Modal analysis is a fundamental and important task for modeling and control of the flexible manipulator. However, almost all of the traditional modal analysis methods view the flexible manipulator as a pure mechanical...Modal analysis is a fundamental and important task for modeling and control of the flexible manipulator. However, almost all of the traditional modal analysis methods view the flexible manipulator as a pure mechanical structure and neglect feedback action of joint controller. In order to study the effects of joint controller on the modal analysis of rotational flexible manipulator, a closed-loop analytical modal analysis method is proposed. Firstly, two exact boundary constraints, namely servo feedback constraint and bending moment constraint, are derived to solve the vibration partial differential equation. It is found that the stiffness and damping gains of joint controller are both included in the boundary conditions, which lead to an unconventional secular term. Secondly, analytical algorithm based on Ritz approach is developed by using Laplace transform and complex modal approach to obtain the natural frequencies and mode shapes. And then, the numerical simulations are performed and the computational results show that joint controller has pronounced influence on the modal parameters: joint controller stiffness reduces the natural frequency, while joint controller damping makes the shape phase non-zero. Furthermore, the validity of the presented conclusion is confirmed through experimental studies. These findings are expected to improve the performance of dynamics simulation systems and model-based controllers.展开更多
The principle of electric braking system is analyzed and an anti-skid braking system based on the slip rate control is proposed.The fuzzy-PID controller with parameter self-adjustment feature is designed for the anti-...The principle of electric braking system is analyzed and an anti-skid braking system based on the slip rate control is proposed.The fuzzy-PID controller with parameter self-adjustment feature is designed for the anti-skid braking system.The dynamic model of aircraft ground braking is established in the simulation environment of MATLAB/SIMULINK,and simulation results of dry runway and wet runway are presented.The results show that the fuzzy-PID controller with parameter self-adjustment feature for the electric anti-skid braking system keeps working in the state of stability and the brake efficiencies are increased to 93%on dry runway and 82%on wet runway respectively.展开更多
A robust controller method for flexible joint robot considering the effect caused by nonlinear friction was presented.The nonlinear friction was denoted as inverse additive output uncertainty relative to the nominal m...A robust controller method for flexible joint robot considering the effect caused by nonlinear friction was presented.The nonlinear friction was denoted as inverse additive output uncertainty relative to the nominal model in our work,based on which the describing function was analyzed in frequency domain,and the weighting function of nonlinear friction was further calculated as well. By combining the friction uncertainty,the mixed sensitivity H∞optimization was proposed as the benchmark for controller design, which also leaded to good performance of robustness. Furthermore,unstructured perturbation to the system was analyzed so that the stability was guaranteed. Simulation results show that the proposed controller can provide excellent tracking and regulation performance.展开更多
With penetration growing of renewable energy sources which integrated into power system have caused problems on grid stability. Electric Vehicles (EV) are one of the renewable energy sources that can bring significant...With penetration growing of renewable energy sources which integrated into power system have caused problems on grid stability. Electric Vehicles (EV) are one of the renewable energy sources that can bring significant impacts to power system during their charging and discharging operations. This article established a model of single machine infinite bus (SMIB) power system considering EV as a case study of load disturbance for power system oscillation. The objective of this research is to enhance stability and overcome the drawbacks of traditional control algorithms such as power system stabilizer (PSS), PID controller and fuzzy logic controller (FLC). The implementation’s effect of FLC parallel with PID controller (Fuzzy-PID) has been shown in this paper. The speed deviation (?ω) and electrical power (Pe) are the important factors to be taken into consideration without EV (only change in mechanical torque), EV with change in the mechanical torque and sudden plug-in EV. The obtained result by nonlinear simulation using Matlab/Simulink of a SMIB power system with EV has shown the effectiveness of using (Fuzzy-PID) against all disturbances.展开更多
In order to investigate the joint torque-based Cartesian impedance control strategies and the influence of compensations for friction, an experimental study on the identification of friction parameters, friction compe...In order to investigate the joint torque-based Cartesian impedance control strategies and the influence of compensations for friction, an experimental study on the identification of friction parameters, friction compensation and the Cartesian impedance control are developed for the harmonic drive robot, by using the sensors available in the joint itself. Different from the conventional Cartesian impedance control schemes which are mostly based on the robot end force/torque information, five joint torque-based Cartesian impedance control schemes are considered, including the force-based schemes in Cartesian/joint space, the position-based schemes in Cartesian/joint space and the stiffness control. Four of them are verified by corresponding experiments with/without friction compensations. By comparison, it is found that the force-based impedance control strategy is more suitable than the position-based one for the robot based on joint torque feedback and the friction has even a positive effect on Cartesian impedance control stability.展开更多
A new impedance controller based on the dynamic surface control-backstepping technique to actualize the anticipant dynamic relationship between the motion of end-effector and the external torques was presented. Compar...A new impedance controller based on the dynamic surface control-backstepping technique to actualize the anticipant dynamic relationship between the motion of end-effector and the external torques was presented. Comparing with the traditional backstepping method that has "explosion of terms" problem, the new proposed control system is a combination of the dynamic surface control technique and the backstepping. The dynamic surface control (DSC) technique can resolve the "explosion of terms" problem that is caused by differential coefficient calculation in the model, and the problem can bring a complexity that will cause the backstepping method hardly to be applied to the practical application, especially to the multi-joint robot. Finally, the validity of the method was proved in the laboratory environment that was set up on the 5-DOF (degree of freedom) flexible joint robot. Tracking errors of DSC-backstepping impedance control that were 2.0 and 1.5 mm are better than those of backstepping impedance control which were 3.5 and 2.5 mm in directions X, Y in free space, respectively. And the anticipant Cartesian impedance behavior and compliant behavior were nchieved successfully as depicted theoretically.展开更多
To meet the requirements of high performance, low cost, and easy operation of the robot, a brushless motor drive and control system for the robot joint is designed, including CAN bus, WPF upper host computer developme...To meet the requirements of high performance, low cost, and easy operation of the robot, a brushless motor drive and control system for the robot joint is designed, including CAN bus, WPF upper host computer development, and magnetic encoders, and other sensors, in which the STM32 F103 chip is used as the main control chip, and the DRV8323 is a brushless motor drive chip. The principle of field-oriented control(FOC) brushless motor drive is elaborated.Meanwhile, the drive and control system design is completed from both hardware and software aspects. Finally, the PID algorithm is used for the closed-loop speed test of the robot joint. The experimental result shows that the designed robot joints and control system run smoothly and reliably, have the characteristics of modularization and miniaturization, and are suitable for the control of micro-service robots and manipulators.展开更多
An intelligent fuzzy-PID controller consisting of fuzzy logic controller and PID controller was developed to control the molten steel level of twin-roll strip caster.Additionally,a feedforward differential PID control...An intelligent fuzzy-PID controller consisting of fuzzy logic controller and PID controller was developed to control the molten steel level of twin-roll strip caster.Additionally,a feedforward differential PID controller was used for stopper position control in order to avoid differential kick.It is proved by simulation that the proposed intelligent controller is able to obtain zero steady state error asymptotically and the control system is robust due to its fuggy behavior of the controller.展开更多
A parallel manipulator joint driven by three pneumatic muscles and its posture control strategy are presented. Based on geometric constraints and dynamics, a system model is developed through which some influences on ...A parallel manipulator joint driven by three pneumatic muscles and its posture control strategy are presented. Based on geometric constraints and dynamics, a system model is developed through which some influences on dynamic response and open-loop gain are analyzed including the supply pressure, the initial pressure and the volume of pneumatic muscle. A sliding-mode controller with a nonlinear switching function is applied to control posture, which adopts the combination of a main method that separates control of each muscle and an auxiliary method that postures error evaluation of multiple muscles, especially adopting the segmented and intelligent adjustments of sliding-mode parameters to fit different expected postures and initial states. Experimental results show that this control strategy not only amounts to the steady-state error of 0. 1° without overshoot, but also achieves good trajectory tracking.展开更多
The five degree freedom magnetic bearing is researched and its structure and working principles are introduced also. Based on the fuzzy control technology, combining fuzzy algorithm and PID control method, identifying...The five degree freedom magnetic bearing is researched and its structure and working principles are introduced also. Based on the fuzzy control technology, combining fuzzy algorithm and PID control method, identifying the transition process mode of the online system to get the PID parameters' self-adjusting, the magnetic beating system's Fuzzy-PID nonlinear controller is designed by analyzing the system control demands. The Fuzzy-PID nonlinear controller can deal with the magnetic bearing system' s open loop instability and strong nonlinearity, and the approach could improve the system's rapidity, adaptability, stability and dynamic characteristics. Comparative analysis and experiments are conducted between linear PID and nonlinear fuzzy- PID control methods, the results show that the fuzzy-PID controller is better, and the five-freedom magnetic bearing' s rotary precision experiments are conducted by the fuzzy-PID controller, it satisfies the control rotary precision demands and realizes the hearing's steady floating and rotating.展开更多
An adaptive control scheme is presented,which can simultaneously realize vibration suppression and compliance control for flexible joint robot(FJR).The proposed control scheme provides a unified formulation for both v...An adaptive control scheme is presented,which can simultaneously realize vibration suppression and compliance control for flexible joint robot(FJR).The proposed control scheme provides a unified formulation for both vibration suppression mode,where FJR tracks the desired position with little vibration,and compliance mode,in which FJR presents passive.Instead of designing multiple controllers and switching between them,both modes are integrated into a single controller,and the transition between two modes is smooth and stable.The stability of the closed-loop system is theoretically proven via the Lyapunov method,with the considering the dynamics uncertainties in both link side and motor side.Simulation results are presented to illustrate good performances of the proposed control scheme.展开更多
Components of mechanical product are assembled by structural joints,such as bolting,riveting,welding,etc.Structural joints introduce nonlinearity to some engineering structures,and the nonlinearity need to be modeled ...Components of mechanical product are assembled by structural joints,such as bolting,riveting,welding,etc.Structural joints introduce nonlinearity to some engineering structures,and the nonlinearity need to be modeled precisely.To meet serious quality requirements,it is necessary to detect and identify nonlinearity of mechanical products for structural optimization.Modal test to acquire a dynamic response has been applied for decades,which provides reliable results for finite element(FE)model updating.Here response control vibration test for identification of nonlinearity is presented.A nonlinear system can be regarded as linearity for particular steady state response,and classical linear analysis tool is applicable to extract modal data for particular response.First,its applicability is illustrated by some numerical simulations.Subsequently,it is implemented on experimental setup with structural joints by shaking table.The stiffness and damping function dependent of relative displacement are fitted to describe its inherent nonlinearity.The spring and damping forces are identified by harmonic balance method(HBM)to predict output response.Based on the identified results,the procedure is recommended that it allows a reliable measurement of nonlinearity with a certain accuracy.展开更多
Controlled blasting techniques are used to control overbreak and to aid in the stability of the remaining rock formation. Presplitting is one of the most common methods which is used in many open pit mining and surfac...Controlled blasting techniques are used to control overbreak and to aid in the stability of the remaining rock formation. Presplitting is one of the most common methods which is used in many open pit mining and surface blast design. The purpose of presplitting is to form a fracture plane across which the radial cracks from the production blast cannot travel. The purpose of this study is to investigate of effect of presplitting on the generation of a smooth wall in continuum and jointed rock mass. The 2D distinct element code was used to simulate the presplitting in a rock slope. The blast load history as a function of time was applied to the inner wall of each blasthole. Important parameters that were considered in the analysis were stress tensor and fracturing pattern. The blast loading magnitude and blasthole spacing and jointing pattern were found to be very significant in the final results.展开更多
A linear flexible joint system using fractional order linear active disturbance rejection control is studied in this paper.With this control scheme,the performance against disturbances,uncertainties,and attenuation is...A linear flexible joint system using fractional order linear active disturbance rejection control is studied in this paper.With this control scheme,the performance against disturbances,uncertainties,and attenuation is enhanced.Linear active disturbance rejection control(LADRC)is mainly based on an extended state observer(ESO)technology.A fractional integral(FOI)action is combined with the LADRC technique which proposes a hybrid control scheme like FO-LADRC.Incorporating this FOI action improves the robustness of the standard LADRC.The set-point tracking of the proposed FO-LADRC scheme is designed by Bode’s ideal transfer function(BITF)based robust closed-loop concept,an appropriate pole placement method.The effectiveness of the proposed FO-LADRC scheme is illustrated through experimental results on the linear flexible joint system(LFJS).The results show the enhancement of the robustness with disturbance rejection.Furthermore,a comparative analysis is presented with the results obtained using the integer-order LADRC and FO-LADRC scheme.展开更多
Combined with the characteristics of the distributed-drive electric vehicle and direct yaw moment control,a double-layer structure direct yaw moment controller is designed.The upper additional yaw moment controller is...Combined with the characteristics of the distributed-drive electric vehicle and direct yaw moment control,a double-layer structure direct yaw moment controller is designed.The upper additional yaw moment controller is constructed based on model predictive control.Aiming at minimizing the utilization rate of tire adhesion and constrained by the working characteristics of motor system and brake system,a quadratic programming active set was designed to optimize the distribution of additional yaw moments.The road surface adhesion coefficient has a great impact on the reliability of direct yaw moment control,for which joint observer of vehicle state parameters and road surface parameters is designed by using unscented Kalman filter algorithm,which correlates vehicle state observer and road surface parameter observer to form closed-loop feedback correction.The results show that compared to the“feedforward+feedback”control,the vehicle’s error of yaw rate and sideslip angle by the model predictive control is smaller,which can improve the vehicle stability effectively.In addition,according to the results of the docking road simulation test,the joint observer of vehicle state and road surface parameters can improve the adaptability of the vehicle stability controller to the road conditions with variable adhesion coefficients.展开更多
In order to evaluate the performance of semi-active cab’s hydraulic mounts(SHM)of the off-road vibratory roller with the optimal fuzzy-PID(proportional integral derivative)control,a nonlinear dynamic model of the veh...In order to evaluate the performance of semi-active cab’s hydraulic mounts(SHM)of the off-road vibratory roller with the optimal fuzzy-PID(proportional integral derivative)control,a nonlinear dynamic model of the vehicle interacting with off-road terrains is established based on Matlab/Simulink software.The weighted root-mean-square(RMS)acceleration responses of the driver’s seat heave and the cab’s pitch angle are chosen as objective functions.The SHM is then optimized and analyzed via the optimal fuzzy-PID control under different operation conditions.The simulations results show that the driver’s ride comfort and the cab shaking are greatly affected by the off-road terrains under various operating conditions of the vehicle,especially at the speed from 8 to 12 km/h on a very poor terrain surface of Grenville soil ground under the vehicle travelling.With SHM using the optimal fuzzy-PID control,the driver’s ride comfort and the cab shaking are clearly improved under various operation conditions of the vehicle,particularly at the speed from 6 to 7 km/h of the vehicle traveling.展开更多
In the realm of quadruped robot locomotion,compliance control is imperative to handle impacts when negotiating unstructured terrains.At the same time,kinematic tracking accuracy should be guaranteed during locomotion....In the realm of quadruped robot locomotion,compliance control is imperative to handle impacts when negotiating unstructured terrains.At the same time,kinematic tracking accuracy should be guaranteed during locomotion.To meet both demands,ajoint space compliance controller is designed,so that compliance can be achieved in stance phase while position tracking performance can be guaranteed in swing phase.Unlike operational space compliance control,the joint space compliance control method is easy to implement and does not depend on robot dynamics.As for each joint actuator,high performance force control is of great importance for compliance design.Therefore,a nonlinear PI controller based on feedback linearization is proposed for the hydraulic actuator force control.Besides,an outer position loop(compliance loop)is closed for each joint.Experiments are carried out to verify the force controller and compliance of the hydraulic actuator.The robot leg compliance is assessed by a virtual prototyping simulation.展开更多
This paper presented a joint resource allocation(RA) and admission control(AC) mechanism in software defined mobile networks(SDMNs). In this mechanism, the joint RA and AC problem can be formulated as an optimization ...This paper presented a joint resource allocation(RA) and admission control(AC) mechanism in software defined mobile networks(SDMNs). In this mechanism, the joint RA and AC problem can be formulated as an optimization problem with the aim of maximizing the number of admitted users while simultaneously minimizing the number of allocated channels. Since the primal problem is modeled to be a mixed integer nonlinear problem(MINLP), we attain the suboptimal solutions to the primal MINLP by convex relaxation. Additionally, with the global information collected by the SDMNs controller, a centralized joint RA and AC(CJRA)algorithm is proposed by the Lagrange dual decomposition technique to obtain the global optimum. Meanwhile, we propose an OpenFlow rules placement strategy to realize CJRA in an efficient way. Moreover, a distributed algorithm is also developed to find the local optimum, showing a performance benchmark for the centralized one. Finally, simulation results show that the proposed centralized algorithm admits more users compared with the distributed.展开更多
Gas dynamic control in welding with consumable electrode in conditions of two-jet gas shielding and its impact on the processes in the welding area and properties of the welded joints from high strength alloyed steel ...Gas dynamic control in welding with consumable electrode in conditions of two-jet gas shielding and its impact on the processes in the welding area and properties of the welded joints from high strength alloyed steel 30HGSA is considered in the paper. The results of a comparative experimental study of controlling the properties of welded joints by changing the gas dynamics of the active shielding gas are given. The impact force of a shielding gas jet on the drop of the electrode metal is 12 times higher in conditions of two-jet gas shielding than in those of single jet shielding. It is found that gas dynamics of the active shielding gas jet determines the formation of the welded joints, their chemical properties and the properties of the welded joints from high strength alloyed steels. The consumable electrode welding method with two-jet gas shielding provides controlled dynamics in the welding area and allows controlling the transfer of the electrode metal, chemical composition of the weld, stabilizing the welding process, it ensures higher mechanical properties of the welded joints.展开更多
An innovation is conducted on a K190πK rail auto welding machine because of its poor stability in quality of welding joints. A new control system based on a programmable controller is designed to replace the old o...An innovation is conducted on a K190πK rail auto welding machine because of its poor stability in quality of welding joints. A new control system based on a programmable controller is designed to replace the old one. The new control system is of higher accuracy in controlling sequence and good ability in anti disturbance, and is convenient to operate. The comparison tests are carried out. The experimental results show that the quality of welded joints is greatly increased by the improved welding mechine.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51305039)Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20110005120004)+1 种基金Fundamental Research Funds for the Central Universities,China(Grant No.2014PTB-00-01)National Basic Research Program of China(973 Program,Grant No.2013CB733000)
文摘Modal analysis is a fundamental and important task for modeling and control of the flexible manipulator. However, almost all of the traditional modal analysis methods view the flexible manipulator as a pure mechanical structure and neglect feedback action of joint controller. In order to study the effects of joint controller on the modal analysis of rotational flexible manipulator, a closed-loop analytical modal analysis method is proposed. Firstly, two exact boundary constraints, namely servo feedback constraint and bending moment constraint, are derived to solve the vibration partial differential equation. It is found that the stiffness and damping gains of joint controller are both included in the boundary conditions, which lead to an unconventional secular term. Secondly, analytical algorithm based on Ritz approach is developed by using Laplace transform and complex modal approach to obtain the natural frequencies and mode shapes. And then, the numerical simulations are performed and the computational results show that joint controller has pronounced influence on the modal parameters: joint controller stiffness reduces the natural frequency, while joint controller damping makes the shape phase non-zero. Furthermore, the validity of the presented conclusion is confirmed through experimental studies. These findings are expected to improve the performance of dynamics simulation systems and model-based controllers.
基金Supported by the National Natural Science Foundation of China(51105197,51305198,11372129)the Project Funded by the Priority Academic Program Department of Jiangsu Higher Education Instructions
文摘The principle of electric braking system is analyzed and an anti-skid braking system based on the slip rate control is proposed.The fuzzy-PID controller with parameter self-adjustment feature is designed for the anti-skid braking system.The dynamic model of aircraft ground braking is established in the simulation environment of MATLAB/SIMULINK,and simulation results of dry runway and wet runway are presented.The results show that the fuzzy-PID controller with parameter self-adjustment feature for the electric anti-skid braking system keeps working in the state of stability and the brake efficiencies are increased to 93%on dry runway and 82%on wet runway respectively.
基金National Natural Science Foundation of China(No.61273339)
文摘A robust controller method for flexible joint robot considering the effect caused by nonlinear friction was presented.The nonlinear friction was denoted as inverse additive output uncertainty relative to the nominal model in our work,based on which the describing function was analyzed in frequency domain,and the weighting function of nonlinear friction was further calculated as well. By combining the friction uncertainty,the mixed sensitivity H∞optimization was proposed as the benchmark for controller design, which also leaded to good performance of robustness. Furthermore,unstructured perturbation to the system was analyzed so that the stability was guaranteed. Simulation results show that the proposed controller can provide excellent tracking and regulation performance.
文摘With penetration growing of renewable energy sources which integrated into power system have caused problems on grid stability. Electric Vehicles (EV) are one of the renewable energy sources that can bring significant impacts to power system during their charging and discharging operations. This article established a model of single machine infinite bus (SMIB) power system considering EV as a case study of load disturbance for power system oscillation. The objective of this research is to enhance stability and overcome the drawbacks of traditional control algorithms such as power system stabilizer (PSS), PID controller and fuzzy logic controller (FLC). The implementation’s effect of FLC parallel with PID controller (Fuzzy-PID) has been shown in this paper. The speed deviation (?ω) and electrical power (Pe) are the important factors to be taken into consideration without EV (only change in mechanical torque), EV with change in the mechanical torque and sudden plug-in EV. The obtained result by nonlinear simulation using Matlab/Simulink of a SMIB power system with EV has shown the effectiveness of using (Fuzzy-PID) against all disturbances.
基金The National Natural Science Foundation of China(No.60675045)the National High Technology Research and Development Program of China (863Program) (No.2006AA04Z255)
文摘In order to investigate the joint torque-based Cartesian impedance control strategies and the influence of compensations for friction, an experimental study on the identification of friction parameters, friction compensation and the Cartesian impedance control are developed for the harmonic drive robot, by using the sensors available in the joint itself. Different from the conventional Cartesian impedance control schemes which are mostly based on the robot end force/torque information, five joint torque-based Cartesian impedance control schemes are considered, including the force-based schemes in Cartesian/joint space, the position-based schemes in Cartesian/joint space and the stiffness control. Four of them are verified by corresponding experiments with/without friction compensations. By comparison, it is found that the force-based impedance control strategy is more suitable than the position-based one for the robot based on joint torque feedback and the friction has even a positive effect on Cartesian impedance control stability.
基金Project(2006AA04Z228) supported by the National High-Tech Research and Development Program of ChinaProject(PCSIRT) supported by Program for Changjiang Scholars and Innovative Research Team in University
文摘A new impedance controller based on the dynamic surface control-backstepping technique to actualize the anticipant dynamic relationship between the motion of end-effector and the external torques was presented. Comparing with the traditional backstepping method that has "explosion of terms" problem, the new proposed control system is a combination of the dynamic surface control technique and the backstepping. The dynamic surface control (DSC) technique can resolve the "explosion of terms" problem that is caused by differential coefficient calculation in the model, and the problem can bring a complexity that will cause the backstepping method hardly to be applied to the practical application, especially to the multi-joint robot. Finally, the validity of the method was proved in the laboratory environment that was set up on the 5-DOF (degree of freedom) flexible joint robot. Tracking errors of DSC-backstepping impedance control that were 2.0 and 1.5 mm are better than those of backstepping impedance control which were 3.5 and 2.5 mm in directions X, Y in free space, respectively. And the anticipant Cartesian impedance behavior and compliant behavior were nchieved successfully as depicted theoretically.
基金Project(51805368) supported by the National Natural Science Foundation of ChinaProject(2018QNRC001) supported by the Young Elite Scientists Sponsorship Program by China Association for Science and TechnologyProject(DMETKF2021017) supported by Open Fund of State Key Laboratory of Digital Manufacturing Equipment and Technology,Huazhong University of Science and Technology,China。
文摘To meet the requirements of high performance, low cost, and easy operation of the robot, a brushless motor drive and control system for the robot joint is designed, including CAN bus, WPF upper host computer development, and magnetic encoders, and other sensors, in which the STM32 F103 chip is used as the main control chip, and the DRV8323 is a brushless motor drive chip. The principle of field-oriented control(FOC) brushless motor drive is elaborated.Meanwhile, the drive and control system design is completed from both hardware and software aspects. Finally, the PID algorithm is used for the closed-loop speed test of the robot joint. The experimental result shows that the designed robot joints and control system run smoothly and reliably, have the characteristics of modularization and miniaturization, and are suitable for the control of micro-service robots and manipulators.
基金Item Sponsored by National Natural Science Foundation of China(59995440)State Key Fundamental Research Project of China(G2000067208-4)
文摘An intelligent fuzzy-PID controller consisting of fuzzy logic controller and PID controller was developed to control the molten steel level of twin-roll strip caster.Additionally,a feedforward differential PID controller was used for stopper position control in order to avoid differential kick.It is proved by simulation that the proposed intelligent controller is able to obtain zero steady state error asymptotically and the control system is robust due to its fuggy behavior of the controller.
基金This project is supported by International Cooperation with Festo.
文摘A parallel manipulator joint driven by three pneumatic muscles and its posture control strategy are presented. Based on geometric constraints and dynamics, a system model is developed through which some influences on dynamic response and open-loop gain are analyzed including the supply pressure, the initial pressure and the volume of pneumatic muscle. A sliding-mode controller with a nonlinear switching function is applied to control posture, which adopts the combination of a main method that separates control of each muscle and an auxiliary method that postures error evaluation of multiple muscles, especially adopting the segmented and intelligent adjustments of sliding-mode parameters to fit different expected postures and initial states. Experimental results show that this control strategy not only amounts to the steady-state error of 0. 1° without overshoot, but also achieves good trajectory tracking.
文摘The five degree freedom magnetic bearing is researched and its structure and working principles are introduced also. Based on the fuzzy control technology, combining fuzzy algorithm and PID control method, identifying the transition process mode of the online system to get the PID parameters' self-adjusting, the magnetic beating system's Fuzzy-PID nonlinear controller is designed by analyzing the system control demands. The Fuzzy-PID nonlinear controller can deal with the magnetic bearing system' s open loop instability and strong nonlinearity, and the approach could improve the system's rapidity, adaptability, stability and dynamic characteristics. Comparative analysis and experiments are conducted between linear PID and nonlinear fuzzy- PID control methods, the results show that the fuzzy-PID controller is better, and the five-freedom magnetic bearing' s rotary precision experiments are conducted by the fuzzy-PID controller, it satisfies the control rotary precision demands and realizes the hearing's steady floating and rotating.
基金supported by the National Key R&D Program of China(No.2017YFB1300400)the National Natural Science Foundation of China(No. 51805107)
文摘An adaptive control scheme is presented,which can simultaneously realize vibration suppression and compliance control for flexible joint robot(FJR).The proposed control scheme provides a unified formulation for both vibration suppression mode,where FJR tracks the desired position with little vibration,and compliance mode,in which FJR presents passive.Instead of designing multiple controllers and switching between them,both modes are integrated into a single controller,and the transition between two modes is smooth and stable.The stability of the closed-loop system is theoretically proven via the Lyapunov method,with the considering the dynamics uncertainties in both link side and motor side.Simulation results are presented to illustrate good performances of the proposed control scheme.
文摘Components of mechanical product are assembled by structural joints,such as bolting,riveting,welding,etc.Structural joints introduce nonlinearity to some engineering structures,and the nonlinearity need to be modeled precisely.To meet serious quality requirements,it is necessary to detect and identify nonlinearity of mechanical products for structural optimization.Modal test to acquire a dynamic response has been applied for decades,which provides reliable results for finite element(FE)model updating.Here response control vibration test for identification of nonlinearity is presented.A nonlinear system can be regarded as linearity for particular steady state response,and classical linear analysis tool is applicable to extract modal data for particular response.First,its applicability is illustrated by some numerical simulations.Subsequently,it is implemented on experimental setup with structural joints by shaking table.The stiffness and damping function dependent of relative displacement are fitted to describe its inherent nonlinearity.The spring and damping forces are identified by harmonic balance method(HBM)to predict output response.Based on the identified results,the procedure is recommended that it allows a reliable measurement of nonlinearity with a certain accuracy.
文摘Controlled blasting techniques are used to control overbreak and to aid in the stability of the remaining rock formation. Presplitting is one of the most common methods which is used in many open pit mining and surface blast design. The purpose of presplitting is to form a fracture plane across which the radial cracks from the production blast cannot travel. The purpose of this study is to investigate of effect of presplitting on the generation of a smooth wall in continuum and jointed rock mass. The 2D distinct element code was used to simulate the presplitting in a rock slope. The blast load history as a function of time was applied to the inner wall of each blasthole. Important parameters that were considered in the analysis were stress tensor and fracturing pattern. The blast loading magnitude and blasthole spacing and jointing pattern were found to be very significant in the final results.
基金This research work was funded by Institutional Fund Projects under Grant No.(IFPRC-027-135-2020).
文摘A linear flexible joint system using fractional order linear active disturbance rejection control is studied in this paper.With this control scheme,the performance against disturbances,uncertainties,and attenuation is enhanced.Linear active disturbance rejection control(LADRC)is mainly based on an extended state observer(ESO)technology.A fractional integral(FOI)action is combined with the LADRC technique which proposes a hybrid control scheme like FO-LADRC.Incorporating this FOI action improves the robustness of the standard LADRC.The set-point tracking of the proposed FO-LADRC scheme is designed by Bode’s ideal transfer function(BITF)based robust closed-loop concept,an appropriate pole placement method.The effectiveness of the proposed FO-LADRC scheme is illustrated through experimental results on the linear flexible joint system(LFJS).The results show the enhancement of the robustness with disturbance rejection.Furthermore,a comparative analysis is presented with the results obtained using the integer-order LADRC and FO-LADRC scheme.
基金funded by Youth Program of National Natural Science Foundation of China(52002034)National Key R&D Program of China(2018YFB1600701)+2 种基金Key Research and Development Program of Shaanxi(2020ZDLGY16-01,2019ZDLGY15-02)Natural Science Basic Research Program of Shaanxi(2020JQ-381)Fundamental Research Funds for the Central Universities,CHD(300102220113).
文摘Combined with the characteristics of the distributed-drive electric vehicle and direct yaw moment control,a double-layer structure direct yaw moment controller is designed.The upper additional yaw moment controller is constructed based on model predictive control.Aiming at minimizing the utilization rate of tire adhesion and constrained by the working characteristics of motor system and brake system,a quadratic programming active set was designed to optimize the distribution of additional yaw moments.The road surface adhesion coefficient has a great impact on the reliability of direct yaw moment control,for which joint observer of vehicle state parameters and road surface parameters is designed by using unscented Kalman filter algorithm,which correlates vehicle state observer and road surface parameter observer to form closed-loop feedback correction.The results show that compared to the“feedforward+feedback”control,the vehicle’s error of yaw rate and sideslip angle by the model predictive control is smaller,which can improve the vehicle stability effectively.In addition,according to the results of the docking road simulation test,the joint observer of vehicle state and road surface parameters can improve the adaptability of the vehicle stability controller to the road conditions with variable adhesion coefficients.
基金The National Key Research and Development Plan(No.2019YFB2006402)
文摘In order to evaluate the performance of semi-active cab’s hydraulic mounts(SHM)of the off-road vibratory roller with the optimal fuzzy-PID(proportional integral derivative)control,a nonlinear dynamic model of the vehicle interacting with off-road terrains is established based on Matlab/Simulink software.The weighted root-mean-square(RMS)acceleration responses of the driver’s seat heave and the cab’s pitch angle are chosen as objective functions.The SHM is then optimized and analyzed via the optimal fuzzy-PID control under different operation conditions.The simulations results show that the driver’s ride comfort and the cab shaking are greatly affected by the off-road terrains under various operating conditions of the vehicle,especially at the speed from 8 to 12 km/h on a very poor terrain surface of Grenville soil ground under the vehicle travelling.With SHM using the optimal fuzzy-PID control,the driver’s ride comfort and the cab shaking are clearly improved under various operation conditions of the vehicle,particularly at the speed from 6 to 7 km/h of the vehicle traveling.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(2011AA041002)
文摘In the realm of quadruped robot locomotion,compliance control is imperative to handle impacts when negotiating unstructured terrains.At the same time,kinematic tracking accuracy should be guaranteed during locomotion.To meet both demands,ajoint space compliance controller is designed,so that compliance can be achieved in stance phase while position tracking performance can be guaranteed in swing phase.Unlike operational space compliance control,the joint space compliance control method is easy to implement and does not depend on robot dynamics.As for each joint actuator,high performance force control is of great importance for compliance design.Therefore,a nonlinear PI controller based on feedback linearization is proposed for the hydraulic actuator force control.Besides,an outer position loop(compliance loop)is closed for each joint.Experiments are carried out to verify the force controller and compliance of the hydraulic actuator.The robot leg compliance is assessed by a virtual prototyping simulation.
基金supported by the National Natural Science Foundation of China under Grant No.61701284,61472229,31671588 and 61801270the China Postdoctoral Science Foundation Funded Project under Grant No2017M622233+2 种基金the Application Research Project for Postdoctoral Researchers of Qingdao,the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents under Grant No.2016RCJJ010the Sci.&Tech.DevelopmentFund of Shandong Province of China underGrant No.2016ZDJS02A11,ZR2017BF015and ZR2017MF027the Taishan Scholar Climbing Program of Shandong Province,and SDUST Research Fund under Grant No.2015TDJH102
文摘This paper presented a joint resource allocation(RA) and admission control(AC) mechanism in software defined mobile networks(SDMNs). In this mechanism, the joint RA and AC problem can be formulated as an optimization problem with the aim of maximizing the number of admitted users while simultaneously minimizing the number of allocated channels. Since the primal problem is modeled to be a mixed integer nonlinear problem(MINLP), we attain the suboptimal solutions to the primal MINLP by convex relaxation. Additionally, with the global information collected by the SDMNs controller, a centralized joint RA and AC(CJRA)algorithm is proposed by the Lagrange dual decomposition technique to obtain the global optimum. Meanwhile, we propose an OpenFlow rules placement strategy to realize CJRA in an efficient way. Moreover, a distributed algorithm is also developed to find the local optimum, showing a performance benchmark for the centralized one. Finally, simulation results show that the proposed centralized algorithm admits more users compared with the distributed.
文摘Gas dynamic control in welding with consumable electrode in conditions of two-jet gas shielding and its impact on the processes in the welding area and properties of the welded joints from high strength alloyed steel 30HGSA is considered in the paper. The results of a comparative experimental study of controlling the properties of welded joints by changing the gas dynamics of the active shielding gas are given. The impact force of a shielding gas jet on the drop of the electrode metal is 12 times higher in conditions of two-jet gas shielding than in those of single jet shielding. It is found that gas dynamics of the active shielding gas jet determines the formation of the welded joints, their chemical properties and the properties of the welded joints from high strength alloyed steels. The consumable electrode welding method with two-jet gas shielding provides controlled dynamics in the welding area and allows controlling the transfer of the electrode metal, chemical composition of the weld, stabilizing the welding process, it ensures higher mechanical properties of the welded joints.
文摘An innovation is conducted on a K190πK rail auto welding machine because of its poor stability in quality of welding joints. A new control system based on a programmable controller is designed to replace the old one. The new control system is of higher accuracy in controlling sequence and good ability in anti disturbance, and is convenient to operate. The comparison tests are carried out. The experimental results show that the quality of welded joints is greatly increased by the improved welding mechine.