Existing literature has shown that the control force at the nose could cause dynamic instability for controlled projectiles. To lower the adverse impact on the dual-spin projectile with fixed canards under the premise...Existing literature has shown that the control force at the nose could cause dynamic instability for controlled projectiles. To lower the adverse impact on the dual-spin projectile with fixed canards under the premise of meeting guidance system requirements, the influence of control moment provided by a motor on the flight stability is analyzed in this paper. Firstly, the effect of the rolling movement on stability is analyzed based on the stability criterion derived using the Hurwitz stability theory. Secondly, the evaluation parameters combining the features of different control periods that could assess the variation of stability features after the motor torque are obtained. These effective formulas are used to indicate that, to reduce the flight instability risks, the stabilized rolling speed of roll speed keeping period should be as small as possible; the variation trend of motor torque during the rolling speed controlling period and the roll angle of the forward body during roll angle switching period are recommended corresponding to the projectile and trajectory characteristics. Moreover,detailed numerical simulations of 155 mm dual-spin projectile are satisfactory agreement with the theoretical results.展开更多
This paper reviews the various control algorithms and strategies used for fixed-wing morphing aircraft applications. It is evident from the literature that the development of control algorithms for morphing aircraft t...This paper reviews the various control algorithms and strategies used for fixed-wing morphing aircraft applications. It is evident from the literature that the development of control algorithms for morphing aircraft technologies focused on three main areas. The first area is related to precise control of the shape of morphing concepts for various flight conditions. The second area is mainly related to the flight dynamics, stability, and control aspects of morphing aircraft. The third area deals mainly with aeroelastic control using morphing concepts either for load alleviation purposes and/or to control the instability boundaries. The design of controllers for morphing aircraft/wings is very challenging due to the large changes that can occur in the structural, aerodynamic, and inertial characteristics. In addition, the type of actuation system and actuation rate/speed can have a significant effect on the design of such controllers. The aerospace community is in strong need of such a critical review especially as morphing aircraft technologies move from fundamental research at a low Technology Readiness Level(TRL) to real-life applications. This critical review aims to identify research gaps and propose future directions. In this paper, research activities/papers are categorized according to the control strategy used. This ranges from simple Proportional Integral Derivative(PID) controllers at one end to complex robust adaptive controllers and deep learning algorithms at the other end. This includes analytical, computational, and experimental studies. In addition, the various dynamic models used and their fidelities are highlighted and discussed.展开更多
A novel pressure and vacuum continuous control system, which adopts a hybrid pump as pressure and vacuum source, is presented. The mathematical model of the system is developed. The theoretical simulation and analysis...A novel pressure and vacuum continuous control system, which adopts a hybrid pump as pressure and vacuum source, is presented. The mathematical model of the system is developed. The theoretical simulation and analysis on the system are implemented in order to study the relationships among the characteristics, parameters and working points of the system. The experimental investigations on the system characteristics are presented with the adoption ofa fuzzy-PID controller. The simulation and experimental results indicate that the pressure and vacuum continuous control system based on hybrid pump has good dynamic and static performance, strong robustness and satisfactory adaptability to various system parameters. According to the results, system can successfully gain high accuracy and fast response signal. Also, the mathematical model of system is also testified by the experimental results.展开更多
文摘Existing literature has shown that the control force at the nose could cause dynamic instability for controlled projectiles. To lower the adverse impact on the dual-spin projectile with fixed canards under the premise of meeting guidance system requirements, the influence of control moment provided by a motor on the flight stability is analyzed in this paper. Firstly, the effect of the rolling movement on stability is analyzed based on the stability criterion derived using the Hurwitz stability theory. Secondly, the evaluation parameters combining the features of different control periods that could assess the variation of stability features after the motor torque are obtained. These effective formulas are used to indicate that, to reduce the flight instability risks, the stabilized rolling speed of roll speed keeping period should be as small as possible; the variation trend of motor torque during the rolling speed controlling period and the roll angle of the forward body during roll angle switching period are recommended corresponding to the projectile and trajectory characteristics. Moreover,detailed numerical simulations of 155 mm dual-spin projectile are satisfactory agreement with the theoretical results.
基金funded by Abu Dhabi Education Council Award for Research Excellence Program (AARE 2019) _(No. AARE19-213)by Khalifa University of Science and Technology through Faculty Start-up Award (No. FSU-2020-20)。
文摘This paper reviews the various control algorithms and strategies used for fixed-wing morphing aircraft applications. It is evident from the literature that the development of control algorithms for morphing aircraft technologies focused on three main areas. The first area is related to precise control of the shape of morphing concepts for various flight conditions. The second area is mainly related to the flight dynamics, stability, and control aspects of morphing aircraft. The third area deals mainly with aeroelastic control using morphing concepts either for load alleviation purposes and/or to control the instability boundaries. The design of controllers for morphing aircraft/wings is very challenging due to the large changes that can occur in the structural, aerodynamic, and inertial characteristics. In addition, the type of actuation system and actuation rate/speed can have a significant effect on the design of such controllers. The aerospace community is in strong need of such a critical review especially as morphing aircraft technologies move from fundamental research at a low Technology Readiness Level(TRL) to real-life applications. This critical review aims to identify research gaps and propose future directions. In this paper, research activities/papers are categorized according to the control strategy used. This ranges from simple Proportional Integral Derivative(PID) controllers at one end to complex robust adaptive controllers and deep learning algorithms at the other end. This includes analytical, computational, and experimental studies. In addition, the various dynamic models used and their fidelities are highlighted and discussed.
基金This project is supported by National Natural Science Foundation of China (No.50675075).
文摘A novel pressure and vacuum continuous control system, which adopts a hybrid pump as pressure and vacuum source, is presented. The mathematical model of the system is developed. The theoretical simulation and analysis on the system are implemented in order to study the relationships among the characteristics, parameters and working points of the system. The experimental investigations on the system characteristics are presented with the adoption ofa fuzzy-PID controller. The simulation and experimental results indicate that the pressure and vacuum continuous control system based on hybrid pump has good dynamic and static performance, strong robustness and satisfactory adaptability to various system parameters. According to the results, system can successfully gain high accuracy and fast response signal. Also, the mathematical model of system is also testified by the experimental results.