期刊文献+
共找到1,208篇文章
< 1 2 61 >
每页显示 20 50 100
Rough Set Based Fuzzy Neural Network for Pattern Classification 被引量:1
1
作者 李侃 刘玉树 《Journal of Beijing Institute of Technology》 EI CAS 2003年第4期428-431,共4页
A rough set based fuzzy neural network algorithm is proposed to solve the problem of pattern recognition. The least square algorithm (LSA) is used in the learning process of fuzzy neural network to obtain the performa... A rough set based fuzzy neural network algorithm is proposed to solve the problem of pattern recognition. The least square algorithm (LSA) is used in the learning process of fuzzy neural network to obtain the performance of global convergence. In addition, the numbers of rules and the initial weights and structure of fuzzy neural networks are difficult to determine. Here rough sets are introduced to decide the numbers of rules and original weights. Finally, experiment results show the algorithm may get better effect than the BP algorithm. 展开更多
关键词 fuzzy neural network rough sets the least square algorithm back-propagation algorithm
下载PDF
Document classification approach by rough-set-based corner classification neural network 被引量:1
2
作者 张卫丰 徐宝文 +1 位作者 崔自峰 徐峻岭 《Journal of Southeast University(English Edition)》 EI CAS 2006年第3期439-444,共6页
A rough set based corner classification neural network, the Rough-CC4, is presented to solve document classification problems such as document representation of different document sizes, document feature selection and... A rough set based corner classification neural network, the Rough-CC4, is presented to solve document classification problems such as document representation of different document sizes, document feature selection and document feature encoding. In the Rough-CC4, the documents are described by the equivalent classes of the approximate words. By this method, the dimensions representing the documents can be reduced, which can solve the precision problems caused by the different document sizes and also blur the differences caused by the approximate words. In the Rough-CC4, a binary encoding method is introduced, through which the importance of documents relative to each equivalent class is encoded. By this encoding method, the precision of the Rough-CC4 is improved greatly and the space complexity of the Rough-CC4 is reduced. The Rough-CC4 can be used in automatic classification of documents. 展开更多
关键词 document classification neural network rough set meta search engine
下载PDF
Neural Network Based on Rough Sets and Its Application to Remote Sensing Image Classification 被引量:3
3
作者 WUZhaocong LIDeren 《Geo-Spatial Information Science》 2002年第2期17-21,共5页
This paper presents a new kind of back propagation neural network (BPNN) based on rough sets,called rough back propagation neural network (RBPNN).The architecture and training method of RBPNN are presented and the sur... This paper presents a new kind of back propagation neural network (BPNN) based on rough sets,called rough back propagation neural network (RBPNN).The architecture and training method of RBPNN are presented and the survey and analysis of RBPNN for the classification of remote sensing multi_spectral image is discussed.The successful application of RBPNN to a land cover classification illustrates the simple computation and high accuracy of the new neural network and the flexibility and practicality of this new approach. 展开更多
关键词 rough sets back propagation neural network remote sensing image classification
下载PDF
Yarn Quality Prediction and Diagnosis Based on Rough Set and Knowledge-Based Artificial Neural Network 被引量:1
4
作者 杨建国 徐兰 +1 位作者 项前 刘彬 《Journal of Donghua University(English Edition)》 EI CAS 2014年第6期817-823,共7页
In the spinning process, some key process parameters( i. e.,raw material index inputs) have very strong relationship with the quality of finished products. The abnormal changes of these process parameters could result... In the spinning process, some key process parameters( i. e.,raw material index inputs) have very strong relationship with the quality of finished products. The abnormal changes of these process parameters could result in various categories of faulty products. In this paper, a hybrid learning-based model was developed for on-line intelligent monitoring and diagnosis of the spinning process. In the proposed model, a knowledge-based artificial neural network( KBANN) was developed for monitoring the spinning process and recognizing faulty quality categories of yarn. In addition,a rough set( RS)-based rule extraction approach named RSRule was developed to discover the causal relationship between textile parameters and yarn quality. These extracted rules were applied in diagnosis of the spinning process, provided guidelines on improving yarn quality,and were used to construct KBANN. Experiments show that the proposed model significantly improve the learning efficiency, and its prediction precision is improved by about 5. 4% compared with the BP neural network model. 展开更多
关键词 yarn quality prediction rough set(RS) knowledge discovery knowledge-based artificial neural network(KBANN)
下载PDF
Neural network fault diagnosis method optimization with rough set and genetic algorithms
5
作者 孙红岩 《Journal of Chongqing University》 CAS 2006年第2期94-97,共4页
Aiming at the disadvantages of BP model in artificial neural networks applied to intelligent fault diagnosis, neural network fault diagnosis optimization method with rough sets and genetic algorithms are presented. Th... Aiming at the disadvantages of BP model in artificial neural networks applied to intelligent fault diagnosis, neural network fault diagnosis optimization method with rough sets and genetic algorithms are presented. The neural network nodes of the input layer can be calculated and simplified through rough sets theory; The neural network nodes of the middle layer are designed through genetic algorithms training; the neural network bottom-up weights and bias are obtained finally through the combination of genetic algorithms and BP algorithms. The analysis in this paper illustrates that the optimization method can improve the performance of the neural network fault diagnosis method greatly. 展开更多
关键词 rough sets genetic algorithm BP algorithms artificial neural network encoding rule
下载PDF
Rough set and radial basis function neural network based insulation data mining fault diagnosis for power transformer
6
作者 董立新 肖登明 刘奕路 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第2期263-268,共6页
Rough set (RS) and radial basis function neural network (RBFNN) based insulation data mining fault diagnosis for power transformer is proposed. On the one hand rough set is used as front of RBFNN to simplify the input... Rough set (RS) and radial basis function neural network (RBFNN) based insulation data mining fault diagnosis for power transformer is proposed. On the one hand rough set is used as front of RBFNN to simplify the input of RBFNN and mine the rules. The mined rules whose “confidence” and “support” is higher than requirement are used to offer fault diagnosis service for power transformer directly. On the other hand the mining samples corresponding to the mined rule, whose “confidence and support” is lower than requirement, are used to be training samples set of RBFNN and these samples are clustered by rough set. The center of each clustering set is used to be center of radial basis function, i.e., as the hidden layer neuron. The RBFNN is structured with above base, which is used to diagnose the case that can not be diagnosed by mined simplified valuable rules based on rough set. The advantages and effectiveness of this method are verified by testing. 展开更多
关键词 rough set (RS) radial basis function neural network (RBFNN) data mining fault diagnosis
下载PDF
The risk early-warning of gas hazard in coal mine based on Rough Set-neural network
7
作者 田水承 王莉 《Journal of Coal Science & Engineering(China)》 2007年第4期400-404,共5页
This article proposed the risk early-warning model of gas hazard based on Rough Set and neural network. The attribute quantity was reduced by Rough Set, the main characteristic attributes were withdrawn, the complexit... This article proposed the risk early-warning model of gas hazard based on Rough Set and neural network. The attribute quantity was reduced by Rough Set, the main characteristic attributes were withdrawn, the complexity of neural network system and the computing time was reduced, as well. Because of fault-tolerant ability, parallel processing ability, anti-jamming ability and processing non-linear problem ability of neural network system, the methods of Rough Set and neural network were combined. The examples research indicate: applying Rough Set and BP neural network to the gas hazard risk early-warning coal mines in coal mine, the BPNN structure is greatly simplified, the network computation quantity is reduced and the convergence rate is speed up. 展开更多
关键词 rough set (RS) BP neural network three types of hazard risk early-warning
下载PDF
基于Rough Set和neural network组合数据挖掘
8
作者 王志明 《湖南工业大学学报》 2007年第2期79-83,共5页
提出了一种基于rough set和neural network的数据挖掘新方法。首先利用粗集理论对原始数据进行一致性属性约简,然后使用神经网络对数据进行学习,并同时完成属性的不一致约简,最后再由粗集对神经网络中的知识进行规则抽取。该方法充分融... 提出了一种基于rough set和neural network的数据挖掘新方法。首先利用粗集理论对原始数据进行一致性属性约简,然后使用神经网络对数据进行学习,并同时完成属性的不一致约简,最后再由粗集对神经网络中的知识进行规则抽取。该方法充分融合了粗集理论强大的属性约简、规则生成能力和神经网络优良的分类、容错能力。实验表明,该方法快速有效,生成规则简单准确,具有良好的鲁棒性。 展开更多
关键词 数据挖掘 粗集理论 神经网络 分类
下载PDF
Intelligent Intrusion Detection System Model Using Rough Neural Network 被引量:4
9
作者 Yan, Huai-Zhi Hu, Chang-Zhen Tan, Hui-Min 《Wuhan University Journal of Natural Sciences》 EI CAS 2005年第1期119-122,共4页
A model of intelligent intrusion detection based on rough neural network (RNN), which combines the neural network and rough set, is presented. It works by capturing network packets to identify network intrusions or ma... A model of intelligent intrusion detection based on rough neural network (RNN), which combines the neural network and rough set, is presented. It works by capturing network packets to identify network intrusions or malicious attacks using RNN with sub-nets. The sub-net is constructed by detection-oriented signatures extracted using rough set theory to detect different intrusions. It is proved that RNN detection method has the merits of adaptive, high universality, high convergence speed, easy upgrading and management. 展开更多
关键词 network security neural network intelligent intrusion detection rough set
下载PDF
FAULT DIAGNOSIS OF ROTATING MACHINERY USING KNOWLEDGE-BASED FUZZY NEURAL NETWORK 被引量:2
10
作者 李如强 陈进 伍星 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第1期99-108,共10页
A novel knowledge-based fuzzy neural network (KBFNN) for fault diagnosis is presented. Crude rules were extracted and the corresponding dependent factors and antecedent coverage factors were calculated firstly from ... A novel knowledge-based fuzzy neural network (KBFNN) for fault diagnosis is presented. Crude rules were extracted and the corresponding dependent factors and antecedent coverage factors were calculated firstly from the diagnostic sample based on rough sets theory. Then the number of rules was used to construct partially the structure of a fuzzy neural network and those factors were implemented as initial weights, with fuzzy output parameters being optimized by genetic algorithm. Such fuzzy neural network was called KBFNN. This KBFNN was utilized to identify typical faults of rotating machinery. Diagnostic results show that it has those merits of shorter training time and higher right diagnostic level compared to general fuzzy neural networks. 展开更多
关键词 rotating machinery fault diagnosis rough sets theory fuzzy sets theory generic algorithm knowledge-based fuzzy neural network
下载PDF
Adaptive Predictive Inverse Control of Offshore Jacket Platform Based on Rough Neural Network 被引量:2
11
作者 崔洪宇 赵德有 周平 《China Ocean Engineering》 SCIE EI 2009年第2期185-198,共14页
The offshore jacket platform is a complex and time-varying nonlinear system, which can be excited of harmful vibration by external loads. It is difficult to obtain an ideal control performance for passive control meth... The offshore jacket platform is a complex and time-varying nonlinear system, which can be excited of harmful vibration by external loads. It is difficult to obtain an ideal control performance for passive control methods or traditional active control methods based on accurate mathematic model. In this paper, an adaptive inverse control method is proposed on the basis of novel rough neural networks (RNN) to control the harmful vibration of the offshore jacket platform, and the offshore jacket platform model is established by dynamic stiffness matrix (DSM) method. Benefited from the nonlinear processing ability of the neural networks and data interpretation ability of the rough set theory, RNN is utilized to identify the predictive inverse model of the offshore jacket platform system. Then the identified model is used as the adaptive predictive inverse controller to control the harmful vibration caused by wave and wind loads, and to deal with the delay problem caused by signal transmission in the control process. The numerical results show that the constructed novel RNN has advantages such as clear structure, fast training speed and strong error-tolerance ability, and the proposed method based on RNN can effectively control the harmful vibration of the offshore jacket platform. 展开更多
关键词 offshore jacket platform rough set neural network dynamic stiffness matrix adaptive predictive irwerse control wave load wind load
下载PDF
Fuzzy Entropy: Axiomatic Definition and Neural Networks Model 被引量:1
12
作者 QINGMing CAOYue HUANGTian-min 《Chinese Quarterly Journal of Mathematics》 CSCD 2004年第3期319-323,共5页
The measure of uncertainty is adopted as a measure of information. The measures of fuzziness are known as fuzzy information measures. The measure of a quantity of fuzzy information gained from a fuzzy set or fuzzy sys... The measure of uncertainty is adopted as a measure of information. The measures of fuzziness are known as fuzzy information measures. The measure of a quantity of fuzzy information gained from a fuzzy set or fuzzy system is known as fuzzy entropy. Fuzzy entropy has been focused and studied by many researchers in various fields. In this paper, firstly, the axiomatic definition of fuzzy entropy is discussed. Then, neural networks model of fuzzy entropy is proposed, based on the computing capability of neural networks. In the end, two examples are discussed to show the efficiency of the model. 展开更多
关键词 neural networks BP networks fuzzy entropy fuzzy set MODEL
下载PDF
A Fuzzy Neural Network for Fault Pattern Recognition 被引量:1
13
作者 PAN Zi wei, WU Chao ying Department of Mechanical Engineering, Anhui University of Technology, Maanshan 243002, P.R.China 《International Journal of Plant Engineering and Management》 2001年第3期143-148,共6页
This paper combines fuzzy set theory with ART neural net-work , and demonstrates some important properties of the fuzzy ART neural net-work algorithm. The results from application on a ball bearing diagnosis indicat... This paper combines fuzzy set theory with ART neural net-work , and demonstrates some important properties of the fuzzy ART neural net-work algorithm. The results from application on a ball bearing diagnosis indicate that a fuzzy ART neural net-work has an effect of fast stable recognition for fuzzy patterns. 展开更多
关键词 neural network fuzzy set theory pattern recognition balling element bearing
下载PDF
Climate Precipitation Prediction by Neural Network 被引量:1
14
作者 Juliana Aparecida Anochi Haroldo Fraga de Campos Velho 《Journal of Mathematics and System Science》 2015年第5期207-213,共7页
In this work a neural network model for climate forecasting is presented. The model is built by training a neural network with available reanalysis data. In order to assess the model, the development methodology consi... In this work a neural network model for climate forecasting is presented. The model is built by training a neural network with available reanalysis data. In order to assess the model, the development methodology considers the use of data reduction strategies that eliminate data redundancy thus reducing the complexity of the models. The results presented in this paper considered the use of Rough Sets Theory principles in extracting relevant information from the available data to achieve the reduction of redundancy among the variables used for forecasting purposes. The paper presents results of climate prediction made with the use of the neural network based model. The results obtained in the conducted experiments show the effectiveness of the methodology, presenting estimates similar to observations. 展开更多
关键词 Climate Prediction neural networks rough sets Theory
下载PDF
A Quantitative DFA Method Based on Neural Network and Function Analysis
15
作者 顾廷权 高国安 卞瑞花 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1998年第4期15-18,共4页
In this paper, a new systematic methed of quantitative DFA is presented based on the function analysis.The reduction of the number of components forming product is realized by incorporating some parts as the features ... In this paper, a new systematic methed of quantitative DFA is presented based on the function analysis.The reduction of the number of components forming product is realized by incorporating some parts as the features of others. In order to evaluate assemblability of a product objectively, accurately and completely, the factors affecting assembability have been identified in terms of the production mode used to assemble product, and neural network and fuzzy set theory are adopted to quantify the effect of factors on assemblability. A case study is given, and the results demonstrate the effectiveness and validity of the method. 展开更多
关键词 DFA ASSEMBLABILITY neural network function analysis fuzzy set theory
下载PDF
A Condition States Assessment System for Concrete Bridges Using Neural Networks
16
作者 Hu Zhijian Jia Lijun Xiao Rueheng 《工程科学(英文版)》 2006年第3期67-76,共10页
Due to continuing aging and heavy utilization of many bridges and the limited available funds, the importance of proper bridge condition state assessment has risen recently, which is the crucial point for rational dec... Due to continuing aging and heavy utilization of many bridges and the limited available funds, the importance of proper bridge condition state assessment has risen recently, which is the crucial point for rational decision-making on MR&R activities. This paper presents a prototype of the concrete bridge condition state assessment system (CBCSAS) with the following sub-modules: inspection, parameter recognition, structural assessment, main cause identification and priority-to-action. And multi-layer neural networks, which may combine with fuzzy set theory or not, are performed to realize the structural assessment with embedding expert knowledge into the assessment system. 展开更多
关键词 混凝土桥梁 多层神经网络 模糊集合论 条件状态评价系统
下载PDF
Optimizing radial basis function neural network based on rough sets and affinity propagation clustering algorithm 被引量:6
17
作者 Xin-zheng XU Shi-fei DING +1 位作者 Zhong-zhi SHI Hong ZHU 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2012年第2期131-138,共8页
A novel method based on rough sets (RS) and the affinity propagation (AP) clustering algorithm is developed to optimize a radial basis function neural network (RBFNN). First, attribute reduction (AR) based on RS theor... A novel method based on rough sets (RS) and the affinity propagation (AP) clustering algorithm is developed to optimize a radial basis function neural network (RBFNN). First, attribute reduction (AR) based on RS theory, as a preprocessor of RBFNN, is presented to eliminate noise and redundant attributes of datasets while determining the number of neurons in the input layer of RBFNN. Second, an AP clustering algorithm is proposed to search for the centers and their widths without a priori knowledge about the number of clusters. These parameters are transferred to the RBF units of RBFNN as the centers and widths of the RBF function. Then the weights connecting the hidden layer and output layer are evaluated and adjusted using the least square method (LSM) according to the output of the RBF units and desired output. Experimental results show that the proposed method has a more powerful generalization capability than conventional methods for an RBFNN. 展开更多
关键词 Radial basis function neural network (RBFNN) rough sets Affinity propagation CLUSTERING
原文传递
Personal Credit Risk .Scoring Model Based on Rough Set and Neural Network
18
作者 Hui Lu Shangfeng Yao 《Journal of Systems Science and Information》 2008年第4期307-314,共8页
In order to improve the precision of personal credit risk assessment, applying rough set and neural network to the credit risk scoring prediction problem in an attempt to suggest a new model with better classification... In order to improve the precision of personal credit risk assessment, applying rough set and neural network to the credit risk scoring prediction problem in an attempt to suggest a new model with better classification accuracy. To evaluate the prediction accuracy of the model, we compare its performance with those of SVM, linear discriminate analysis, logistic regression analysis, K-nearest neighbors, classification and regression tree, neural network and PCA-NN. The experimental results show the model have a very good prediction accuracy 展开更多
关键词 credit risk credit risk assessment rough set neural network 5-fold cross-validation
原文传递
Remote sensing data classification using tolerant rough set and neural networks 被引量:3
19
作者 MA Jianwen HASI Bagan 《Science China Earth Sciences》 SCIE EI CAS 2005年第12期2251-2259,共9页
BP algorithm of neural net is used more in remote sensing data classification. One of drawbacks of BP algorithm is the overall low function when the net is training. To avoid this kind of problem, the paper introduces... BP algorithm of neural net is used more in remote sensing data classification. One of drawbacks of BP algorithm is the overall low function when the net is training. To avoid this kind of problem, the paper introduces the tolerant rough set for classification-preprocessing the training data to reduce the influence elements of the training convergence in order to improve the net training successful rate. ETM+ data of Beijing in May 2003 is selected in the study. ETM+ data before and after classification preprocessing, respectively, are used for BP (Back propaga-tion) training. The result shows that such a preprocessing not only compensates the drawback of BP algorithm when processing ETM+ data but also improves classification accuracy. 展开更多
关键词 TOLERANT rough set neural network BP algorithm classification.
原文传递
Characteristics Prediction Method of Electro-hydraulic Servo Valve Based on Rough Set and Adaptive Neuro-fuzzy Inference System 被引量:11
20
作者 JIA Zhenyuan MA Jianwei WANG Fuji LIU Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第2期200-208,共9页
Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after ass... Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after assembling leads to high repair rate and reject rate, so accurate prediction for the synthesis characteristics in the industrial production is particular important in decreasing the repair rate and the reject rate of the product. However, the research in forecasting synthesis characteristics of the electro-hydraulic servo valve is rare. In this work, a hybrid prediction method was proposed based on rough set(RS) and adaptive neuro-fuzzy inference system(ANFIS) in order to predict synthesis characteristics of electro-hydraulic servo valve. Since the geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve are from workers' experience, the inputs of the prediction method are uncertain. RS-based attributes reduction was used as the preprocessor, and then the exact geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve were obtained. On the basis of the exact geometric factors, ANFIS was used to build the final prediction model. A typical electro-hydraulic servo valve production was used to demonstrate the proposed prediction method. The prediction results showed that the proposed prediction method was more applicable than the artificial neural networks(ANN) in predicting the synthesis characteristics of electro-hydraulic servo valve, and the proposed prediction method was a powerful tool to predict synthesis characteristics of the electro-hydraulic servo valve. Moreover, with the use of the advantages of RS and ANFIS, the highly effective forecasting framework in this study can also be applied to other problems involving synthesis characteristics forecasting. 展开更多
关键词 characteristics prediction rough set adaptive neuro-fuzzy inference system electro-hydraulic servo valve artificial neural networks
下载PDF
上一页 1 2 61 下一页 到第
使用帮助 返回顶部