期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Attribute Reduction of Hybrid Decision Information Systems Based on Fuzzy Conditional Information Entropy
1
作者 Xiaoqin Ma Jun Wang +1 位作者 Wenchang Yu Qinli Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第5期2063-2083,共21页
The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attr... The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data. 展开更多
关键词 Hybrid decision information systems fuzzy conditional information entropy attribute reduction fuzzy relationship rough set theory(RST)
下载PDF
The Correlation Coefficient of Hesitancy Fuzzy Graphs in Decision Making
2
作者 N.Rajagopal Reddy S.Sharief Basha 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期579-596,共18页
The hesitancy fuzzy graphs(HFGs),an extension of fuzzy graphs,are useful tools for dealing with ambiguity and uncertainty in issues involving decision-making(DM).This research implements a correlation coefficient meas... The hesitancy fuzzy graphs(HFGs),an extension of fuzzy graphs,are useful tools for dealing with ambiguity and uncertainty in issues involving decision-making(DM).This research implements a correlation coefficient measure(CCM)to assess the strength of the association between HFGs in this article since CCMs have a high capacity to process and interpret data.The CCM that is proposed between the HFGs has better qualities than the existing ones.It lowers restrictions on the hesitant fuzzy elements’length and may be used to establish whether the HFGs are connected negatively or favorably.Additionally,a CCMbased attribute DM approach is built into a hesitant fuzzy environment.This article suggests the use of weighted correlation coefficient measures(WCCMs)using the CCM concept to quantify the correlation between two HFGs.The decisionmaking problems of hesitancy fuzzy preference relations(HFPRs)are considered.This research proposes a new technique for assessing the relative weights of experts based on the uncertainty of HFPRs and the correlation coefficient degree of each HFPR.This paper determines the ranking order of all alternatives and the best one by using the CCMs between each option and the ideal choice.In the meantime,the appropriate example is given to demonstrate the viability of the new strategies. 展开更多
关键词 Hesitancy fuzzy graph correlation coefficient measures ENERGY hesitancy fuzzy preference relationships decision making
下载PDF
THE FUZZY NUMERICAL VALUE SIMULATION OF NANOMETER ELECTRO-THERMAL IN HOT-WORKING
3
作者 P. He 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2005年第6期731-735,共5页
The fuzzy numerical value analysis method is adopted for the first time, which solves the problem of nanometer electro-thermal in filming process, The key technique is embodied by controlling the time distribution, te... The fuzzy numerical value analysis method is adopted for the first time, which solves the problem of nanometer electro-thermal in filming process, The key technique is embodied by controlling the time distribution, temperature and press in the filming process. The concrete technique of filming is showed by establishing the fuzzy mumbership function of above three indexes, which improves the precision of the materials of nanometer electro-thermal in hot-working. At the same time, the principles of the fuzzy relationship mapping inversion (FRMI) is put forward, Therefore, the standardization and continuity can be met. 展开更多
关键词 fuzzy control FRMI fuzzy relationship mapping inversion) nanometer electro-thermal fuzzy numerical value simulation
下载PDF
Establishing the Forecasting Model with Time Series Data Based on Graph and Particle Swarm Optimization
4
作者 Le Thi Luong Tran Thi Thanh +1 位作者 Nghiem Van Tinh Bui Thi Thi 《Journal of Computer Science Research》 2023年第2期1-15,共15页
In recent years,a wide variety of fuzzy time series(FTS)forecasting models have been created and recommended to handle the complicated and ambiguous challenges relating to time series data from real-world sources.Howe... In recent years,a wide variety of fuzzy time series(FTS)forecasting models have been created and recommended to handle the complicated and ambiguous challenges relating to time series data from real-world sources.However,the accuracy of a model is problem-specific and varies across data sets.But a model’s precision varies between different data sets and depends on the situation at hand.Even though many models assert that they are better than statistics and a single machine learning-based model,increasing forecasting accuracy is still a challenging task.In the fuzzy time series models,the size of the intervals and the fuzzy relationship groups are thought to be crucial variables that affect the model’s forecasting abilities.This study offers a hybrid FTS forecasting model that makes use of both the graph-based clustering technique(GBC)and particle swarm optimization(PSO)for adjusting interval lengths in the universe of discourse(UoD).The suggested model’s forecasting results have been compared to those provided by other current models on a dataset of enrollments at the University of Alabama.For all orders of fuzzy relationships,the suggested model outperforms its counterparts in terms of forecasting accuracy. 展开更多
关键词 Forecasting FTS fuzzy relationship group GBC Enrolments COVID-19
下载PDF
An Information Diffusion Technique for Fire Risk Analysis 被引量:1
5
作者 刘静 黄崇福 《Journal of Donghua University(English Edition)》 EI CAS 2004年第3期54-57,共4页
There are many kinds of fires occurring under different conditions. For a specific site, it is difficult to collect sufficient data for analyzing the fire risk. In this paper, we suggest an information diffusion techn... There are many kinds of fires occurring under different conditions. For a specific site, it is difficult to collect sufficient data for analyzing the fire risk. In this paper, we suggest an information diffusion technique to analyze fire risk with a small sample. The information distribution method is applied to change crisp observations into fuzzy sets, and then to effectively construct a fuzzy relationship between fire and surroundings. With the data of Shanghai in winter, we show how to use the technique to analyze the fire risk. 展开更多
关键词 Fire risk Small sample Information distribution fuzzy relationship
下载PDF
Strongα-cut and associated membership-based modeling for fuzzy time series forecasting
6
作者 Gunjan Goyal Dinesh C.S.Bisht 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2021年第1期53-72,共20页
In this paper,a method is proposed to deal with factors affecting the fuzzy time series forecasting.A new fuzzification process is used by considering all the fuzzy sets with nonzero membership values corresponding to... In this paper,a method is proposed to deal with factors affecting the fuzzy time series forecasting.A new fuzzification process is used by considering all the fuzzy sets with nonzero membership values corresponding to the data points.A strong alpha-cut based method is presented to select appropriate fuzzy logical relationships that carry importance in analyzing the trend of time series.Further,a unique defuzzification approach based on weights is proposed to get crisp variation.This obtained variation is finally converted to the forecasted value.The presented method is tested on the benchmark enrolment dataset of Alabama University and seven datasets of the Taiwan Capitalization Weighted Stock Index.On comparing the results,it is observed that the presented method performs better than the existing methods.Also,the statistical measures indicate the good forecasting results of the presented method. 展开更多
关键词 Associated membership grade forecasting fuzzy logical relationship fuzzy time series strongα-cut
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部