期刊文献+
共找到7,503篇文章
< 1 2 250 >
每页显示 20 50 100
Fuzzy inference system using genetic algorithm and pattern search for predicting roof fall rate in underground coal mines
1
作者 Ayush Sahu Satish Sinha Haider Banka 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期31-41,共11页
One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operati... One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operations.As a result,a reliable roof fall prediction model is essential to tackle such challenges.Different parameters that substantially impact roof falls are ill-defined and intangible,making this an uncertain and challenging research issue.The National Institute for Occupational Safety and Health assembled a national database of roof performance from 37 coal mines to explore the factors contributing to roof falls.Data acquired for 37 mines is limited due to several restrictions,which increased the likelihood of incompleteness.Fuzzy logic is a technique for coping with ambiguity,incompleteness,and uncertainty.Therefore,In this paper,the fuzzy inference method is presented,which employs a genetic algorithm to create fuzzy rules based on 109 records of roof fall data and pattern search to refine the membership functions of parameters.The performance of the deployed model is evaluated using statistical measures such as the Root-Mean-Square Error,Mean-Absolute-Error,and coefficient of determination(R_(2)).Based on these criteria,the suggested model outperforms the existing models to precisely predict roof fall rates using fewer fuzzy rules. 展开更多
关键词 Underground coal mining Roof fall fuzzy logic genetic algorithm
下载PDF
Solar Radiation Estimation Based on a New Combined Approach of Artificial Neural Networks (ANN) and Genetic Algorithms (GA) in South Algeria
2
作者 Djeldjli Halima Benatiallah Djelloul +3 位作者 Ghasri Mehdi Tanougast Camel Benatiallah Ali Benabdelkrim Bouchra 《Computers, Materials & Continua》 SCIE EI 2024年第6期4725-4740,共16页
When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global s... When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar radiation(GSR)in the south of Algeria:Adrar,Ouargla,and Bechar.The proposed hybrid GA-ANN model,based on genetic algorithm-based optimization,was developed to improve the ANN model.The GA-ANN and ANFIS models performed better than the standalone ANN-based model,with GA-ANN being better suited for forecasting in all sites,and it performed the best with the best values in the testing phase of Coefficient of Determination(R=0.9005),Mean Absolute Percentage Error(MAPE=8.40%),and Relative Root Mean Square Error(rRMSE=12.56%).Nevertheless,the ANFIS model outperformed the GA-ANN model in forecasting daily GSR,with the best values of indicators when testing the model being R=0.9374,MAPE=7.78%,and rRMSE=10.54%.Generally,we may conclude that the initial ANN stand-alone model performance when forecasting solar radiation has been improved,and the results obtained after injecting the genetic algorithm into the ANN to optimize its weights were satisfactory.The model can be used to forecast daily GSR in dry climates and other climates and may also be helpful in selecting solar energy system installations and sizes. 展开更多
关键词 Solar energy systems genetic algorithm neural networks hybrid adaptive neuro fuzzy inference system solar radiation
下载PDF
Computation Tree Logic Model Checking of Multi-Agent Systems Based on Fuzzy Epistemic Interpreted Systems
3
作者 Xia Li Zhanyou Ma +3 位作者 Zhibao Mian Ziyuan Liu Ruiqi Huang Nana He 《Computers, Materials & Continua》 SCIE EI 2024年第3期4129-4152,共24页
Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as s... Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as safety and liveness,there is still a lack of quantitative and uncertain property verifications for these systems.In uncertain environments,agents must make judicious decisions based on subjective epistemic.To verify epistemic and measurable properties in multi-agent systems,this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge(FCTLK).We represent fuzzy multi-agent systems as distributed knowledge bases with fuzzy epistemic interpreted systems.In addition,we provide a transformation algorithm from fuzzy epistemic interpreted systems to fuzzy Kripke structures,as well as transformation rules from FCTLK formulas to Fuzzy Computation Tree Logic(FCTL)formulas.Accordingly,we transform the FCTLK model checking problem into the FCTL model checking.This enables the verification of FCTLK formulas by using the fuzzy model checking algorithm of FCTL without additional computational overheads.Finally,we present correctness proofs and complexity analyses of the proposed algorithms.Additionally,we further illustrate the practical application of our approach through an example of a train control system. 展开更多
关键词 Model checking multi-agent systems fuzzy epistemic interpreted systems fuzzy computation tree logic transformation algorithm
下载PDF
Integrated classification method of tight sandstone reservoir based on principal component analysise simulated annealing genetic algorithmefuzzy cluster means
4
作者 Bo-Han Wu Ran-Hong Xie +3 位作者 Li-Zhi Xiao Jiang-Feng Guo Guo-Wen Jin Jian-Wei Fu 《Petroleum Science》 SCIE EI CSCD 2023年第5期2747-2758,共12页
In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tig... In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tight sandstone reservoirs which lack the prior information and core experiments.A variety of evaluation parameters were selected,including lithology characteristic parameters,poro-permeability quality characteristic parameters,engineering quality characteristic parameters,and pore structure characteristic parameters.The PCA was used to reduce the dimension of the evaluation pa-rameters,and the low-dimensional data was used as input.The unsupervised reservoir classification of tight sandstone reservoir was carried out by the SAGA-FCM,the characteristics of reservoir at different categories were analyzed and compared with the lithological profiles.The analysis results of numerical simulation and actual logging data show that:1)compared with FCM algorithm,SAGA-FCM has stronger stability and higher accuracy;2)the proposed method can cluster the reservoir flexibly and effectively according to the degree of membership;3)the results of reservoir integrated classification match well with the lithologic profle,which demonstrates the reliability of the classification method. 展开更多
关键词 Tight sandstone Integrated reservoir classification Principal component analysis Simulated annealing genetic algorithm fuzzy cluster means
下载PDF
FUZZY GLOBAL SLIDING MODE CONTROL BASED ON GENETIC ALGORITHM AND ITS APPLICATION FOR FLIGHT SIMULATOR SERVO SYSTEM 被引量:14
5
作者 LIU Jinkun HE Yuzhu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第3期13-17,共5页
To alleviate the chattering problem, a new type of fuzzy global sliding mode controller (FGSMC) is presented. In this controller, the switching gain is estimated by fuzzy logic system based on the reachable conditio... To alleviate the chattering problem, a new type of fuzzy global sliding mode controller (FGSMC) is presented. In this controller, the switching gain is estimated by fuzzy logic system based on the reachable conditions of sliding mode controller(SMC), and genetic algorithm (GA) is used to optimize scaling factor of the switching gain, thus the switch chattering of SMC can be alleviated. Moreover, global sliding mode is realized by designing an exponential dynamic sliding surface. Simulation and real-time application for flight simulator servo system with Lugre friction are given to indicate that the proposed controller can guarantee high robust performance all the time and can alleviate chattering phenomenon effectively. 展开更多
关键词 Sliding mode control Chattering free fuzzy control genetic algorithm Flight simulator
下载PDF
A Comparative Study of Genetic Algorithm Parameters for the Inverse Problem-based Fault Diagnosis of Liquid Rocket Propulsion Systems 被引量:1
6
作者 Erfu Yang Hongjun Xiang +1 位作者 Dongbing Gu Zhenpeng Zhang 《International Journal of Automation and computing》 EI 2007年第3期255-261,共7页
Fault diagnosis of liquid rocket propulsion systems (LRPSs) is a very important issue in space launch activities particularly when manned space missions are accompanied, since the safety and reliability can be signi... Fault diagnosis of liquid rocket propulsion systems (LRPSs) is a very important issue in space launch activities particularly when manned space missions are accompanied, since the safety and reliability can be significantly enhanced by exploiting an efficient fault diagnosis system. Currently, inverse problem-based diagnosis has attracted a great deal of research attention in fault diagnosis domain. This methodology provides a new strategy to model-based fault diagnosis for monitoring the health of propulsion systems. To solve the inverse problems arising from the fault diagnosis of LRPSs, GAs have been adopted in recent years as the first and effective choice of available numerical optimization tools. However, the GA has many control parameters to be chosen in advance and there still lack sound theoretical tools to analyze the effects of these parameters on diagnostic performance analytically. In this paper a comparative study of the influence of GA parameters on diagnostic results is conducted by performing a series of numerical experiments. The objective of this study is to investigate the contribution of individual algorithm parameter to final diagnostic result and provide reasonable estimates for choosing GA parameters in the inverse problem-based fault diagnosis of LRPSs. Some constructive remarks are made in conclusion and will be helpful for the implementation of GA to the fault diagnosis practice of LRPSs in the future. 展开更多
关键词 Liquid rocket propulsion systems inverse problem fault diagnosis genetic algorithm comparative study.
下载PDF
Sequencing Mixed-model Production Systems by Modified Multi-objective Genetic Algorithms 被引量:5
7
作者 WANG Binggang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第5期537-546,共10页
As two independent problems,scheduling for parts fabrication line and sequencing for mixed-model assembly line have been addressed respectively by many researchers.However,these two problems should be considered simul... As two independent problems,scheduling for parts fabrication line and sequencing for mixed-model assembly line have been addressed respectively by many researchers.However,these two problems should be considered simultaneously to improve the efficiency of the whole fabrication/assembly systems.By far,little research effort is devoted to sequencing problems for mixed-model fabrication/assembly systems.This paper is concerned about the sequencing problems in pull production systems which are composed of one mixed-model assembly line with limited intermediate buffers and two flexible parts fabrication flow lines with identical parallel machines and limited intermediate buffers.Two objectives are considered simultaneously:minimizing the total variation in parts consumption in the assembly line and minimizing the total makespan cost in the fabrication/assembly system.The integrated optimization framework,mathematical models and the method to construct the complete schedules for the fabrication lines according to the production sequences for the first stage in fabrication lines are presented.Since the above problems are non-deterministic polynomial-hard(NP-hard),a modified multi-objective genetic algorithm is proposed for solving the models,in which a method to generate the production sequences for the fabrication lines from the production sequences for the assembly line and a method to generate the initial population are put forward,new selection,crossover and mutation operators are designed,and Pareto ranking method and sharing function method are employed to evaluate the individuals' fitness.The feasibility and efficiency of the multi-objective genetic algorithm is shown by computational comparison with a multi-objective simulated annealing algorithm.The sequencing problems for mixed-model production systems can be solved effectively by the proposed modified multi-objective genetic algorithm. 展开更多
关键词 mixed-model production system SEQUENCING parallel machine BUFFERS multi-objective genetic algorithm multi-objective simulated annealing algorithm
下载PDF
Optimization of Bearing Locations for Maximizing First Mode Natural Frequency of Motorized Spindle-Bearing Systems Using a Genetic Algorithm 被引量:4
8
作者 Chi-Wei Lin 《Applied Mathematics》 2014年第14期2137-2152,共16页
This paper has developed a genetic algorithm (GA) optimization approach to search for the optimal locations to install bearings on the motorized spindle shaft to maximize its first-mode natural frequency (FMNF). First... This paper has developed a genetic algorithm (GA) optimization approach to search for the optimal locations to install bearings on the motorized spindle shaft to maximize its first-mode natural frequency (FMNF). First, a finite element method (FEM) dynamic model of the spindle-bearing system is formulated, and by solving the eigenvalue problem derived from the equations of motion, the natural frequencies of the spindle system can be acquired. Next, the mathematical model is built, which includes the objective function to maximize FMNF and the constraints to limit the locations of the bearings with respect to the geometrical boundaries of the segments they located and the spacings between adjacent bearings. Then, the Sequential Decoding Process (SDP) GA is designed to accommodate the dependent characteristics of the constraints in the mathematical model. To verify the proposed SDP-GA optimization approach, a four-bearing installation optimazation problem of an illustrative spindle system is investigated. The results show that the SDP-GA provides well convergence for the optimization searching process. By applying design of experiments and analysis of variance, the optimal values of GA parameters are determined under a certain number restriction in executing the eigenvalue calculation subroutine. A linear regression equation is derived also to estimate necessary calculation efforts with respect to the specific quality of the optimization solution. From the results of this illustrative example, we can conclude that the proposed SDP-GA optimization approach is effective and efficient. 展开更多
关键词 Optimal DESIGN Motorized SPINDLE system DESIGN Finite Element Method genetic algorithm FIRST MODE Natural Frequency
下载PDF
Fuzzy Control of Chaotic System with Genetic Algorithm
9
作者 方建安 郭钊侠 邵世煌 《Journal of Donghua University(English Edition)》 EI CAS 2002年第3期58-62,共5页
A novel approach to control the unpredictable behavior of chaotic systems is presented. The control algorithm is based on fuzzy logic control technique combined with genetic algorithm. The use of fuzzy logic allows fo... A novel approach to control the unpredictable behavior of chaotic systems is presented. The control algorithm is based on fuzzy logic control technique combined with genetic algorithm. The use of fuzzy logic allows for the implementation of human "rule-of-thumb" approach to decision making by employing linguistic variables. An improved Genetic Algorithm (GA) is used to learn to optimally select the fuzzy membership functions of the linguistic labels in the condition portion of each rule, and to automatically generate fuzzy control actions under each condition. Simulation results show that such an approach for the control of chaotic systems is both effective and robust. 展开更多
关键词 fuzzy control CHAOTIC system genetic algorithm reinforcement learning.
下载PDF
Development of an electrode intelligent design system based on adaptive fuzzy neural network and genetic algorithm
10
作者 Huang Jun Xu Yuelan +1 位作者 Wang Luyuan Wang Kehong 《China Welding》 EI CAS 2014年第2期62-66,共5页
The coating on the electrodes contains many kinds of raw materials which affect significantly on the mechanical properties of deposited metals. It is still a problem how to predict and control the mechanical propertie... The coating on the electrodes contains many kinds of raw materials which affect significantly on the mechanical properties of deposited metals. It is still a problem how to predict and control the mechanical properties of deposited metals directly according to the components of coating on the electrodes. In this paper an electrode intelligent design system is developed by means of fuzzy neural network technology and genetic algorithm,, dynamic link library, object linking and embedding and multithreading. The front-end application and customer interface of the system is realized by using visual C ++ program language and taking SQL Server 2000 as background database. It realizes series functions including automatic design of electrode formula, intelligent prediction of electrode properties, inquiry of electrode information, output of process report based on normalized template and electronic storage and search of relative files. 展开更多
关键词 electrode design system adaptive fuzzy neural network genetic algorithm object linking and embedding
下载PDF
Efficient Numerical Optimization Algorithm Based on New Real-Coded Genetic Algorithm, AREX + JGG, and Application to the Inverse Problem in Systems Biology 被引量:1
11
作者 Asako Komori Yukihiro Maki +2 位作者 Masahiko Nakatsui Isao Ono Masahiro Okamoto 《Applied Mathematics》 2012年第10期1463-1470,共8页
In Systems Biology, system identification, which infers regulatory network in genetic system and metabolic pathways using experimentally observed time-course data, is one of the hottest issues. The efficient numerical... In Systems Biology, system identification, which infers regulatory network in genetic system and metabolic pathways using experimentally observed time-course data, is one of the hottest issues. The efficient numerical optimization algorithm to estimate more than 100 real-coded parameters should be developed for this purpose. New real-coded genetic algorithm (RCGA), the combination of AREX (adaptive real-coded ensemble crossover) with JGG (just generation gap), have applied to the inference of genetic interactions involving more than 100 parameters related to the interactions with using experimentally observed time-course data. Compared with conventional RCGA, the combination of UNDX (unimodal normal distribution crossover) with MGG (minimal generation gap), new algorithm has shown the superiority with improving early convergence in the first stage of search and suppressing evolutionary stagnation in the last stage of search. 展开更多
关键词 Inverse Problem S-system FORMALISM Gene REGULATORY Network system Identification Real-Coded genetic algorithm
下载PDF
Localization of Voltage Regulators in Distribution Systems by a Mixed Genetic–Tabu Search Algorithm
12
作者 M. C. Pimentel Filho M. F. Medeiros 《Energy and Power Engineering》 2013年第4期751-755,共5页
The optimal allocation of regulators banks in distribution systems is a merely combinatorial problem in which the best points of installation correspond to the best benefit, considering the admitted objective function... The optimal allocation of regulators banks in distribution systems is a merely combinatorial problem in which the best points of installation correspond to the best benefit, considering the admitted objective function, without violating and operating limits. The objective function must be chosen so that its value represents the operation state of the system. As the problem possesses combinatorial nature, its complexity will increase exponentially with the number of possibilities. Systems with large numbers of nodes and / or with the possibility of installing more than one bank require a large number of calculations to find the solution. An additional issue is the fact that the problem does not have a continuous nature, presenting discontinuity points in the objective function, limiting the application of optimization methods based on gradients. Based on the nature of the problem two optimization methods were used to solve the problem: Genetic Algorithm (GA) and modified Tabu Search (TS). The GA function will scour the search space and find regions with local minima that are candidates to be the solution. On the other hand the TS provides local search in the regions defined by GA so that the overall optimum is achieved. 展开更多
关键词 REGULATOR BANKS Distribution systems genetic algorithms Tabu SEARCH
下载PDF
ADAPTIVE GENETIC ALGORITHM BASED ON SIX FUZZY LOGIC CONTROLLERS 被引量:3
13
作者 朱力立 张焕春 经亚枝 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2003年第2期230-235,共6页
The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimiz... The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimization relationship. The use of six fuzzy logic controllers(6FLCs) is proposed for dynamic control genetic operating parameters of a symbolic-coded GA. This paper uses AGA based on 6FLCs to deal with the travelling salesman problem (TSP). Experimental results show that AGA based on 6FLCs is more efficient than a standard GA in solving combinatorial optimization problems similar to TSP. 展开更多
关键词 adaptive genetic algorithm fuzzy controller dynamic parameters control TSP
下载PDF
Multisensor Fuzzy Stochastic Fusion Based on Genetic Algorithms 被引量:3
14
作者 胡昌振 谭惠民 《Journal of Beijing Institute of Technology》 EI CAS 2000年第1期49-54,共6页
To establish a parallel fusion approach of processing high dimensional information, the model and criterion of multisensor fuzzy stochastic data fusion were presented. In order to design genetic algorithm fusion, the ... To establish a parallel fusion approach of processing high dimensional information, the model and criterion of multisensor fuzzy stochastic data fusion were presented. In order to design genetic algorithm fusion, the fusion parameter coding, initial population and fitness function establishing, and fuzzy logic controller designing for genetic operations and probability choosing were completed. The discussion on the highly dimensional fusion was given. For a moving target with the division of 1 64 (velocity) and 1 75 (acceleration), the precision of fusion is 0 94 and 0 98 respectively. The fusion approach can improve the reliability and decision precision effectively. 展开更多
关键词 MULTISENSOR data fusion fuzzy random genetic algorithm
下载PDF
Selecting Oil Wells for Hydraulic Fracturing: A Comparison between Genetic-Fuzzy and Neuro Fuzzy Systems
15
作者 Virgilio JoseMartins Ferreira Filho Antonio Orestes de Salvo Castro 《American Journal of Operations Research》 2014年第4期202-216,共15页
Hydraulic fracturing is widely used to increase oil well production and to reduce formation damage. Reservoir studies and engineering analyses are carried out to select the wells for this kind of operation. As the res... Hydraulic fracturing is widely used to increase oil well production and to reduce formation damage. Reservoir studies and engineering analyses are carried out to select the wells for this kind of operation. As the reservoir parameters have some diffuse characteristics, Fuzzy Inference Systems (FIS) have been tested for these selection processes in the last few years. This paper compares the performance of a neuro fuzzy system and a genetic fuzzy system used for selecting wells for hydraulic fracturing, with knowledge acquired from an operational data base to set the SIF membership functions. The training data and the validation data used were the same for both systems. We concluded that, despite the genetic fuzzy system being a newer process, it obtained better results than the neuro fuzzy system. Another conclusion was that, as the genetic fuzzy system can work with constraints, the membership functions setting kept the consistency of variable linguistic values. 展开更多
关键词 fuzzy Logic PETROLEUM genetic algorithms Hydraulic Fracturing
下载PDF
Multimachine Power System Stabilizer based on Optimal Fuzzy PID with Genetic Algorithm Tuning
16
作者 E. A. Hakim A.Soeprijanto M. HP 《Journal of Energy and Power Engineering》 2010年第1期43-50,共8页
This paper presented PSS (Power system stabilizer) design based on Genetic Algorithm - Fuzzy PID (Proportional Integral and derivative) or GAFPID. GAFPID based PSS design is considered for multimachine power syste... This paper presented PSS (Power system stabilizer) design based on Genetic Algorithm - Fuzzy PID (Proportional Integral and derivative) or GAFPID. GAFPID based PSS design is considered for multimachine power system. The main motivation for this design is to stabilize or to control low-fi'equency oscillation and terminal voltage of power systems. Genetic Algorithm (GA) is employed for the optimization of the parameter of stabilizer. By minimizing an objective function in which the oscillatory speed deviation of the generator, small signal and large signal performance of the system is improved. The effectiveness of the proposed PSS in increasing the damping of system electromechanical oscillation is demonstrated in a simple two-area power system. 展开更多
关键词 fuzzy PID genetic algorithm power system stabilizer
下载PDF
Neutrosophic Adaptive Clustering Optimization in Genetic Algorithm and Its Application in Cubic Assignment Problem 被引量:1
17
作者 Fangwei Zhang Shihe Xu +2 位作者 Bing Han Liming Zhang Jun Ye 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期2211-2226,共16页
In optimization theory,the adaptive control of the optimization process is an important goal that people pursue.To solve this problem,this study introduces the idea of neutrosophic decision-making into classical heuri... In optimization theory,the adaptive control of the optimization process is an important goal that people pursue.To solve this problem,this study introduces the idea of neutrosophic decision-making into classical heuristic algorithm,and proposes a novel neutrosophic adaptive clustering optimization thought,which is applied in a novel neutrosophic genetic algorithm(NGA),for example.The main feature of NGA is that the NGA treats the crossover effect as a neutrosophic fuzzy set,the variation ratio as a structural parameter,the crossover effect as a benefit parameter and the variation effect as a cost parameter,and then a neutrosophic fitness function value is created.Finally,a high order assignment problem in warehousemanagement is taken to illustrate the effectiveness of NGA. 展开更多
关键词 Neutrosophic fuzzy set heuristic algorithm genetic algorithm intelligent control warehouse operation
下载PDF
Study of impact from the genetic algorithm combined adaptive network-based fuzzy inference system model on business performance
18
作者 HUANG Jui-Ching PAN Wen-Tsao 《通讯和计算机(中英文版)》 2008年第10期52-57,共6页
关键词 遗传算法 计算方法 模糊系统 网络 电子商务
下载PDF
Adaptive Real-Coded Genetic Algorithm for Identifying Motor Systems
19
作者 Rong-Fong Fung Chun-Hung Lin 《Modern Mechanical Engineering》 2015年第3期69-86,共18页
In this paper, the main objective is to identify the parameters of motors, which includes a brushless direct current (BLDC) motor and an induction motor. The motor systems are dynamically formulated by the mechanical ... In this paper, the main objective is to identify the parameters of motors, which includes a brushless direct current (BLDC) motor and an induction motor. The motor systems are dynamically formulated by the mechanical and electrical equations. The real-coded genetic algorithm (RGA) is adopted to identify all parameters of motors, and the standard genetic algorithm (SRGA) and various adaptive genetic algorithm (ARGAs) are compared in the rotational angular speeds and fitness values, which are the inverse of square differences of angular speeds. From numerical simulations and experimental results, it is found that the SRGA and ARGA are feasible, the ARGA can effectively solve the problems with slow convergent speed and premature phenomenon, and is more accurate in identifying system’s parameters than the SRGA. From the comparisons of the ARGAs in identifying parameters of motors, the best ARGA method is obtained and could be applied to any other mechatronic systems. 展开更多
关键词 ADAPTIVE Real-Coded genetic algorithm (ARGA) BRUSHLESS Direct Current MOTOR (BLDC) Electrical FAN Induction MOTOR system Identification
下载PDF
Genetic-based Fuzzy IDS for Feature Set Reduction and Worm Hole Attack Detection
20
作者 M.Reji Christeena Joseph +1 位作者 K.Thaiyalnayaki R.Lathamanju 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期1265-1278,共14页
The wireless ad-hoc networks are decentralized networks with a dynamic topology that allows for end-to-end communications via multi-hop routing operations with several nodes collaborating themselves,when the destinati... The wireless ad-hoc networks are decentralized networks with a dynamic topology that allows for end-to-end communications via multi-hop routing operations with several nodes collaborating themselves,when the destination and source nodes are not in range of coverage.Because of its wireless type,it has lot of security concerns than an infrastructure networks.Wormhole attacks are one of the most serious security vulnerabilities in the network layers.It is simple to launch,even if there is no prior network experience.Signatures are the sole thing that preventive measures rely on.Intrusion detection systems(IDS)and other reactive measures detect all types of threats.The majority of IDS employ features from various network layers.One issue is calculating a huge layered features set from an ad-hoc network.This research implements genetic algorithm(GA)-based feature reduction intrusion detection approaches to minimize the quantity of wireless feature sets required to identify worm hole attacks.For attack detection,the reduced feature set was put to a fuzzy logic system(FLS).The performance of proposed model was compared with principal component analysis(PCA)and statistical parametric mapping(SPM).Network performance analysis like delay,packet dropping ratio,normalized overhead,packet delivery ratio,average energy consumption,throughput,and control overhead are evaluated and the IDS performance parameters like detection ratio,accuracy,and false alarm rate are evaluated for validation of the proposed model.The proposed model achieves 95.5%in detection ratio with 96.8%accuracy and produces very less false alarm rate(FAR)of 14%when compared with existing techniques. 展开更多
关键词 Intrusion detection system wormhole attack genetic algorithm fuzzy logic wireless ad-hoc network
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部