The fault-tolerant control problem is investigated for high-speed trains with actuator faults and multiple disturbances.Based on the novel train model resulting from the Takagi–Sugeno fuzzy theory, a sliding-mode fau...The fault-tolerant control problem is investigated for high-speed trains with actuator faults and multiple disturbances.Based on the novel train model resulting from the Takagi–Sugeno fuzzy theory, a sliding-mode fault-tolerant control strategy is proposed. The norm bounded disturbances which are composed of interactive forces among adjacent carriages and basis running resistances are rearranged by the fuzzy linearity technique. The modeled disturbances described as an exogenous system are compensated for by a disturbance observer. Moreover, a sliding mode surface is constructed, which can transform the stabilization problem of position and velocity into the stabilization problem of position errors and velocity errors, i.e., the tracking problem of position and velocity. Based on the parallel distributed compensation method and the disturbance observer, the fault-tolerant controller is solved. The Lyapunov theory is used to prove the stability of the closed-loop system. The feasibility and effectiveness of the proposed fault-tolerant control strategy are illustrated by simulation results.展开更多
In this paper, a new adaptive fuzzy backstepping control approach is developed for a class of nonlinear systems with unknown time-delay and unmeasured states. Using fuzzy logic systems to approximate the unknown nonli...In this paper, a new adaptive fuzzy backstepping control approach is developed for a class of nonlinear systems with unknown time-delay and unmeasured states. Using fuzzy logic systems to approximate the unknown nonlinear functions, a fuzzy state observer is designed for estimating the unmeasured states. On the basis of the state observer and applying the backstepping technique, an adaptive fuzzy observer control approach is developed. The main features of the proposed adaptive fuzzy control approach not only guarantees that all the signals of the closed-loop system are semiglobally uniformly ultimately bounded, but also contain less adaptation parameters to be updated on-line. Finally, simulation results are provided to show the effectiveness of the proposed approach.展开更多
Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked cont...Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked control systems (LNCSs), but nonlinear networked control systems (NNCSs) are less involved. Based on the T-S fuzzy-modeling theory, NNCSs are modeled and network random time-delays are changed into the unknown bounded uncertain part without changing its structure. Then a fuzzy state observer is designed and an observer-based fault detection approach for an NNCS is presented. The main results are given and the relative theories are proved in detail. Finally, some simulation results are given and demonstrate the proposed method is effective.展开更多
A novel H∞ tracking-based decentralized indirect adaptive output feedback fuzzy controller for a class of uncertain large-scale nonlinear systems is developed. By virtue of the proper filtering of the observation err...A novel H∞ tracking-based decentralized indirect adaptive output feedback fuzzy controller for a class of uncertain large-scale nonlinear systems is developed. By virtue of the proper filtering of the observation error dynamics, the observer-based decentralized indirect adaptive fuzzy control scheme is presented for a class of large-scale nonlinear systems using the combination of H∞ tracking technique, a fuzzy adaptive observer and fuzzy inference systems. The output feedback and adaptation mechanisms are both robust and implementable indeed owing to their freedom from the unavailable observation error vector. All the signals of the closed-loop largescale system are guaranteed to stay uniformly bounded and the output errors take on H∞ tracking performance. Simulation results substantiate the effectiveness of the proposed scheme.展开更多
This paper presents the construction of an active suspension control of a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model to be treated here can be approximately described...This paper presents the construction of an active suspension control of a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model to be treated here can be approximately described as a nonlinear two degrees of freedom system subject to excitation from a road profile. The active control is designed as the fuzzy control inferred by using single input rule modules fuzzy reasoning, and the active control force is released by actuating a pneumatic actuator. The excitation from the road profile is estimated by using a disturbance observer, and the estimate is denoted as one of the variables in the precondition part of the fuzzy control rules. A compensator is inserted to counter the performance degradation due to the delay of the pneumatic actuator. The experimental result indicates that the proposed active suspension system improves much the vibration suppression of the car model. Key words One-wheel car model - Active suspension system - Single input rule modules fuzzy reasoning - Pneumatic actuator - Disturbance observer Document code A CLC number TH16展开更多
This paper presents the construction of a pneumatic active suspension system for a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model can be approximately described as a nonl...This paper presents the construction of a pneumatic active suspension system for a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model can be approximately described as a nonlinear two degrees of freedom system subject to excitation from a road profile. The active control is composed of fuzzy and disturbance controls, and the active control force is constructed by actuating a pneumatic actuator. A phase lead-lag compensator is inserted to counter the performance degradation due to the delay of the pneumatic actuator. The experimental result indicates that the proposed active suspension improves much the vibration suppression of the car model.展开更多
To improve the dynamic performance of conventional deadbeat predictive current control(DPCC)under parameter mismatch,especially eliminate the current overshoot and oscillation during torque mutation,it is necessary to...To improve the dynamic performance of conventional deadbeat predictive current control(DPCC)under parameter mismatch,especially eliminate the current overshoot and oscillation during torque mutation,it is necessary to enhance the robustness of DPCC against various working conditions.However,the disturbance from parameter mismatch can deteriorate the dynamic performance.To deal with the above problem,firstly,traditional DPCC and the parameter sensitivity of DPCC are introduced and analyzed.Secondly,an extended state observer(ESO)combined with DPCC method is proposed,which can observe and suppress the disturbance due to various parameter mismatch.Thirdly,to improve the accuracy and stability of ESO,an adaptive extended state observer(AESO)using fuzzy controller based on ESO,is presented,and combined with DPCC method.The improved DPCC-AESO can switch the value of gain coefficients with fuzzy control,accelerating the current response speed and avoid the overshoot and oscillation,which improves the robustness and stability performance of SPMSM.Finally,the three methods,as well as conventional DPCC method,DPCC-ESO method,DPCC-AESO method,are comparatively analyzed in this paper.The effectiveness of the proposed two methods are verified by simulation and experimental results.展开更多
Aimed at the problems of large torque ripple,obvious chattering and poor estimation accuracy of back-EMFs in traditional permanent magnet synchronous motor(PMSM)control system with sliding mode observer(SMO),an improv...Aimed at the problems of large torque ripple,obvious chattering and poor estimation accuracy of back-EMFs in traditional permanent magnet synchronous motor(PMSM)control system with sliding mode observer(SMO),an improved control strategy for PMSM based on a fuzzy sliding mode control(FSMC)and a two-stage filter sliding mode observer(TFSMO)is proposed.Firstly,a novel reaching law(NRL)used in the speed loop based on hyperbolic sine function is studied,and fuzzy control ideal is shown to achieve the self-turning of the parameter for the reaching law,thus a fuzzy integral sliding mode controller based on the novel reaching law is designed in speed loop.Then the suppression effect upon chattering caused by the novel reaching law is analyzed strictly by discrete equation.Secondly,in order to restrain the high frequency components and measurement noise in back-EMFs,a two-stage filter structure based on a variable cut-off frequency low-pass filter(VCF-LPF)and a modified back-EMF observer(MBO)is conceived,and the rotor position is compensated reasonably.As a result,a TFSMO is designed.The stability of the proposed control strategy is proved by Lyapunov Criterion.The simulation and experiment results show that,compared with traditional SMO,the controller suggested above can obtain very nice system respond when the motor starts and is subjected to external disturbances,and effectively improve the problems about torque ripple,chattering and the estimation accuracy of back-EMF.展开更多
A new fuzzy observer for lag synchronization is given in this paper. By investi- gating synchronization of chaotic systems, the structure of drive-response lag synchronization for fuzzy chaos system based on fuzzy obs...A new fuzzy observer for lag synchronization is given in this paper. By investi- gating synchronization of chaotic systems, the structure of drive-response lag synchronization for fuzzy chaos system based on fuzzy observer is proposed. A new lag synchronization criterion is derived using the Lyapunov stability theorem, in which control gains are obtained under the LMI condition. The proposed approach is applied to the well-known Chen's systems. A simulation example is presented to illustrate its effectiveness.展开更多
This paper considers the analytical dynamics with simplified Dahl hysteresis model for a three-axis piezoactuated micro/nano flexure stage. An adaptive controller with nonlinear dynamic hysteresis observer is proposed...This paper considers the analytical dynamics with simplified Dahl hysteresis model for a three-axis piezoactuated micro/nano flexure stage. An adaptive controller with nonlinear dynamic hysteresis observer is proposed using Lyapunov stability theory. In the controller, a fuzzy function approximator with parameters update law is included to compensate for the identification inaccuracy, model uncertainty, and flexure coupling effects. Simulation results are used to demonstrate the control performance.展开更多
In low-cost Attitude Heading Reference Systems (AHRS), the measurements made by Micro Electro-Mechanical Systems (MEMS) type sensors are affected by uncertainties, noises and unknown disturbances. In this paper, consi...In low-cost Attitude Heading Reference Systems (AHRS), the measurements made by Micro Electro-Mechanical Systems (MEMS) type sensors are affected by uncertainties, noises and unknown disturbances. In this paper, considering the robustness of sliding mode observers against structured and unstructured uncertainties, and also exogenous inputs, the process of design and implementation of a sliding mode observer (SMO) is proposed based on a linearized model of the AHRS. To decrease the chattering phenomenon is the main difficulty of the SMO. Through smoothing the discontinuity term, the tracking performance of the observer is attenuated. Boundary layer technique, for example, using a saturation term, is the common smoother to remove the chattering drawbacks. However, through poor tracking performance, the high range chattering could not be removed by this method. Therefore, a knowledge-based Mamdani-type fuzzy SMO (FSMO) is proposed to decrease the chattering effects intelligently, which in turn could obtain the high accuracy tracking performance of the SMO. Following proving the stability of the proposed SMOs based on direct Lyapunov’s method, the performance of the proposed observers is compared with that of the extended Kalman filter through simulation and real experiments of an AHRS.展开更多
This paper is concerned with the problem of observer-based fuzzy control design for discrete-time T-S fuzzy bilinear stochastic systems with infinite-distributed delays. Based on the piecewise quadratic Lyapunov funct...This paper is concerned with the problem of observer-based fuzzy control design for discrete-time T-S fuzzy bilinear stochastic systems with infinite-distributed delays. Based on the piecewise quadratic Lyapunov functional (PQLF), the fuzzy observer-basedcontrollers are designed for T-S fuzzy bilinear stochastic systems. It is shown that the stability in the mean square for discrete T-S fuzzy bilinear stochastic systems can be established if there exists a set of PQLF can be constructed and the fuzzy observer-based controller can be obtained by solving a set of nonlinear minimization problem involving linear matrix inequalities (LMIs) constraints. An iterative algorithm making use of sequential linear programming matrix method (SLPMM) to derive a single-step LMI condition for fuzzy observer-based control design. Finally, an illustrative example is provided to demonstrate the effectiveness of the results proposed in this paper.展开更多
A fuzzy observations-based radial basis function neural network (FORBFNN) is presented for modeling nonlinear systems in which the observations of response are imprecise but can be represented as fuzzy membership fu...A fuzzy observations-based radial basis function neural network (FORBFNN) is presented for modeling nonlinear systems in which the observations of response are imprecise but can be represented as fuzzy membership functions. In the FORBFNN model, the weight coefficients of nodes in the hidden layer are identified by using the fuzzy expectation-maximization ( EM ) algorithm, whereas the optimal number of these nodes as well as the centers and widths of radial basis functions are automatically constructed by using a data-driven method. Namely, the method starts with an initial node, and then a new node is added in a hidden layer according to some rules. This procedure is not terminated until the model meets the preset requirements. The method considers both the accuracy and complexity of the model. Numerical simulation results show that the modeling method is effective, and the established model has high prediction accuracy.展开更多
There have been many studies on observer-based fault detection and isolation (FDI), such as using unknown input observer and generalized observer. Most of them require a nominal mathematical model of the system. Unlik...There have been many studies on observer-based fault detection and isolation (FDI), such as using unknown input observer and generalized observer. Most of them require a nominal mathematical model of the system. Unlike sensor faults, actuator faults and process faults greatly affect the system dynamics. This paper presents a new process fault diagnosis technique without exact knowledge of the plant model via Extended State Observer (ESO) and soft computing. The ESO’s augmented or extended state is used to compute the system dynamics in real time, thereby provides foundation for real-time process fault detection. Based on the input and output data, the ESO identifies the un-modeled or incorrectly modeled dynamics combined with unknown external disturbances in real time and provides vital information for detecting faults with only partial information of the plant, which cannot be easily accomplished with any existing methods. Another advantage of the ESO is its simplicity in tuning only a single parameter. Without the knowledge of the exact plant model, fuzzy inference was developed to isolate faults. A strongly coupled three-tank nonlinear dynamic system was chosen as a case study. In a typical dynamic system, a process fault such as pipe blockage is likely incipient, which requires degree of fault identification at all time. Neural networks were trained to identify faults and also instantly determine degree of fault. The simulation results indicate that the proposed FDI technique effectively detected and isolated faults and also accurately determine the degree of fault. Soft computing (i.e. fuzzy logic and neural networks) makes fault diagnosis intelligent and fast because it provides intuitive logic to the system and real-time input-output mapping.展开更多
In this paper, we propose a H∞ robust observer-based control DC motor based on a photovoltaic pumping system. Maximum power point tracking is achieved via an algorithm using Perturb and Observe method, with array vol...In this paper, we propose a H∞ robust observer-based control DC motor based on a photovoltaic pumping system. Maximum power point tracking is achieved via an algorithm using Perturb and Observe method, with array voltage and current being used to generate the reference voltage which should be the PV panel’s operating voltage to get maximum available power. A Takagi-Sugeno (T-S) observer has been proposed and designed with non-measurable premise variables and the conditions of stability are given in terms of Linear Matrix Inequality (LMI). The simulation results show the effectiveness and robustness of the proposed method.展开更多
The observed phenomena in real sound environment system often contain uncertainty such as the additional external noise with unknown statistics. Furthermore, there is complex nonlinear relationship between the specifi...The observed phenomena in real sound environment system often contain uncertainty such as the additional external noise with unknown statistics. Furthermore, there is complex nonlinear relationship between the specific signal and the observations, and it cannot be exactly expressed in any definite functional form. In these situations, it is one of reasonable analysis methods to treat the objective sound environment system as a fuzzy system. In this study, a state estimation method for a specific signal under the existence of an unknown observation mechanism and external noise of unknown statistics is proposed by introducing fuzzy inference. The effectiveness of the proposed theoretical method is experimentally confirmed by applying it to the actually observed data in the sound environment.展开更多
The generation of electricity,considering environmental and eco-nomic factors is one of the most important challenges of recent years.In this article,a thermoelectric generator(TEG)is proposed to use the thermal energ...The generation of electricity,considering environmental and eco-nomic factors is one of the most important challenges of recent years.In this article,a thermoelectric generator(TEG)is proposed to use the thermal energy of an electric water heater(EWH)to generate electricity independently.To improve the energy conversion efficiency of the TEG,a fuzzy logic con-troller(FLC)-based perturb&observe(P&O)type maximum power point tracking(MPPT)control algorithm is used in this study.An EWH is one of the major electricity consuming household appliances which causes a higher electricity price for consumers.Also,a significant amount of thermal energy generated by EWH is wasted every day,especially during the winter season.In recent years,TEGs have been widely developed to convert surplus or unused thermal energy into usable electricity.In this context,the proposed model is designed to use the thermal energy stored in the EWH to generate electricity.In addition,the generated electricity can be easily stored in a battery storage system to supply electricity to various household appliances with low-power-consumption.The proposed MPPT control algorithm helps the system to quickly reach the optimal point corresponding to the maximum power output and maintains the system operating point at the maximum power output level.To validate the usefulness of the proposed scheme,a study model was developed in the MATLAB Simulink environment and its performance was investigated by simulation under steady state and transient conditions.The results of the study confirmed that the system is capable of generating adequate power from the available thermal energy of EWH.It was also found that the output power and efficiency of the system can be improved by maintaining a higher temperature difference at the input terminals of the TEG.Moreover,the real-time temperature data of Abha city in Saudi Arabia is considered to analyze the feasibility of the proposed system for practical implementation.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62203246, 62003127, and 62003183)。
文摘The fault-tolerant control problem is investigated for high-speed trains with actuator faults and multiple disturbances.Based on the novel train model resulting from the Takagi–Sugeno fuzzy theory, a sliding-mode fault-tolerant control strategy is proposed. The norm bounded disturbances which are composed of interactive forces among adjacent carriages and basis running resistances are rearranged by the fuzzy linearity technique. The modeled disturbances described as an exogenous system are compensated for by a disturbance observer. Moreover, a sliding mode surface is constructed, which can transform the stabilization problem of position and velocity into the stabilization problem of position errors and velocity errors, i.e., the tracking problem of position and velocity. Based on the parallel distributed compensation method and the disturbance observer, the fault-tolerant controller is solved. The Lyapunov theory is used to prove the stability of the closed-loop system. The feasibility and effectiveness of the proposed fault-tolerant control strategy are illustrated by simulation results.
基金supported by National Natural Science Foundation of China (No.60674056)Outstanding Youth Funds of Liaoning Province (No.2005219001)Educational Department of Liaoning Province (No.2006R29,No.2007T80)
文摘In this paper, a new adaptive fuzzy backstepping control approach is developed for a class of nonlinear systems with unknown time-delay and unmeasured states. Using fuzzy logic systems to approximate the unknown nonlinear functions, a fuzzy state observer is designed for estimating the unmeasured states. On the basis of the state observer and applying the backstepping technique, an adaptive fuzzy observer control approach is developed. The main features of the proposed adaptive fuzzy control approach not only guarantees that all the signals of the closed-loop system are semiglobally uniformly ultimately bounded, but also contain less adaptation parameters to be updated on-line. Finally, simulation results are provided to show the effectiveness of the proposed approach.
文摘Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked control systems (LNCSs), but nonlinear networked control systems (NNCSs) are less involved. Based on the T-S fuzzy-modeling theory, NNCSs are modeled and network random time-delays are changed into the unknown bounded uncertain part without changing its structure. Then a fuzzy state observer is designed and an observer-based fault detection approach for an NNCS is presented. The main results are given and the relative theories are proved in detail. Finally, some simulation results are given and demonstrate the proposed method is effective.
基金supported by the National Natural Science Foundation of China(90510010).
文摘A novel H∞ tracking-based decentralized indirect adaptive output feedback fuzzy controller for a class of uncertain large-scale nonlinear systems is developed. By virtue of the proper filtering of the observation error dynamics, the observer-based decentralized indirect adaptive fuzzy control scheme is presented for a class of large-scale nonlinear systems using the combination of H∞ tracking technique, a fuzzy adaptive observer and fuzzy inference systems. The output feedback and adaptation mechanisms are both robust and implementable indeed owing to their freedom from the unavailable observation error vector. All the signals of the closed-loop largescale system are guaranteed to stay uniformly bounded and the output errors take on H∞ tracking performance. Simulation results substantiate the effectiveness of the proposed scheme.
文摘This paper presents the construction of an active suspension control of a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model to be treated here can be approximately described as a nonlinear two degrees of freedom system subject to excitation from a road profile. The active control is designed as the fuzzy control inferred by using single input rule modules fuzzy reasoning, and the active control force is released by actuating a pneumatic actuator. The excitation from the road profile is estimated by using a disturbance observer, and the estimate is denoted as one of the variables in the precondition part of the fuzzy control rules. A compensator is inserted to counter the performance degradation due to the delay of the pneumatic actuator. The experimental result indicates that the proposed active suspension system improves much the vibration suppression of the car model. Key words One-wheel car model - Active suspension system - Single input rule modules fuzzy reasoning - Pneumatic actuator - Disturbance observer Document code A CLC number TH16
文摘This paper presents the construction of a pneumatic active suspension system for a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model can be approximately described as a nonlinear two degrees of freedom system subject to excitation from a road profile. The active control is composed of fuzzy and disturbance controls, and the active control force is constructed by actuating a pneumatic actuator. A phase lead-lag compensator is inserted to counter the performance degradation due to the delay of the pneumatic actuator. The experimental result indicates that the proposed active suspension improves much the vibration suppression of the car model.
基金supported by the National Natural Science Foundation of China(No.52005037).
文摘To improve the dynamic performance of conventional deadbeat predictive current control(DPCC)under parameter mismatch,especially eliminate the current overshoot and oscillation during torque mutation,it is necessary to enhance the robustness of DPCC against various working conditions.However,the disturbance from parameter mismatch can deteriorate the dynamic performance.To deal with the above problem,firstly,traditional DPCC and the parameter sensitivity of DPCC are introduced and analyzed.Secondly,an extended state observer(ESO)combined with DPCC method is proposed,which can observe and suppress the disturbance due to various parameter mismatch.Thirdly,to improve the accuracy and stability of ESO,an adaptive extended state observer(AESO)using fuzzy controller based on ESO,is presented,and combined with DPCC method.The improved DPCC-AESO can switch the value of gain coefficients with fuzzy control,accelerating the current response speed and avoid the overshoot and oscillation,which improves the robustness and stability performance of SPMSM.Finally,the three methods,as well as conventional DPCC method,DPCC-ESO method,DPCC-AESO method,are comparatively analyzed in this paper.The effectiveness of the proposed two methods are verified by simulation and experimental results.
基金National Key R&D Program of China(No.2018YFB1201602)。
文摘Aimed at the problems of large torque ripple,obvious chattering and poor estimation accuracy of back-EMFs in traditional permanent magnet synchronous motor(PMSM)control system with sliding mode observer(SMO),an improved control strategy for PMSM based on a fuzzy sliding mode control(FSMC)and a two-stage filter sliding mode observer(TFSMO)is proposed.Firstly,a novel reaching law(NRL)used in the speed loop based on hyperbolic sine function is studied,and fuzzy control ideal is shown to achieve the self-turning of the parameter for the reaching law,thus a fuzzy integral sliding mode controller based on the novel reaching law is designed in speed loop.Then the suppression effect upon chattering caused by the novel reaching law is analyzed strictly by discrete equation.Secondly,in order to restrain the high frequency components and measurement noise in back-EMFs,a two-stage filter structure based on a variable cut-off frequency low-pass filter(VCF-LPF)and a modified back-EMF observer(MBO)is conceived,and the rotor position is compensated reasonably.As a result,a TFSMO is designed.The stability of the proposed control strategy is proved by Lyapunov Criterion.The simulation and experiment results show that,compared with traditional SMO,the controller suggested above can obtain very nice system respond when the motor starts and is subjected to external disturbances,and effectively improve the problems about torque ripple,chattering and the estimation accuracy of back-EMF.
基金supported by the National Natural Science Foundation of China (No. 60872060)the Key Projects of Shanghai Municipal Commission of Education (No. 06ZZ84)
文摘A new fuzzy observer for lag synchronization is given in this paper. By investi- gating synchronization of chaotic systems, the structure of drive-response lag synchronization for fuzzy chaos system based on fuzzy observer is proposed. A new lag synchronization criterion is derived using the Lyapunov stability theorem, in which control gains are obtained under the LMI condition. The proposed approach is applied to the well-known Chen's systems. A simulation example is presented to illustrate its effectiveness.
文摘This paper considers the analytical dynamics with simplified Dahl hysteresis model for a three-axis piezoactuated micro/nano flexure stage. An adaptive controller with nonlinear dynamic hysteresis observer is proposed using Lyapunov stability theory. In the controller, a fuzzy function approximator with parameters update law is included to compensate for the identification inaccuracy, model uncertainty, and flexure coupling effects. Simulation results are used to demonstrate the control performance.
文摘In low-cost Attitude Heading Reference Systems (AHRS), the measurements made by Micro Electro-Mechanical Systems (MEMS) type sensors are affected by uncertainties, noises and unknown disturbances. In this paper, considering the robustness of sliding mode observers against structured and unstructured uncertainties, and also exogenous inputs, the process of design and implementation of a sliding mode observer (SMO) is proposed based on a linearized model of the AHRS. To decrease the chattering phenomenon is the main difficulty of the SMO. Through smoothing the discontinuity term, the tracking performance of the observer is attenuated. Boundary layer technique, for example, using a saturation term, is the common smoother to remove the chattering drawbacks. However, through poor tracking performance, the high range chattering could not be removed by this method. Therefore, a knowledge-based Mamdani-type fuzzy SMO (FSMO) is proposed to decrease the chattering effects intelligently, which in turn could obtain the high accuracy tracking performance of the SMO. Following proving the stability of the proposed SMOs based on direct Lyapunov’s method, the performance of the proposed observers is compared with that of the extended Kalman filter through simulation and real experiments of an AHRS.
文摘This paper is concerned with the problem of observer-based fuzzy control design for discrete-time T-S fuzzy bilinear stochastic systems with infinite-distributed delays. Based on the piecewise quadratic Lyapunov functional (PQLF), the fuzzy observer-basedcontrollers are designed for T-S fuzzy bilinear stochastic systems. It is shown that the stability in the mean square for discrete T-S fuzzy bilinear stochastic systems can be established if there exists a set of PQLF can be constructed and the fuzzy observer-based controller can be obtained by solving a set of nonlinear minimization problem involving linear matrix inequalities (LMIs) constraints. An iterative algorithm making use of sequential linear programming matrix method (SLPMM) to derive a single-step LMI condition for fuzzy observer-based control design. Finally, an illustrative example is provided to demonstrate the effectiveness of the results proposed in this paper.
基金The National Natural Science Foundation of China(No.51106025,51106027,51036002)Specialized Research Fund for the Doctoral Program of Higher Education(No.20130092110061)the Youth Foundation of Nanjing Institute of Technology(No.QKJA201303)
文摘A fuzzy observations-based radial basis function neural network (FORBFNN) is presented for modeling nonlinear systems in which the observations of response are imprecise but can be represented as fuzzy membership functions. In the FORBFNN model, the weight coefficients of nodes in the hidden layer are identified by using the fuzzy expectation-maximization ( EM ) algorithm, whereas the optimal number of these nodes as well as the centers and widths of radial basis functions are automatically constructed by using a data-driven method. Namely, the method starts with an initial node, and then a new node is added in a hidden layer according to some rules. This procedure is not terminated until the model meets the preset requirements. The method considers both the accuracy and complexity of the model. Numerical simulation results show that the modeling method is effective, and the established model has high prediction accuracy.
文摘There have been many studies on observer-based fault detection and isolation (FDI), such as using unknown input observer and generalized observer. Most of them require a nominal mathematical model of the system. Unlike sensor faults, actuator faults and process faults greatly affect the system dynamics. This paper presents a new process fault diagnosis technique without exact knowledge of the plant model via Extended State Observer (ESO) and soft computing. The ESO’s augmented or extended state is used to compute the system dynamics in real time, thereby provides foundation for real-time process fault detection. Based on the input and output data, the ESO identifies the un-modeled or incorrectly modeled dynamics combined with unknown external disturbances in real time and provides vital information for detecting faults with only partial information of the plant, which cannot be easily accomplished with any existing methods. Another advantage of the ESO is its simplicity in tuning only a single parameter. Without the knowledge of the exact plant model, fuzzy inference was developed to isolate faults. A strongly coupled three-tank nonlinear dynamic system was chosen as a case study. In a typical dynamic system, a process fault such as pipe blockage is likely incipient, which requires degree of fault identification at all time. Neural networks were trained to identify faults and also instantly determine degree of fault. The simulation results indicate that the proposed FDI technique effectively detected and isolated faults and also accurately determine the degree of fault. Soft computing (i.e. fuzzy logic and neural networks) makes fault diagnosis intelligent and fast because it provides intuitive logic to the system and real-time input-output mapping.
文摘In this paper, we propose a H∞ robust observer-based control DC motor based on a photovoltaic pumping system. Maximum power point tracking is achieved via an algorithm using Perturb and Observe method, with array voltage and current being used to generate the reference voltage which should be the PV panel’s operating voltage to get maximum available power. A Takagi-Sugeno (T-S) observer has been proposed and designed with non-measurable premise variables and the conditions of stability are given in terms of Linear Matrix Inequality (LMI). The simulation results show the effectiveness and robustness of the proposed method.
文摘The observed phenomena in real sound environment system often contain uncertainty such as the additional external noise with unknown statistics. Furthermore, there is complex nonlinear relationship between the specific signal and the observations, and it cannot be exactly expressed in any definite functional form. In these situations, it is one of reasonable analysis methods to treat the objective sound environment system as a fuzzy system. In this study, a state estimation method for a specific signal under the existence of an unknown observation mechanism and external noise of unknown statistics is proposed by introducing fuzzy inference. The effectiveness of the proposed theoretical method is experimentally confirmed by applying it to the actually observed data in the sound environment.
基金Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project number (IF2-PSAU/2022/01/22797).
文摘The generation of electricity,considering environmental and eco-nomic factors is one of the most important challenges of recent years.In this article,a thermoelectric generator(TEG)is proposed to use the thermal energy of an electric water heater(EWH)to generate electricity independently.To improve the energy conversion efficiency of the TEG,a fuzzy logic con-troller(FLC)-based perturb&observe(P&O)type maximum power point tracking(MPPT)control algorithm is used in this study.An EWH is one of the major electricity consuming household appliances which causes a higher electricity price for consumers.Also,a significant amount of thermal energy generated by EWH is wasted every day,especially during the winter season.In recent years,TEGs have been widely developed to convert surplus or unused thermal energy into usable electricity.In this context,the proposed model is designed to use the thermal energy stored in the EWH to generate electricity.In addition,the generated electricity can be easily stored in a battery storage system to supply electricity to various household appliances with low-power-consumption.The proposed MPPT control algorithm helps the system to quickly reach the optimal point corresponding to the maximum power output and maintains the system operating point at the maximum power output level.To validate the usefulness of the proposed scheme,a study model was developed in the MATLAB Simulink environment and its performance was investigated by simulation under steady state and transient conditions.The results of the study confirmed that the system is capable of generating adequate power from the available thermal energy of EWH.It was also found that the output power and efficiency of the system can be improved by maintaining a higher temperature difference at the input terminals of the TEG.Moreover,the real-time temperature data of Abha city in Saudi Arabia is considered to analyze the feasibility of the proposed system for practical implementation.