Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as s...Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as safety and liveness,there is still a lack of quantitative and uncertain property verifications for these systems.In uncertain environments,agents must make judicious decisions based on subjective epistemic.To verify epistemic and measurable properties in multi-agent systems,this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge(FCTLK).We represent fuzzy multi-agent systems as distributed knowledge bases with fuzzy epistemic interpreted systems.In addition,we provide a transformation algorithm from fuzzy epistemic interpreted systems to fuzzy Kripke structures,as well as transformation rules from FCTLK formulas to Fuzzy Computation Tree Logic(FCTL)formulas.Accordingly,we transform the FCTLK model checking problem into the FCTL model checking.This enables the verification of FCTLK formulas by using the fuzzy model checking algorithm of FCTL without additional computational overheads.Finally,we present correctness proofs and complexity analyses of the proposed algorithms.Additionally,we further illustrate the practical application of our approach through an example of a train control system.展开更多
Lubricant diagnosis serves as a crucial accordance for condition-based maintenance(CBM)involving oil changing and wear examination of critical parts in equipment.However,the accuracy of traditional end-to-end diagnosi...Lubricant diagnosis serves as a crucial accordance for condition-based maintenance(CBM)involving oil changing and wear examination of critical parts in equipment.However,the accuracy of traditional end-to-end diagnosis models is often limited by the inconsistency and random fluctuations in multiple monitoring indicators.To address this,an attribute-driven adaptive diagnosis method is developed,involving three attributes:physicochemical,contamination,and wear.Correspondingly,a fuzzy fault tree(termed FFT)-based model is constructed containing the logic correlations from monitoring indicators to attributes and to lubricant failures.In particular,inference rules are integrated to mitigate conflicts arising from the reverse degradation of multiple indicators.With this model,the lubricant conditions can be accurately assessed through rule-based reasoning.Furthermore,to enhance its intelligence,the model is dynamically optimized with lubricant analysis knowledge and monitoring data.For verification,the developed model is tested with lubricant samples from both the fatigue experiment and actual aero-engines.Fatigue experiments reveal that the proposed model can improve the lubricant diagnosis accuracy from 73.4%to 92.6%compared with the existing methods.While for the engine lubricant test,a high accuracy of 90%was achieved.展开更多
Due to the high potential risk and many influencing factors of subsea horizontal X-tree installation,to guarantee the successful completion of sea trials of domestic subsea horizontal X-trees,this paper established a ...Due to the high potential risk and many influencing factors of subsea horizontal X-tree installation,to guarantee the successful completion of sea trials of domestic subsea horizontal X-trees,this paper established a modular risk evaluation model based on a fuzzy fault tree.First,through the analysis of the main process oftree down and combining the Offshore&Onshore Reliability Data(OREDA)failure statistics and the operation procedure and the data provided by the job,the fault tree model of risk analysis of the tree down installation was established.Then,by introducing the natural language of expert comprehensive evaluation and combining fuzzy principles,quantitative analysis was carried out,and the fuzzy number was used to calculate the failure probability of a basic event and the occurrence probability of a top event.Finally,through a sensitivity analysis of basic events,the basic events of top events significantly affected were determined,and risk control and prevention measures for the corresponding high-risk factors were proposed for subsea horizontal X-tree down installation.展开更多
To deal with the problem that arises when the conventional fuzzy class-association method applies repetitive scans of the classifier to classify new texts,which has low efficiency, a new approach based on the FCR-tree...To deal with the problem that arises when the conventional fuzzy class-association method applies repetitive scans of the classifier to classify new texts,which has low efficiency, a new approach based on the FCR-tree(fuzzy classification rules tree)for text categorization is proposed.The compactness of the FCR-tree saves significant space in storing a large set of rules when there are many repeated words in the rules.In comparison with classification rules,the fuzzy classification rules contain not only words,but also the fuzzy sets corresponding to the frequencies of words appearing in texts.Therefore,the construction of an FCR-tree and its structure are different from a CR-tree.To debase the difficulty of FCR-tree construction and rules retrieval,more k-FCR-trees are built.When classifying a new text,it is not necessary to search the paths of the sub-trees led by those words not appearing in this text,thus reducing the number of traveling rules.Experimental results show that the proposed approach obviously outperforms the conventional method in efficiency.展开更多
Digital evidences can be obtained from computers and various kinds of digital devices, such as telephones, mp3/mp4 players, printers, cameras, etc. Telephone Call Detail Records (CDRs) are one important source of di...Digital evidences can be obtained from computers and various kinds of digital devices, such as telephones, mp3/mp4 players, printers, cameras, etc. Telephone Call Detail Records (CDRs) are one important source of digital evidences that can identify suspects and their partners. Law enforcement authorities may intercept and record specific conversations with a court order and CDRs can be obtained from telephone service providers. However, the CDRs of a suspect for a period of time are often fairly large in volume. To obtain useful information and make appropriate decisions automatically from such large amount of CDRs become more and more difficult. Current analysis tools are designed to present only numerical results rather than help us make useful decisions. In this paper, an algorithm based on Fuzzy Decision Tree (FDT) for analyzing CDRs is proposed. We conducted experimental evaluation to verify the proposed algorithm and the result is very promising.展开更多
In the past, the probabilities of basic events were described as triangular or trapezoidal fuzzy number that cannot characterize the common distribution of the primary events in engineering, and the fault tree analyze...In the past, the probabilities of basic events were described as triangular or trapezoidal fuzzy number that cannot characterize the common distribution of the primary events in engineering, and the fault tree analyzed by fuzzy set theory did not include repeated basic events. This paper presents a new method to analyze the fault tree by using normal fuzzy number to describe the fuzzy probability of each basic event which is more suitably used to analyze the reliability in safety systems, and then the formulae of computing the fuzzy probability of the top event of the fault tree which includes repeated events are derived. Finally, an example is given.展开更多
In the aluminum reduction process, aluminum uoride (AlF3) is added to lower the liquidus temperature of the electrolyte and increase the electrolytic ef ciency. Making the decision on the amount of AlF3 addi- tion (re...In the aluminum reduction process, aluminum uoride (AlF3) is added to lower the liquidus temperature of the electrolyte and increase the electrolytic ef ciency. Making the decision on the amount of AlF3 addi- tion (referred to in this work as MDAAA) is a complex and knowledge-based task that must take into con- sideration a variety of interrelated functions;in practice, this decision-making step is performed manually. Due to technician subjectivity and the complexity of the aluminum reduction cell, it is dif cult to guarantee the accuracy of MDAAA based on knowledge-driven or data-driven methods alone. Existing strategies for MDAAA have dif culty covering these complex causalities. In this work, a data and knowl- edge collaboration strategy for MDAAA based on augmented fuzzy cognitive maps (FCMs) is proposed. In the proposed strategy, the fuzzy rules are extracted by extended fuzzy k-means (EFKM) and fuzzy deci- sion trees, which are used to amend the initial structure provided by experts. The state transition algo- rithm (STA) is introduced to detect weight matrices that lead the FCMs to desired steady states. This study then experimentally compares the proposed strategy with some existing research. The results of the comparison show that the speed of FCMs convergence into a stable region based on the STA using the proposed strategy is faster than when using the differential Hebbian learning (DHL), particle swarm optimization (PSO), or genetic algorithm (GA) strategies. In addition, the accuracy of MDAAA based on the proposed method is better than those based on other methods. Accordingly, this paper provides a feasible and effective strategy for MDAAA.展开更多
This paper presents a probabilistic failure analysis of leakage of the oil and gas in a subsea production system using fault tree analysis(FTA).A fault tree was constructed by considering four major areas where the le...This paper presents a probabilistic failure analysis of leakage of the oil and gas in a subsea production system using fault tree analysis(FTA).A fault tree was constructed by considering four major areas where the leakages can be initiated.These are:gas and oil wells,pipelines,key facilities and third party damage.Conventional FTA requires precise values for the probability of failure of the basic events.However,since the failure data are uncertain,a fuzzy approach to these data is taken which leads to the so-called fuzzy fault tree analysis(FFTA),a method that employs expert elicitation and fuzzy set theories to calculate the failure probabilities of the intermediate events and the top event through identification of the minimal cut sets of the fault tree.A number of importance measures for minimal cut sets and the basic events have been obtained which helps to identify the nature of dependence of the top event on the basic events and thereby can identify the weakest links that may cause leakage in the subsea production system.展开更多
A new modeling approach for nonlinear systems with rate-dependent hysteresis is proposed. The approach is used for the modeling of the giant magnetostrictive actuator, which has the rate-dependent nonlinear property. ...A new modeling approach for nonlinear systems with rate-dependent hysteresis is proposed. The approach is used for the modeling of the giant magnetostrictive actuator, which has the rate-dependent nonlinear property. The models built are simpler than the existed approaches. Compared with the experiment result, the model built can well describe the hysteresis nonlinear of the actuator for input signals with complex frequency. An adaptive direct inverse control approach is proposed based on the fuzzy tree model and inverse learning and special learning that are used in neural network broadly. In this approach, the inverse model of the plant is identified to be the initial controller firstly. Then, the inverse model is connected with the plant in series and the linear parameters of the controller are adjusted using the least mean square algorithm by on-line manner. The direct inverse control approach based on the fuzzy tree model is applied on the tracing control of the actuator by simulation. The simulation results show the correctness of the approach.展开更多
Purpose–This paper proposes a robust modeling method of a giant magnetostrictive actuator which has a rate-dependent nonlinear property.Design/methodology/approach–It is known in statistics that the Least Wilcoxon l...Purpose–This paper proposes a robust modeling method of a giant magnetostrictive actuator which has a rate-dependent nonlinear property.Design/methodology/approach–It is known in statistics that the Least Wilcoxon learning method developed using Wilcoxon norm is robust against outliers.Thus,it is used in the paper to determine the consequence parameters of the fuzzy rules to reduce the sensitiveness to the outliers in the input-output data.The proposed method partitions the input space adaptively according to the distribution of samples and the partition is irrelative to the dimension of the input data set.Findings–The proposed modeling method can effectively construct a unique dynamic model that describes the rate-dependent hysteresis in a given frequency range with respect to different single-frequency and multi-frequency input signals no matter whether there exist outliers in the training set or not.Simulation results demonstrate that the proposed method is effective and insensitive against the outliers.Originality/value–The main contributions of this paper are:first,an intelligent modeling method is proposed to deal with the rate-dependent hysteresis presented in the giant magnetostrictive actuator and the modeling precision can fulfill the requirement of engineering,such as the online modeling issue in the active vibration control;and second,the proposed method can handle the outliers in the input-output data effectively.展开更多
Nowadays,the service of network video is increasing explosively.But the quality of experience(QoE)model of network video quality is not stable.The video quality may be impaired by many factors.This paper proposes QoE ...Nowadays,the service of network video is increasing explosively.But the quality of experience(QoE)model of network video quality is not stable.The video quality may be impaired by many factors.This paper proposes QoE models for network video quality.It consists of two components:1)the perceptual video quality model considering the impair factors related to video content as well as distortion caused by content and transmission.Next the model is built through a decision tree using a set of measured features form the network video.This proposed model can qualitatively give the grade of video quality and improve the accuracy of prediction.2)Based on the above model,another model is proposed to give the concrete objective score of video quality.It also considers original impair factors and predicts the video quality using fuzzy decision tree.The two models have their own advantages.The first model has a good computational complexity;the second model is more precise.All the models are simulated by actual experiments.They can improve the accuracy of objective model.The detail results are shown.展开更多
基金The work is partially supported by Natural Science Foundation of Ningxia(Grant No.AAC03300)National Natural Science Foundation of China(Grant No.61962001)Graduate Innovation Project of North Minzu University(Grant No.YCX23152).
文摘Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as safety and liveness,there is still a lack of quantitative and uncertain property verifications for these systems.In uncertain environments,agents must make judicious decisions based on subjective epistemic.To verify epistemic and measurable properties in multi-agent systems,this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge(FCTLK).We represent fuzzy multi-agent systems as distributed knowledge bases with fuzzy epistemic interpreted systems.In addition,we provide a transformation algorithm from fuzzy epistemic interpreted systems to fuzzy Kripke structures,as well as transformation rules from FCTLK formulas to Fuzzy Computation Tree Logic(FCTL)formulas.Accordingly,we transform the FCTLK model checking problem into the FCTL model checking.This enables the verification of FCTLK formulas by using the fuzzy model checking algorithm of FCTL without additional computational overheads.Finally,we present correctness proofs and complexity analyses of the proposed algorithms.Additionally,we further illustrate the practical application of our approach through an example of a train control system.
基金supported in part by the National Natural Science Foundation of China(Nos.52275126 and 52105159)the Science and Technology Planning Project of Shaanxi Province,China(No.2024GX-YBXM-292).
文摘Lubricant diagnosis serves as a crucial accordance for condition-based maintenance(CBM)involving oil changing and wear examination of critical parts in equipment.However,the accuracy of traditional end-to-end diagnosis models is often limited by the inconsistency and random fluctuations in multiple monitoring indicators.To address this,an attribute-driven adaptive diagnosis method is developed,involving three attributes:physicochemical,contamination,and wear.Correspondingly,a fuzzy fault tree(termed FFT)-based model is constructed containing the logic correlations from monitoring indicators to attributes and to lubricant failures.In particular,inference rules are integrated to mitigate conflicts arising from the reverse degradation of multiple indicators.With this model,the lubricant conditions can be accurately assessed through rule-based reasoning.Furthermore,to enhance its intelligence,the model is dynamically optimized with lubricant analysis knowledge and monitoring data.For verification,the developed model is tested with lubricant samples from both the fatigue experiment and actual aero-engines.Fatigue experiments reveal that the proposed model can improve the lubricant diagnosis accuracy from 73.4%to 92.6%compared with the existing methods.While for the engine lubricant test,a high accuracy of 90%was achieved.
基金financially supported by the National Ministry of Industry and Information Technology Innovation Special Project-Engineering Demonstration Application of Subsea Production System,Topic 4:Research on Subsea X-Tree and Wellhead Offshore Testing Technology(Grant No.MC-201901-S01-04)the Key Research and Development Program of Shandong Province(Major Innovation Project)(Grant Nos.2022CXGC020405,2023CXGC010415)。
文摘Due to the high potential risk and many influencing factors of subsea horizontal X-tree installation,to guarantee the successful completion of sea trials of domestic subsea horizontal X-trees,this paper established a modular risk evaluation model based on a fuzzy fault tree.First,through the analysis of the main process oftree down and combining the Offshore&Onshore Reliability Data(OREDA)failure statistics and the operation procedure and the data provided by the job,the fault tree model of risk analysis of the tree down installation was established.Then,by introducing the natural language of expert comprehensive evaluation and combining fuzzy principles,quantitative analysis was carried out,and the fuzzy number was used to calculate the failure probability of a basic event and the occurrence probability of a top event.Finally,through a sensitivity analysis of basic events,the basic events of top events significantly affected were determined,and risk control and prevention measures for the corresponding high-risk factors were proposed for subsea horizontal X-tree down installation.
基金The National Natural Science Foundation of China(No.60473045)the Technology Research Project of Hebei Province(No.05213573)the Research Plan of Education Office of Hebei Province(No.2004406)
文摘To deal with the problem that arises when the conventional fuzzy class-association method applies repetitive scans of the classifier to classify new texts,which has low efficiency, a new approach based on the FCR-tree(fuzzy classification rules tree)for text categorization is proposed.The compactness of the FCR-tree saves significant space in storing a large set of rules when there are many repeated words in the rules.In comparison with classification rules,the fuzzy classification rules contain not only words,but also the fuzzy sets corresponding to the frequencies of words appearing in texts.Therefore,the construction of an FCR-tree and its structure are different from a CR-tree.To debase the difficulty of FCR-tree construction and rules retrieval,more k-FCR-trees are built.When classifying a new text,it is not necessary to search the paths of the sub-trees led by those words not appearing in this text,thus reducing the number of traveling rules.Experimental results show that the proposed approach obviously outperforms the conventional method in efficiency.
文摘Digital evidences can be obtained from computers and various kinds of digital devices, such as telephones, mp3/mp4 players, printers, cameras, etc. Telephone Call Detail Records (CDRs) are one important source of digital evidences that can identify suspects and their partners. Law enforcement authorities may intercept and record specific conversations with a court order and CDRs can be obtained from telephone service providers. However, the CDRs of a suspect for a period of time are often fairly large in volume. To obtain useful information and make appropriate decisions automatically from such large amount of CDRs become more and more difficult. Current analysis tools are designed to present only numerical results rather than help us make useful decisions. In this paper, an algorithm based on Fuzzy Decision Tree (FDT) for analyzing CDRs is proposed. We conducted experimental evaluation to verify the proposed algorithm and the result is very promising.
文摘In the past, the probabilities of basic events were described as triangular or trapezoidal fuzzy number that cannot characterize the common distribution of the primary events in engineering, and the fault tree analyzed by fuzzy set theory did not include repeated basic events. This paper presents a new method to analyze the fault tree by using normal fuzzy number to describe the fuzzy probability of each basic event which is more suitably used to analyze the reliability in safety systems, and then the formulae of computing the fuzzy probability of the top event of the fault tree which includes repeated events are derived. Finally, an example is given.
文摘In the aluminum reduction process, aluminum uoride (AlF3) is added to lower the liquidus temperature of the electrolyte and increase the electrolytic ef ciency. Making the decision on the amount of AlF3 addi- tion (referred to in this work as MDAAA) is a complex and knowledge-based task that must take into con- sideration a variety of interrelated functions;in practice, this decision-making step is performed manually. Due to technician subjectivity and the complexity of the aluminum reduction cell, it is dif cult to guarantee the accuracy of MDAAA based on knowledge-driven or data-driven methods alone. Existing strategies for MDAAA have dif culty covering these complex causalities. In this work, a data and knowl- edge collaboration strategy for MDAAA based on augmented fuzzy cognitive maps (FCMs) is proposed. In the proposed strategy, the fuzzy rules are extracted by extended fuzzy k-means (EFKM) and fuzzy deci- sion trees, which are used to amend the initial structure provided by experts. The state transition algo- rithm (STA) is introduced to detect weight matrices that lead the FCMs to desired steady states. This study then experimentally compares the proposed strategy with some existing research. The results of the comparison show that the speed of FCMs convergence into a stable region based on the STA using the proposed strategy is faster than when using the differential Hebbian learning (DHL), particle swarm optimization (PSO), or genetic algorithm (GA) strategies. In addition, the accuracy of MDAAA based on the proposed method is better than those based on other methods. Accordingly, this paper provides a feasible and effective strategy for MDAAA.
文摘This paper presents a probabilistic failure analysis of leakage of the oil and gas in a subsea production system using fault tree analysis(FTA).A fault tree was constructed by considering four major areas where the leakages can be initiated.These are:gas and oil wells,pipelines,key facilities and third party damage.Conventional FTA requires precise values for the probability of failure of the basic events.However,since the failure data are uncertain,a fuzzy approach to these data is taken which leads to the so-called fuzzy fault tree analysis(FFTA),a method that employs expert elicitation and fuzzy set theories to calculate the failure probabilities of the intermediate events and the top event through identification of the minimal cut sets of the fault tree.A number of importance measures for minimal cut sets and the basic events have been obtained which helps to identify the nature of dependence of the top event on the basic events and thereby can identify the weakest links that may cause leakage in the subsea production system.
基金Supported by the National Natural Science Foundation of China (Grant No. 60534020)the National Basic Research Program of China (GrantNo. G2002cb312205-04)+1 种基金the Research Fund for the Doctoral Program of Higher Education (Grant No. 20070006060)the Key Subject Foundation of Beijing (Grant Nos. XK100060526, XK100060422)
文摘A new modeling approach for nonlinear systems with rate-dependent hysteresis is proposed. The approach is used for the modeling of the giant magnetostrictive actuator, which has the rate-dependent nonlinear property. The models built are simpler than the existed approaches. Compared with the experiment result, the model built can well describe the hysteresis nonlinear of the actuator for input signals with complex frequency. An adaptive direct inverse control approach is proposed based on the fuzzy tree model and inverse learning and special learning that are used in neural network broadly. In this approach, the inverse model of the plant is identified to be the initial controller firstly. Then, the inverse model is connected with the plant in series and the linear parameters of the controller are adjusted using the least mean square algorithm by on-line manner. The direct inverse control approach based on the fuzzy tree model is applied on the tracing control of the actuator by simulation. The simulation results show the correctness of the approach.
基金the National Natural Science Foundation of PR China(91016006,91116002)the Fundamental Research Funds for the Central Universities.
文摘Purpose–This paper proposes a robust modeling method of a giant magnetostrictive actuator which has a rate-dependent nonlinear property.Design/methodology/approach–It is known in statistics that the Least Wilcoxon learning method developed using Wilcoxon norm is robust against outliers.Thus,it is used in the paper to determine the consequence parameters of the fuzzy rules to reduce the sensitiveness to the outliers in the input-output data.The proposed method partitions the input space adaptively according to the distribution of samples and the partition is irrelative to the dimension of the input data set.Findings–The proposed modeling method can effectively construct a unique dynamic model that describes the rate-dependent hysteresis in a given frequency range with respect to different single-frequency and multi-frequency input signals no matter whether there exist outliers in the training set or not.Simulation results demonstrate that the proposed method is effective and insensitive against the outliers.Originality/value–The main contributions of this paper are:first,an intelligent modeling method is proposed to deal with the rate-dependent hysteresis presented in the giant magnetostrictive actuator and the modeling precision can fulfill the requirement of engineering,such as the online modeling issue in the active vibration control;and second,the proposed method can handle the outliers in the input-output data effectively.
文摘Nowadays,the service of network video is increasing explosively.But the quality of experience(QoE)model of network video quality is not stable.The video quality may be impaired by many factors.This paper proposes QoE models for network video quality.It consists of two components:1)the perceptual video quality model considering the impair factors related to video content as well as distortion caused by content and transmission.Next the model is built through a decision tree using a set of measured features form the network video.This proposed model can qualitatively give the grade of video quality and improve the accuracy of prediction.2)Based on the above model,another model is proposed to give the concrete objective score of video quality.It also considers original impair factors and predicts the video quality using fuzzy decision tree.The two models have their own advantages.The first model has a good computational complexity;the second model is more precise.All the models are simulated by actual experiments.They can improve the accuracy of objective model.The detail results are shown.