work was supported by Sichuan Science and Technology Program under the Contract No.2020JDJQ0036.
文摘Although various types of anti-roll torsion bars have been developed to inhibit excessive roll angle of the electric multiple unit(EMU)car body,it is critical to ensure the reliability of structural design due to the complexity of the problems involving time and uncertainties.To address this issue,amulti-objective fuzzy design optimization model is constructed considering time-variant stiffness and strength reliability constraints for the anti-roll torsion bar.A hybrid optimization strategy combining the design of experiment(DoE)sampling and non-linear programming by quadratic lagrangian(NLPQL)is presented to deal with the design optimization model.To characterize the effect of time on the structural performance of the torsion bar,the continuous-time model combined with Ito lemma is proposed to establish the time-variant stiffness and strength reliability constraints.Fuzzy mathematics is employed to conduct uncertainty quantification for the design parameters of the torsion bar.A physical programming approach is used to improve the designer’s preference and to make the optimization results more consistent with engineering practices.Moreover,the effectiveness of the proposed method has been validated by comparing with current methods in a practical engineering case.
文摘Separation-recycle system is an important part in chemical process, and its optimization is a multiobjective problem. In this paper the process optimization procedure is proposed. The fuzzy optimization algorithm with the concept of relative importance degree (RID) is utilized to transfer multi-objective optimization (MO-O) model into a single-objective optimization (SO-O) framework. The treatment of process condensate in synthesisa mmonia plant is taken as example to illustrate the optimization procedure, and the satisfactory result demonstrates feasibility and effectiveness of the suggested method.
文摘Selecting optimization ship form scheme is an important content in the process of concept design of ship. Multi-objective fuzzy decision-making model for ship form demonstration is set up according to the fuzzy pattern-recognition theory. Weight coefficients of each target of ship form scheme are determined by information entropy and individual subjective partiality. This model is used to select the optimal ship form scheme, the example shows that the model is exact and the resuh is credible. It can provide a reference for choosing the optimization scheme of ship form.
基金Project (No. K81077) supported by the Department of Automation, Xiamen University, China
文摘A vague-set-based fuzzy multi-objective decision making model is developed for evaluating bidding plans in a bid- ding purchase process. A group of decision-makers (DMs) first independently assess bidding plans according to their experience and preferences, and these assessments may be expressed as linguistic terms, which are then converted to fuzzy numbers. The resulting decision matrices are then transformed to objective membership grade matrices. The lower bound of satisfaction and upper bound of dissatisfaction are used to determine each bidding plan’s supporting, opposing, and neutral objective sets, which together determine the vague value of a bidding plan. Finally, a score function is employed to rank all bidding plans. A new score function based on vague sets is introduced in the model and a novel method is presented for calculating the lower bound of sat- isfaction and upper bound of dissatisfaction. In a vague-set-based fuzzy multi-objective decision making model, different valua- tions for upper and lower bounds of satisfaction usually lead to distinct ranking results. Therefore, it is crucial to effectively contain DMs’ arbitrariness and subjectivity when these values are determined.
基金the National Natural Science Foundations of China (60873099 )
文摘A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy global best and fuzzy personal best are given on basis of the new operator. After that, particle updating equations are revised on the basis of the two new concepts to discourage the premature convergence and enlarge the potential search space; second, the elite archiving technique is used during the process of evolution, namely, the elite particles are introduced into the swarm, whereas the inferior particles are deleted. Therefore, the quality of the swarm is ensured. Finally, the convergence of this swarm is proved. The experimental results show that the nondominated solutions found by the proposed algorithm are uniformly distributed and widely spread along the Pareto front.
文摘Supplier selection is a multi-objective decision problem, which must be considered many objectives, some objectives are qualitative, and others are quantitative. Meanwhile, manufacturer has preference for different suppliers. In this paper, a new multi-objective decision model with preference information of supplier is established. A practical example of supplier selection problem utilizing this model is studied. The result demonstrates the feasibility and effectiveness of the methods proposed in the paper.
文摘This study presented a multi-objective linear fractional inventory (LFI) problem with generalised intuitionistic fuzzy numbers. In modelling, the authors have assumed the ambiances where generalised trapezoidal intuitionistic fuzzy numbers (GTIFNs) used to handle the uncertain information in the data. Then, the given multi-objective generalised intuitionistic fuzzy LFI model was transformed into its equivalent deterministic linear fractional programming problem by employing the possibility and necessity measures. Finally, the applicability of the model is demonstrated with a numerical example and the sensitivity analysis under several parameters is investigated to explore the study.
文摘We propose a multi-objective Pareto-optimal technique using Genetic Algorithm (GA) for group communication, which determines a min-cost multicast tree satisfying end-to-end delay, jitter, packet loss rate and blocking probability constraints. The model incorporates a fuzzy-based selection technique for initialization of QoS parameter values at each instance of multicasting. The simulation results show that the proposed algorithm satisfies on-demand QoS requirements (like high availability, good load balancing and fault-tolerance) made by the hosts in varying topology and bursty data traffic in multimedia communication networks.
基金SupportedbytheNationalNaturalScienceFoundationofChina (No .60 1 340 1 0 )
文摘A new fuzzification method for multi-objective decision-making and selective sorting is proposed on the basis of the fuzzy consistent relation, and the specific algorithm is presented. The method is applied to the evaluation of highway planning of Zhanjiang city. To decrease the subjectivity in the process of decision-making, the LOWA operator is introduced, and a discussion on how to select appropriate weights involved in multi-objective sorting is made. It is concluded that it is feasible to apply the fuzzy consistent relation to multi-objective decision-making analysis, and the improved fuzzication method is workable.
文摘This paper presents a modified method to solve multi-objective nonlinear programming problems with fuzzy parameters in its objective functions and these fuzzy parameters are characterized by fuzzy numbers. The modified method is based on normalized trade-off weights. The obtained stability set corresponding to α-Pareto optimal solution, using our method, is investigated. Moreover, an algorithm for obtaining any subset of the parametric space which has the same corresponding α-Pareto optimal solution is presented. Finally, a numerical example to illustrate our method is also given.
文摘A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming problem can be converted into the single objective function by various methods as Chandra Sen’s method, weighted sum method, ranking function method, statistical averaging method. In this paper, Chandra Sen’s method and statistical averaging method both are used here for making single objective function from multi-objective function. Two multi-objective programming problems are solved to verify the result. One is numerical example and the other is real life example. Then the problems are solved by ordinary simplex method and fuzzy programming method. It can be seen that fuzzy programming method gives better optimal values than the ordinary simplex method.
文摘In this paper, the statistical averaging method and the new statistical averaging methods have been used to solve the fuzzy multi-objective linear programming problems. These methods have been applied to form a single objective function from the fuzzy multi-objective linear programming problems. At first, a numerical example of solving fuzzy multi-objective linear programming problem has been provided to validate the maximum risk reduction by the proposed method. The proposed method has been applied to assess the risk of damage due to natural calamities like flood, cyclone, sidor, and storms at the coastal areas in Bangladesh. The proposed method of solving the fuzzy multi-objective linear programming problems by the statistical method has been compared with the Chandra Sen’s method. The numerical results show that the proposed method maximizes the risk reduction capacity better than Chandra Sen’s method.
文摘To assist readers to have a comprehensive understanding, the classical and intelligent methods roundly based on precursory research achievements are summarized in this paper. First, basic conception and description about multi-objective (MO) optimization are introduced. Then some definitions and related terminologies are given. Furthermore several MO optimization methods including classical and current intelligent methods are discussed one by one succinctly. Finally evaluations on advantages and disadvantages about these methods are made at the end of the paper.
文摘This paper studies a time-variant multi-objective linear fractional transportation problem. In reality, transported goods should reach in destinations within a specific time. Considering the importance of time, a time-variant multi-objective linear fractional transportation problem is formulated here. We take into account the parameters as cost, supply and demand are interval valued that involved in the proposed model, so we treat the model as a multi-objective linear fractional interval transportation problem. To solve the formulated model, we first convert it into a deterministic form using a new transformation technique and then apply fuzzy programming to solve it. The applicability of our proposed method is shown by considering two numerical examples. At last, conclusions and future research directions regarding our study is included.
文摘This paper proposes a multi-objective optimization design method based on the coalition cooperative game theory where the three design goals have been seen as three game players. By calculating the affecting factors and fuzzy clustering, the design variables are divided into different strategic spaces which belong to each player, then it constructs a payoff function based on the coalition mechanism. Each game player takes its own revenue function as a target and obtains the best strategy versus other players. The best strategies of all players consist of the strategy permutation of a round game and it obtains the final game solutions through multi-round games according to the convergence criterion. A multi-objective optimization example of the luff mechanism of compensative sheave block shows the effectiveness of the coalition cooperative game method.
文摘Increasing demand for water from all sectors presents a challenge for policy makers to improve water allocation policies for storage reservoirs. In addition, there are many other organisms and species present in river waters that also require water for their survival. Due to the lack of awareness many times the minimum required quantity and quality of water for river ecosystem is not made available at downstream of storage reservoirs. So, a sustainable approach is required in reservoir operations to maintain the river ecosystem with environmental flow while meeting the other demands. Multi-objective, multi-reservoir operation model developed with Python programming using Fuzzy Linear Programing method incorporating environmental flow requirement of river is presented in this paper. Objective of maximization of irrigation release is considered for first run. In second run maximization of releases for hydropower generation is considered as objective. Further both objectives are fuzzified by incorporating linear membership function and solved to maximize fuzzified objective function simultaneously by maximizing satisfaction level indicator (λ). The optimal reservoir operation policy is presented considering constraints including Irrigation release, Turbine release, Reservoir storage, Environmental flow release and hydrologic continuity. Model applied for multi-reservoir system consists of four reservoirs, i.e., Jayakwadi Stage-I Reservoir (R1), Jayakwadi Stage-II Reservoir (R2), Yeldari Reservoir (R3), Siddheshwar Reservoir (R4) in Godavari River sub-basin from Marathwada region of Maharashtra State, India.
文摘This paper puts forward a new integrated design met ho d based on fuzzy matter-element optimization.On the based of analyzing the mod el of multi-objective fuzzy matter-element , the paper defines the m atter-element weightily and changes solving multi-objective fuzzy optimization into solving dependent function K(x) of the single-objective optimization according to the optimization criterion. The paper particularly describes the realization approach of GA process of multi -objective fuzzy matter-element optimization: encode, produce initial populati on, confirm fitness function, select operator, etc. In the process, the adaptive macro genetic algorithms (AMGA) is applied to enhancing the evolution speed. Th e paper improves the two genetic operators: crossover and mutation operator. The modified adaptive macro genetic algorithms (MAMGA) is put forward simultane ously. It is adopted to solve the optimization problem. Three optimization methods, namely fuzzy matter-element optimization method, li nearity weighted method and fuzzy optimization method, are compared by using the table and figure, it shows that not only MAMGA is a little better than the AMGA , but also it reaches the extent to which the effective iteration generation is 62.2% of simple genetic algorithms (SGA). By the calculation of optimum exam ple, the improved method of genetic in the paper is much better than the method in reference of paper.
基金supported in part by National Science Fund for Distinguished Young Scholars project under Grant No.60725105National Basic Research Program of China (973 Pro-gram) under Grant No.2009CB320404+1 种基金National Natural Science Foundation of China under Grant No.61072068Fundamental Research Funds for the Central Universities under Grant No.JY10000901031
文摘A novel centralized approach for Dynamic Spectrum Allocation (DSA) in the Cognitive Radio (CR) network is presented in this paper. Instead of giving the solution in terms of formulas modeling network environment such as linear programming or convex optimization, the new approach obtains the capability of iteratively on-line learning environment performance by using Reinforcement Learning (RL) algorithm after observing the variability and uncertainty of the heterogeneous wireless networks. Appropriate decision-making access actions can then be obtained by employing Fuzzy Inference System (FIS) which ensures the strategy being able to explore the possible status and exploit the experiences sufficiently. The new approach considers multi-objective such as spectrum efficiency and fairness between CR Access Points (AP) effectively. By interacting with the environment and accumulating comprehensive advantages, it can achieve the largest long-term reward expected on the desired objectives and implement the best action. Moreover, the present algorithm is relatively simple and does not require complex calculations. Simulation results show that the proposed approach can get better performance with respect to fixed frequency planning scheme or general dynamic spectrum allocation policy.
文摘This paper is comprised of the modeling and optimization of a multi objective linear programming problem in fuzzy environment in which some goals are fractional and some are linear. Here, we present a new approach for its solution by using α-cut of fuzzy numbers. In this proposed method, we first define membership function for goals by introducing non-deviational variables for each of objective functions with effective use of α-cut intervals to deal with uncertain parameters being represented by fuzzy numbers. In the optimization process the under deviational variables are minimized for finding a most satisfactory solution. The developed method has also been implemented on a problem for illustration and comparison.
文摘In this paper, at first, the single input rule modules(SIRMs) dynamically connected fuzzy inference model is used to stabilize a double inverted pendulum system. Then, a multiobjective particle swarm optimization(MOPSO) is implemented to optimize the fuzzy controller parameters in order to decrease the distance error of the cart and summation of the angle errors of the pendulums, simultaneously. The feasibility and efficiency of the proposed Pareto front is assessed in comparison with results reported in literature and obtained from other algorithms.Finally, the Java programming with applets is utilized to simulate the stability of the nonlinear system and explain the internetbased control.