期刊文献+
共找到596篇文章
< 1 2 30 >
每页显示 20 50 100
基于K-Means和FCM的增强型Wi-Fi指纹定位策略 被引量:2
1
作者 陈英 单文杰 杨丰玉 《计算机系统应用》 2017年第5期215-220,共6页
研究了通过数据处理算法以提高Wi-Fi指纹库室内定位性能的问题.首先采集Wi-Fi指纹样本,将其放入MySQL数据库中和R工程;其次将Wi-Fi指纹库分成若干个簇,使用K-均值聚类(K-Means)和模糊C-均值聚类(FCM)对待定位的Wi-Fi指纹进行聚类分析;最... 研究了通过数据处理算法以提高Wi-Fi指纹库室内定位性能的问题.首先采集Wi-Fi指纹样本,将其放入MySQL数据库中和R工程;其次将Wi-Fi指纹库分成若干个簇,使用K-均值聚类(K-Means)和模糊C-均值聚类(FCM)对待定位的Wi-Fi指纹进行聚类分析;最后,提出增强型的聚类策略(ECS)应用于Wi-Fi指纹匹配定位中.实验结果表明,ECS较仅使用FCM算法,其定位耗时缩短约50%-80%,且定位精度上有所改善;ECS较仅使用K-Means算法,其定位精度提高约20%-40%,且定位稳定性较强并自动更新Wi-Fi指纹库. 展开更多
关键词 Wi-Fi指纹 K-均值聚类 模糊C-均值聚类 增强型定位策略
下载PDF
基于K-means算法和FCM算法的聚类研究 被引量:3
2
作者 崔文迪 蔡佳佳 《现代计算机》 2007年第10期7-9,共3页
采用K-means算法和FCM算法实现对47个城市竞争力的聚类分析,选择较为简便的聚类有效性函数用于聚类结果的检验,得到了两种有效的聚类算法的实现方式,并验证该方法的合理性。
关键词 模糊聚类 K—means fcm
下载PDF
k-means融合FCM算法聚类研究 被引量:1
3
作者 王与 陈寿文 《滁州学院学报》 2014年第5期51-54,共4页
k-means融合FCM算法执行聚类过程,是在k-means算法完成聚类后,以其聚类结果作为FCM算法执行的初值,并通过FCM算法的执行完成。从结果分析可以看出,该算法聚类的效果比单纯使用FCM算法好,能够减少FCM算法循环体迭代运行次数并增强算法的... k-means融合FCM算法执行聚类过程,是在k-means算法完成聚类后,以其聚类结果作为FCM算法执行的初值,并通过FCM算法的执行完成。从结果分析可以看出,该算法聚类的效果比单纯使用FCM算法好,能够减少FCM算法循环体迭代运行次数并增强算法的鲁棒能力。 展开更多
关键词 K-means算法 fcm算法 混合均值算法
下载PDF
基于GWO-FCM的输油泵故障诊断模型自学习框架
4
作者 郭俊霞 谢自力 +2 位作者 毛申申 魏聪聪 邢健 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第6期79-86,共8页
随着输油泵场站无人化建设的发展,企业对输油泵故障诊断技术的要求也越来越高。目前,被广泛使用的利用机器学习算法进行输油泵故障诊断的方法都只能针对模型训练集中已包含的几类故障进行诊断,在企业的实际使用中,仍会出现其他不包含在... 随着输油泵场站无人化建设的发展,企业对输油泵故障诊断技术的要求也越来越高。目前,被广泛使用的利用机器学习算法进行输油泵故障诊断的方法都只能针对模型训练集中已包含的几类故障进行诊断,在企业的实际使用中,仍会出现其他不包含在训练集中的故障而不能被正确自动识别、诊断。针对上述问题,设计了一种输油泵故障诊断模型自学习框架,通过信号处理技术结合深度学习提取深层故障特征,提高工业现场数据的可分性;通过模糊C均值聚类结合相似度度量判别已知故障和未知故障,对出现的未知故障模式进行识别和记录;利用频繁出现的未知故障数据重训练模型,在原有诊断功能的基础上提高对未知故障的识别、诊断及学习能力。为验证方法的有效性,使用工业现场采集的输油泵数据进行实验,结果表明,现有诊断方法所提出的输油泵故障诊断模型自学习框架能够实现对未知故障的准确识别。 展开更多
关键词 输油泵 故障诊断 自学习 模糊C均值聚类
下载PDF
基于LOF-FCM算法的船舶航行数据识别
5
作者 崔秀芳 林浩涛 +1 位作者 安楠楠 王认认 《船舶工程》 CSCD 北大核心 2024年第S01期488-493,499,共7页
针对传统船舶自动识别系统数据在清洗异常数据和提取停留数据时分别采用不同的识别方式、类型判断阈值需要人为设定、识别效率不佳的局限性,首次提出了一种船舶航行轨迹中停留及异常数据的一体化检测方法。通过分析航行路线的3种数据(... 针对传统船舶自动识别系统数据在清洗异常数据和提取停留数据时分别采用不同的识别方式、类型判断阈值需要人为设定、识别效率不佳的局限性,首次提出了一种船舶航行轨迹中停留及异常数据的一体化检测方法。通过分析航行路线的3种数据(停留、异常和航行)异常因子特征,提出基于LOF-FCM的船舶航行数据、停留数据和异常数据一体化检测算法。实验对3类数据进行了识别,模型识别准确率达到了92.69%,有效提高了异常、停留、航行数据的识别能力。结果表明所提方法可一次性实现AIS数据中3种数据的检测,能高效分离出正常船舶航行数据,具有良好的工程应用价值。 展开更多
关键词 数据清洗 异常数据辨识 自动识别系统(AIS) 模糊C均值(fcm)
下载PDF
基于改进FCM的冲压件缺陷图像分割算法
6
作者 张玉杰 高晗 《计算机工程》 CAS CSCD 北大核心 2024年第10期342-351,共10页
在工业质检过程中,冲压件缺陷图像分割作为缺陷检测的重要环节,直接影响缺陷检测效果。而传统的模糊C均值(FCM)聚类算法未考虑到空间邻域信息,对于噪声干扰较为敏感,导致分割精度较差,且其整体易受初始值的影响,造成收敛速度变慢。针对... 在工业质检过程中,冲压件缺陷图像分割作为缺陷检测的重要环节,直接影响缺陷检测效果。而传统的模糊C均值(FCM)聚类算法未考虑到空间邻域信息,对于噪声干扰较为敏感,导致分割精度较差,且其整体易受初始值的影响,造成收敛速度变慢。针对上述问题,提出一种改进的FCM算法。采用内核诱导距离中的简单两项代替传统的欧氏距离,将原有的空间像素映射到高维特征空间,提高线性可分概率和计算速度;利用图像像素之间的空间相关性,通过引入改进的马尔可夫随机场对FCM目标函数进行修正,提高算法的抗噪能力以及分割精度;采用秃鹰搜索(BES)算法确定FCM的初始聚类中心,提高算法的收敛速度,同时避免算法陷入局部极值的情况。为验证改进FCM算法的性能,选取划分熵、划分系数、Xie_Beni系数以及迭代次数作为评价指标,并与近年来先进的图像分割算法进行对比。实验结果表明,改进FCM算法具有更好的抗噪能力,能得到更好的缺陷分割效果,对工业生产中的冲压件缺陷检测有一定的应用价值。 展开更多
关键词 模糊C均值聚类 工业应用 冲压件缺陷 内核诱导距离 马尔可夫随机场 秃鹰搜索算法
下载PDF
基于C-means和FCM的侧扫声呐图像分割方法研究 被引量:2
7
作者 田万平 林嘉 《舰船电子工程》 2021年第11期96-100,177,共6页
研究了C-means和FCM两种聚类分割算法对侧扫声呐图像的应用,其中FCM在C-means的基础上引入了隶属度的模糊概念,增加了计算量的同时分割精度有很大提升。同时,对比分析两类分割图像和聚类标准的收敛性曲线。实验结果表明,对C-means、FCM... 研究了C-means和FCM两种聚类分割算法对侧扫声呐图像的应用,其中FCM在C-means的基础上引入了隶属度的模糊概念,增加了计算量的同时分割精度有很大提升。同时,对比分析两类分割图像和聚类标准的收敛性曲线。实验结果表明,对C-means、FCM两种聚类算法进行运行速度、分割精度、适用性等方面的比较,发现C-means算法易于实现、运行速度快,但是分割精度不如FCM高,适用于对精确度要求不高的图像分割;而在对比度低、噪声严重的图像区域,C-means算法容易导致误割,FCM算法更合适。 展开更多
关键词 侧扫声呐 C-means fcm 图像分割
下载PDF
基于FCM聚类的光伏储能容量配置方法研究
8
作者 李浩宇 李思嘉 +1 位作者 宿月 常家维 《自动化仪表》 CAS 2024年第9期101-105,共5页
为提升分布式光伏储能容量配置的合理性,提出基于模糊C均值(FCM)聚类的光伏储能容量配置方法。通过分析分布式光伏系统拓扑结构,将分析结果作为信息依据,制定相应的分布式光伏储能容量配置方案。从分布式电源投资者及电网管理者角度制... 为提升分布式光伏储能容量配置的合理性,提出基于模糊C均值(FCM)聚类的光伏储能容量配置方法。通过分析分布式光伏系统拓扑结构,将分析结果作为信息依据,制定相应的分布式光伏储能容量配置方案。从分布式电源投资者及电网管理者角度制定目标及约束条件,构建分布式光伏储能容量配置模型。采用FCM聚类算法对配置模型内迭代计算的初值实施有效分配。该算法能够抑制光伏储能大容量蓄电池波动、提高储能性能和效率,从而获取最优容量配置。所提方法可以在短时间内实现储能出力,使光伏自消纳率平均值达到93.5%。该方法的分布式光伏储能容量配置效果较好。 展开更多
关键词 模糊C均值聚类 分布式光伏 储能容量配置 功率分配 光伏消纳 电池波动 储能出力
下载PDF
多维数据K-means谱聚类算法改进研究 被引量:2
9
作者 谢志明 王鹏 黄焱 《计算机技术与发展》 2017年第10期60-64,共5页
针对传统K-means算法不能自动确定初始聚类数目k和谱聚类算法对参数敏感的问题,提出了一种基于谱聚类的K-means(PK-means)算法。该算法在对k值选取时进行了创新改进,将计算所得的高密度数据点按规律排序,选择密度点前96%的进行聚类,可... 针对传统K-means算法不能自动确定初始聚类数目k和谱聚类算法对参数敏感的问题,提出了一种基于谱聚类的K-means(PK-means)算法。该算法在对k值选取时进行了创新改进,将计算所得的高密度数据点按规律排序,选择密度点前96%的进行聚类,可以以较高的准确率取得聚类数目k,同时采用了不受参数影响且稳定性更高的基于谱聚类模糊的相似性度量方法,利用FCM算法求隶属度矩阵确定数据点间的相似性。应用PK-means算法、K均值算法与密度敏感的谱聚类算法(DSSC)进行了多维非线性数据处理的测试实验。实验结果表明,无论是对于低维数据集还是高维数据集,K-means算法的处理效率是最低的,DSSC算法稍好,而PK-means算法优势明显,其相比传统聚类算法具有更高的聚类精度和更强的鲁棒性,且维数越高,聚类性能表现越突出。 展开更多
关键词 K-means算法 谱聚类算法 聚类 fcm算法 隶属度矩阵
下载PDF
基于深度信念网络的K-means聚类算法研究 被引量:13
10
作者 杨慧婷 杨文忠 +1 位作者 殷亚博 许超英 《现代电子技术》 北大核心 2019年第8期145-150,共6页
针对传统K-means聚类算法对高维非线性数据聚类效果不佳、聚类时间消耗大的问题,文中对高维数据的预处理进行研究,提出一种基于深度信念网络(DBN)的K-means聚类算法(DBNOK)。此算法首先使用多层受限玻尔兹曼机(RBM)对数据进行特征学习,... 针对传统K-means聚类算法对高维非线性数据聚类效果不佳、聚类时间消耗大的问题,文中对高维数据的预处理进行研究,提出一种基于深度信念网络(DBN)的K-means聚类算法(DBNOK)。此算法首先使用多层受限玻尔兹曼机(RBM)对数据进行特征学习,并将学习到的隐含特征进行K-means相关参数和初始聚类中心进行交叉迭代优化。用DBNOK算法分别在低维数据集和高维数据集上进行实验,结果表明,DB-NOK算法聚类准确率优于标准的K-means算法和模糊均值聚类(FCM)算法。 展开更多
关键词 K-means算法 深度信念网络 受限玻尔兹曼机 高维数据 聚类分析 fcm算法
下载PDF
基于FCM-LSTM的滚动轴承多阶段寿命预测 被引量:7
11
作者 刘宇航 石宇强 王俊佳 《机械设计》 CSCD 北大核心 2023年第5期43-50,共8页
针对滚动轴承逐渐呈现多阶段退化的退化特性,文中提出基于模糊C均值聚类(Fuzzy C-Means Clustering, FCM)和长短时记忆神经网络(Long Short-Term Memory, LSTM)的滚动轴承多阶段寿命预测方法。该方法的步骤是:使用小波包分解提取时频域... 针对滚动轴承逐渐呈现多阶段退化的退化特性,文中提出基于模糊C均值聚类(Fuzzy C-Means Clustering, FCM)和长短时记忆神经网络(Long Short-Term Memory, LSTM)的滚动轴承多阶段寿命预测方法。该方法的步骤是:使用小波包分解提取时频域特征,构建滚动轴承的健康指标;采用FCM将滚动轴承的退化过程分为多个阶段;使用LSTM对其在不同阶段的使用寿命进行预测,其预测结果可用于维修决策的制订与执行;利用开源试验数据集验证了该方法的合理性,表明了分阶段的寿命预测能有效提高预测精度。 展开更多
关键词 滚动轴承 模糊C均值聚类(fcm) 多阶段退化 寿命预测 长短时记忆神经网络(LSTM)
下载PDF
A New Method of Wind Turbine Bearing Fault Diagnosis Based on Multi-Masking Empirical Mode Decomposition and Fuzzy C-Means Clustering 被引量:11
12
作者 Yongtao Hu Shuqing Zhang +3 位作者 Anqi Jiang Liguo Zhang Wanlu Jiang Junfeng Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第3期156-167,共12页
Based on Multi-Masking Empirical Mode Decomposition (MMEMD) and fuzzy c-means (FCM) clustering, a new method of wind turbine bearing fault diagnosis FCM-MMEMD is proposed, which can determine the fault accurately and ... Based on Multi-Masking Empirical Mode Decomposition (MMEMD) and fuzzy c-means (FCM) clustering, a new method of wind turbine bearing fault diagnosis FCM-MMEMD is proposed, which can determine the fault accurately and timely. First, FCM clustering is employed to classify the data into different clusters, which helps to estimate whether there is a fault and how many fault types there are. If fault signals exist, the fault vibration signals are then demodulated and decomposed into different frequency bands by MMEMD in order to be analyzed further. In order to overcome the mode mixing defect of empirical mode decomposition (EMD), a novel method called MMEMD is proposed. It is an improvement to masking empirical mode decomposition (MEMD). By adding multi-masking signals to the signals to be decomposed in different levels, it can restrain low-frequency components from mixing in highfrequency components effectively in the sifting process and then suppress the mode mixing. It has the advantages of easy implementation and strong ability of suppressing modal mixing. The fault type is determined by Hilbert envelope finally. The results of simulation signal decomposition showed the high performance of MMEMD. Experiments of bearing fault diagnosis in wind turbine bearing fault diagnosis proved the validity and high accuracy of the new method. 展开更多
关键词 Wind TURBINE BEARING FAULTS diagnosis Multi-masking empirical mode decomposition (MMEMD) Fuzzy c-mean (fcm) clustering
下载PDF
Improved evidential fuzzy c-means method 被引量:4
13
作者 JIANG Wen YANG Tian +2 位作者 SHOU Yehang TANG Yongchuan HU Weiwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第1期187-195,共9页
Dempster-Shafer evidence theory(DS theory) is widely used in brain magnetic resonance imaging(MRI) segmentation,due to its efficient combination of the evidence from different sources. In this paper, an improved MRI s... Dempster-Shafer evidence theory(DS theory) is widely used in brain magnetic resonance imaging(MRI) segmentation,due to its efficient combination of the evidence from different sources. In this paper, an improved MRI segmentation method,which is based on fuzzy c-means(FCM) and DS theory, is proposed. Firstly, the average fusion method is used to reduce the uncertainty and the conflict information in the pictures. Then, the neighborhood information and the different influences of spatial location of neighborhood pixels are taken into consideration to handle the spatial information. Finally, the segmentation and the sensor data fusion are achieved by using the DS theory. The simulated images and the MRI images illustrate that our proposed method is more effective in image segmentation. 展开更多
关键词 average fusion spatial information Dempster-Shafer evidence theory(DS theory) fuzzy c-means(fcm) magnetic resonance imaging(MRI) image segmentation
下载PDF
一种改进的FCM遥感图像变化检测方法 被引量:1
14
作者 赵东波 李辉 《电子设计工程》 2023年第9期156-160,共5页
针对传统模糊C均值(Fuzzy C-Means,FCM)算法受初始聚类中心影响而陷入局部最优的问题,提出了一种基于遗传算法(Genetic Algorithm,GA)的改进模糊C均值聚类算法。主要通过差值法获得图像的差异图,利用主成分分析(Principal Component Ana... 针对传统模糊C均值(Fuzzy C-Means,FCM)算法受初始聚类中心影响而陷入局部最优的问题,提出了一种基于遗传算法(Genetic Algorithm,GA)的改进模糊C均值聚类算法。主要通过差值法获得图像的差异图,利用主成分分析(Principal Component Analysis,PCA)法提取变化影像的主要特征信息,利用遗传算法(GA)群体搜索的优点对传统的模糊C均值算法进行改进。对遥感图像的变化检测实验表明,改进的聚类算法克服了传统算法的缺点,在保留图像细节特征的前提下能有效提高检测精度,相比其他几种常见的聚类算法更有优势。 展开更多
关键词 变化检测 模糊C均值 主成分分析 遗传算法 遥感图像
下载PDF
基于FCM聚类模型约束的二维初至旅行时反演 被引量:2
15
作者 刘佳成 张志勇 +2 位作者 周钦渊 李曼 李红立 《石油地球物理勘探》 EI CSCD 北大核心 2023年第5期1115-1123,共9页
最小结构模型约束正则化二维地震初至旅行时反演中存在模型边界刻画不清的问题,尤其是地质体内射线分布稀疏的情况下,反演效果不理想。为此,引入模糊C均值(FCM)聚类模型约束函数,旨在提高反演结果对模型边界的成像精度。该约束项将先验... 最小结构模型约束正则化二维地震初至旅行时反演中存在模型边界刻画不清的问题,尤其是地质体内射线分布稀疏的情况下,反演效果不理想。为此,引入模糊C均值(FCM)聚类模型约束函数,旨在提高反演结果对模型边界的成像精度。该约束项将先验信息作为参考聚类中心,在迭代过程通过反复修改聚类中心及每个网格单元对聚类中心的隶属度,实现对速度的自动分类。在此基础上,采用以模型灵敏度信息为依据的多重网格反演策略,以提高反演的稳定性及效果;应用简单模型讨论了FCM聚类模型约束权重、先验信息引导项权重等参数选取方案;对比无监督学习与先验信息监督学习的反演效果,后者改善了反演速度模型边界刻画模糊现象,有效提高了反演结果的分辨率;最后,通过实测数据反演,验证该方法在实际应用中的实用性和有效性。 展开更多
关键词 地震初至波旅行时成像 模糊C 均值聚类 正则化反演 监督学习
下载PDF
基于FCM算法的多属性分析技术在河道砂体精细刻画中的应用——以西湖凹陷T气田为例
16
作者 王凯 刘东成 +2 位作者 刘华峰 黄德榕 储飞跃 《海洋地质前沿》 CSCD 北大核心 2023年第9期55-67,共13页
西湖凹陷T气田经过十多年的勘探与开发,亟需在主力层花港组内寻找潜力目标。该区为浅水三角洲沉积体系,岩性组合在空间上变化快,为了精确识别河道砂体及其边界,在海上少井条件下利用三维地震资料识别并刻画河道砂体。在等时地层划分的... 西湖凹陷T气田经过十多年的勘探与开发,亟需在主力层花港组内寻找潜力目标。该区为浅水三角洲沉积体系,岩性组合在空间上变化快,为了精确识别河道砂体及其边界,在海上少井条件下利用三维地震资料识别并刻画河道砂体。在等时地层划分的基础上,对目的层段进行岩石物理性质分析,通过地震沉积学的技术方法结合岩芯及测井等资料,对沉积微相做出初步判断,在此基础上提取6类48种地震属性,与砂厚及各属性之间进行相关性分析,对地震属性进行优选,将优选出的3种反映地质体边界、岩性较好的地震属性采用基于模糊C-均值(FCM)算法的多属性聚类分析,以达到数据降维、减少冗余的效果,研究分流河道沉积体系的整体展布规律。再进行多属性RGB融合显示,增强河道砂体边界的刻画,结合构造特征以及预测的砂体厚度综合分析,提出有利目标区,为后续油田滚动开发及井位部署提供依据。 展开更多
关键词 地震属性 模糊C-均值算法 多属性聚类 砂体预测 花港组
下载PDF
面向超宽带室内定位的FCM-SSGP方法
17
作者 张盛 唐帆 +1 位作者 张天骐 范森 《计算机工程》 CAS CSCD 北大核心 2023年第3期211-220,共10页
受室内墙壁、玻璃、木门等障碍物影响,UWB室内定位中UWB信号的传播环境变为非视距环境,在该环境下定位将极大降低定位精度。现有抑制NLOS误差的方法由于复杂度较大导致定位时间过长,结合模糊C均值(FCM)聚类及稀疏谱高斯过程回归(SSGP)方... 受室内墙壁、玻璃、木门等障碍物影响,UWB室内定位中UWB信号的传播环境变为非视距环境,在该环境下定位将极大降低定位精度。现有抑制NLOS误差的方法由于复杂度较大导致定位时间过长,结合模糊C均值(FCM)聚类及稀疏谱高斯过程回归(SSGP)方法,提出一种FCM-SSGP定位方法。对接收到的信道冲击响应信号提取特征,利用FCM聚类识别NLOS信号,并根据NLOS信号传播环境的恶劣程度将NLOS信号划分为轻度NLOS信号和一般NLOS信号。使用SSGP方法分别得到2个不同信道条件下的NLOS误差,将SSGP方法得到的测距误差与FCM聚类得到的隶属度相结合作为权值,以抑制NLOS误差。实验结果表明,FCM-SSGP方法能有效降低不同障碍物带来的NLOS误差,定位误差为21.01 cm,与LS-SVM及SPGP方法相比,其定位误差均值分别提升了8.23 cm和6.73 cm,定位所需时间相比LSTM方法缩短了9.35倍,在保证高定位精度的同时降低了计算复杂度。 展开更多
关键词 非视距抑制 非视距识别 模糊C均值 稀疏谱高斯过程 超宽带定位
下载PDF
基于Hadoop平台的K-means聚类算法并行化改进研究
18
作者 禤世丽 刘建明 《玉林师范学院学报》 2020年第3期90-96,共7页
K-means聚类算法是常用于处理大数据的算法之一,与其它算法相比,其具有明显的优势,但K-means聚类算法也具有易于陷入局部最优且对初始聚类中心敏感的缺点。随着大数据时代的到来,传统的K-means聚类算法已无法满足需求。因此,需要更高效... K-means聚类算法是常用于处理大数据的算法之一,与其它算法相比,其具有明显的优势,但K-means聚类算法也具有易于陷入局部最优且对初始聚类中心敏感的缺点。随着大数据时代的到来,传统的K-means聚类算法已无法满足需求。因此,需要更高效率的算法来应对需求。为此,本文在传统的K-means算法的基础之上进行改进,首先利用模糊聚类算法(FCM)获取初始中心,然后将改进后的K-means算法在MapReduce环境下运行,通过实验探索与研究证明该环境下的并行化的改进的K-means聚类算法能够大幅提高数据运算的效率与加速比,从而提高了K-means聚类算法的收敛性。 展开更多
关键词 HADOOP K-means 聚类算法 fcm算法
下载PDF
Fault Pattern Recognition based on Kernel Method and Fuzzy C-means
19
作者 SUN Yebei ZHAO Rongzhen TANG Xiaobin 《International Journal of Plant Engineering and Management》 2016年第4期231-240,共10页
A method about fault identification is proposed to solve the relationship among fault features of large rotating machinery, which is extremely complicated and nonlinear. This paper studies the rotor test-rig and the c... A method about fault identification is proposed to solve the relationship among fault features of large rotating machinery, which is extremely complicated and nonlinear. This paper studies the rotor test-rig and the clustering of data sets and fault pattern recognitions. The present method firstly maps the data from their original space to a high dimensional Kernel space which makes the highly nonlinear data in low-dimensional space become linearly separable in Kernel space. It highlights the differences among the features of the data set. Then fuzzy C-means (FCM) is conducted in the Kernel space. Each data is assigned to the nearest class by computing the distance to the clustering center. Finally, test set is used to judge the results. The convergence rate and clustering accuracy are better than traditional FCM. The study shows that the method is effective for the accuracy of pattern recognition on rotating machinery. 展开更多
关键词 Kernel method fuzzy C-means fcm pattern recognition CLUSTERING
下载PDF
基于LMD近似熵和FCM聚类的机械故障诊断研究 被引量:97
20
作者 张淑清 孙国秀 +2 位作者 李亮 李新新 监雄 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第3期714-720,共7页
提出一种基于局部均值分解(local mean decomposition,LMD)近似熵和模糊C均值聚类(fuzzy C-means clustering,FCM)相结合的机械故障诊断方法。首先对机械振动信号进行LMD分解,得到若干具有物理意义的乘积函数(product function,PF)分量... 提出一种基于局部均值分解(local mean decomposition,LMD)近似熵和模糊C均值聚类(fuzzy C-means clustering,FCM)相结合的机械故障诊断方法。首先对机械振动信号进行LMD分解,得到若干具有物理意义的乘积函数(product function,PF)分量,再通过相关性分析,筛选出与原始信号相关性最大的3个分量作为数据源,求取其近似熵作为特征向量,最后通过FCM模糊聚类对特征向量进行识别分类。实验表明,基于LMD近似熵和FCM模糊聚类相结合的方法对机械故障信号能够有效准确地进行识别分类,此外,将该方法与基于EMD近似熵和FCM结合的方法进行对比,结果表明该方法具有更好的故障识别效果。 展开更多
关键词 局部均值分解 模糊C均值聚类 近似熵 故障诊断
下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部