In metal cutting industry it is a common practice to search for optimal combination of cutting parameters in order to maximize the tool life for a fixed minimum value of material removal rate(MRR). After the advent ...In metal cutting industry it is a common practice to search for optimal combination of cutting parameters in order to maximize the tool life for a fixed minimum value of material removal rate(MRR). After the advent of high-speed milling(HSM) pro cess, lots of experimental and theoretical researches have been done for this purpose which mainly emphasized on the optimization of the cutting parameters. It is highly beneficial to convert raw data into a comprehensive knowledge-based expert system using fuzzy logic as the reasoning mechanism. In this paper an attempt has been presented for the extraction of the rules from fuzzy neural network(FNN) so as to have the most effective knowledge-base for given set of data. Experiments were conducted to determine the best values of cutting speeds that can maximize tool life for different combinations of input parameters. A fuzzy neural network was constructed based on the fuzzification of input parameters and the cutting speed. After training process, raw rule sets were extracted and a rule pruning approach was proposed to obtain concise linguistic rules. The estimation process with fuzzy inference showed that the optimized combination of fuzzy rules provided the estimation error of only 6.34 m/min as compared to 314 m/min of that of randomized combination of rule s.展开更多
Simultaneous perturbation stochastic approximation (SPSA) belongs to the class of gradient-free optimization methods that extract gradient information from successive objective function evaluation. This paper descri...Simultaneous perturbation stochastic approximation (SPSA) belongs to the class of gradient-free optimization methods that extract gradient information from successive objective function evaluation. This paper describes an improved SPSA algorithm, which entails fuzzy adaptive gain sequences, gradient smoothing, and a step rejection procedure to enhance convergence and stability. The proposed fuzzy adaptive simultaneous perturbation approximation (FASPA) algorithm is particularly well suited to problems involving a large number of parameters such as those encountered in nonlinear system identification using neural networks (NNs). Accordingly, a multilayer perceptron (MLP) network with popular training algorithms was used to predicate the system response. We found that an MLP trained by FASPSA had the desired accuracy that was comparable to results obtained by traditional system identification algorithms. Simulation results for typical nonlinear systems demonstrate that the proposed NN architecture trained with FASPSA yields improved system identification as measured by reduced time of convergence and a smaller identification error.展开更多
A reinforcemen based fuzzy neural network control with automatic rule generation (RBFNNC) is proposed. A set of optimized fuzzy control rules can be automatically generated through reinforcement learning based on the...A reinforcemen based fuzzy neural network control with automatic rule generation (RBFNNC) is proposed. A set of optimized fuzzy control rules can be automatically generated through reinforcement learning based on the state variables of object system. RBFNNC was applied to a cart pole balancing system and simulation result shows significant improvements on the rule generation.展开更多
There are fundamentally two different communication media in wireless underground sensor networks. The first of these is a solid medium where the sensor nodes are buried underground and wirelessly transmit data from u...There are fundamentally two different communication media in wireless underground sensor networks. The first of these is a solid medium where the sensor nodes are buried underground and wirelessly transmit data from underground to aboveground. The second is an underground medium such as tunnel, cave etc. and the data is transmitted from underground to the aboveground through partially solid medium. The quality of communication is greatly influenced by the humidity of the soil in both environments. The placement of wireless underground sensor nodes at hard-to-reach locations makes energy efficient work compulsory. In this paper, rule based collector station selection scheme is proposed for lossless data transmission in underground sensor networks. In order for sensor nodes to transmit energy-efficient lossless data, rulebased selection operations are carried out with the help of fuzzy logic. The proposed wireless underground sensor network is simulated using Riverbed software, and fuzzy logic-based selection scheme is implemented utilizing Matlab software. In order to evaluate the performance of the sensor network;the parameters of delay, throughput and energy consumption are investigated. Examining performance evaluation results, it is seen that average delay and maximum throughput are accomplished in the proposed underground sensor network. Under these conditions, it has been shown that the most appropriate collector station selection decision is made with the aim of minimizing energy consumption.展开更多
In view of the main weaknesses of current fuzzy neural networks such as low reasoning precision and long training time, an Additive Multiplicative Fuzzy Neural Network (AMFNN) model and its architecture are present...In view of the main weaknesses of current fuzzy neural networks such as low reasoning precision and long training time, an Additive Multiplicative Fuzzy Neural Network (AMFNN) model and its architecture are presented. AMFNN combines additive inference and multiplicative inference into an integral whole, reasonably makes use of their advantages of inference and effectively overcomes their weaknesses when they are used for inference separately. Here, an error back propagation algorithm for AMFNN is presented based on the gradient descent method. Comparisons between the AMFNN and six representative fuzzy inference methods shows that the AMFNN is characterized by higher reasoning precision, wider application scope, stronger generalization capability and easier implementation.展开更多
In this paper, polynomial fuzzy neural network classifiers (PFNNCs) is proposed by means of density fuzzy c-means and L2-norm regularization. The overall design of PFNNCs was realized by means of fuzzy rules that come...In this paper, polynomial fuzzy neural network classifiers (PFNNCs) is proposed by means of density fuzzy c-means and L2-norm regularization. The overall design of PFNNCs was realized by means of fuzzy rules that come in form of three parts, namely premise part, consequence part and aggregation part. The premise part was developed by density fuzzy c-means that helps determine the apex parameters of membership functions, while the consequence part was realized by means of two types of polynomials including linear and quadratic. L2-norm regularization that can alleviate the overfitting problem was exploited to estimate the parameters of polynomials, which constructed the aggregation part. Experimental results of several data sets demonstrate that the proposed classifiers show higher classification accuracy in comparison with some other classifiers reported in the literature.展开更多
The security of the wireless sensor network-Internet of Things(WSN-IoT)network is more challenging due to its randomness and self-organized nature.Intrusion detection is one of the key methodologies utilized to ensure...The security of the wireless sensor network-Internet of Things(WSN-IoT)network is more challenging due to its randomness and self-organized nature.Intrusion detection is one of the key methodologies utilized to ensure the security of the network.Conventional intrusion detection mechanisms have issues such as higher misclassification rates,increased model complexity,insignificant feature extraction,increased training time,increased run time complexity,computation overhead,failure to identify new attacks,increased energy consumption,and a variety of other factors that limit the performance of the intrusion system model.In this research a security framework for WSN-IoT,through a deep learning technique is introduced using Modified Fuzzy-Adaptive DenseNet(MF_AdaDenseNet)and is benchmarked with datasets like NSL-KDD,UNSWNB15,CIDDS-001,Edge IIoT,Bot IoT.In this,the optimal feature selection using Capturing Dingo Optimization(CDO)is devised to acquire relevant features by removing redundant features.The proposed MF_AdaDenseNet intrusion detection model offers significant benefits by utilizing optimal feature selection with the CDO algorithm.This results in enhanced Detection Capacity with minimal computation complexity,as well as a reduction in False Alarm Rate(FAR)due to the consideration of classification error in the fitness estimation.As a result,the combined CDO-based feature selection and MF_AdaDenseNet intrusion detection mechanism outperform other state-of-the-art techniques,achieving maximal Detection Capacity,precision,recall,and F-Measure of 99.46%,99.54%,99.91%,and 99.68%,respectively,along with minimal FAR and Mean Absolute Error(MAE)of 0.9%and 0.11.展开更多
A hybrid approach for fuzzy system design based on clustering and a kind of neurofuzzy networks is proposed. An unsupervised clustering technique is firstly used to determine the number of if-then fuzzy rules and gene...A hybrid approach for fuzzy system design based on clustering and a kind of neurofuzzy networks is proposed. An unsupervised clustering technique is firstly used to determine the number of if-then fuzzy rules and generate an initial fuzzy rule base from the given input-output data. Then, a class of neurofuzzy networks is constructed and its weights are tuned so that the obtained fuzzy rule base has a high accuracy. Finally, two examples of function approximation problems are given to illustrate the effectiveness of the proposed approach.展开更多
This paper proposes a new neural fuzzy inference system that mainly consists of four parts. The first part is about how to use neural network to express the relation within a fuzzy rule. The second part is the simplif...This paper proposes a new neural fuzzy inference system that mainly consists of four parts. The first part is about how to use neural network to express the relation within a fuzzy rule. The second part is the simplification of the first part, and experiments show that these simplifications work. On the contrary to the second part, the third part is the enhancement of the first part and it can be used when the first part cannot work very well in the fuzzy inference algorithm, which would be introduced in the fourth part. Finally, the fourth part "neural fuzzy inference algorithm" is been introduced. It can inference the new membership function of the output based on previous fuzzy rules. The accuracy of the fuzzy inference algorithm is dependent on neural network generalization ability. Even if the generalization ability of the neural network we used is good, we still get inaccurate results since the new coming rule may not be related to any of the previous rules. Experiments show this algorithm is successful in situations which satisfy these conditions.展开更多
This paper introduces a new methodology for the damage assessment of existing-transmission structures using six layers, zero order Sugeno model. The model is a hybrid fuzzy-neural system that combines the power of neu...This paper introduces a new methodology for the damage assessment of existing-transmission structures using six layers, zero order Sugeno model. The model is a hybrid fuzzy-neural system that combines the power of neural networks and fuzzy systems. It is a learning expert system that finds the parameters of the fuzzy sets and fuzzy rules by exploiting approximation techniques from neural networks. The condition ratings of the structural components are determined based on visually observed deterioration-symptoms and the severity of those symptoms. A supervised learning process using training data and expert opinions is used to develop the expert system rules and determine the ratings of the structural components. For the learning from training data, the model uses a combination of least-square estimator and gradient descent method. A sequential least square algorithm is used to determine the weighting factors that minimized the errors. A test case is given to illustrate the power of the proposed fuzzy-neural system. It is concluded that the Sugeno model's ability to tune the parameters based on the training data makes it superior to the rules produced by an expert in the conventional fuzzy logic systems.展开更多
Purpose-The purpose of this paper is to present an on-line modeling and controlling scheme based on the dynamic recurrent neural network for wastewater treatment system.Design/methodology/approach-A control strategy b...Purpose-The purpose of this paper is to present an on-line modeling and controlling scheme based on the dynamic recurrent neural network for wastewater treatment system.Design/methodology/approach-A control strategy based on rule adaptive recurrent neural network(RARFNN)is proposed in this paper to control the dissolved oxygen(DO)concentration and nitrate nitrogen(SNo)concentration.The structure of the RARFNN is self-organized by a rule adaptive algorithm,and the rule adaptive algorithm considers the overall information processing ability of neural network.Furthermore,a stability analysis method is given to prove the convergence of the proposed RARFNN.Findings-By application in the control problem of wastewater treatment process(WWTP),results show that the proposed control method achieves better performance compared to other methods.Originality/value-The proposed on-line modeling and controlling method uses the RARFNN to model and control the dynamic WWTP.The RARFNN can adjust its structure and parameters according to the changes of biochemical reactions and pollutant concentrations.And,the rule adaptive mechanism considers the overall information processing ability judgment of the neural network,which can ensure that the neural network contains the information of the biochemical reactions.展开更多
基金supported by International Science and Technology Cooperation project (Grant No. 2008DFA71750)
文摘In metal cutting industry it is a common practice to search for optimal combination of cutting parameters in order to maximize the tool life for a fixed minimum value of material removal rate(MRR). After the advent of high-speed milling(HSM) pro cess, lots of experimental and theoretical researches have been done for this purpose which mainly emphasized on the optimization of the cutting parameters. It is highly beneficial to convert raw data into a comprehensive knowledge-based expert system using fuzzy logic as the reasoning mechanism. In this paper an attempt has been presented for the extraction of the rules from fuzzy neural network(FNN) so as to have the most effective knowledge-base for given set of data. Experiments were conducted to determine the best values of cutting speeds that can maximize tool life for different combinations of input parameters. A fuzzy neural network was constructed based on the fuzzification of input parameters and the cutting speed. After training process, raw rule sets were extracted and a rule pruning approach was proposed to obtain concise linguistic rules. The estimation process with fuzzy inference showed that the optimized combination of fuzzy rules provided the estimation error of only 6.34 m/min as compared to 314 m/min of that of randomized combination of rule s.
文摘Simultaneous perturbation stochastic approximation (SPSA) belongs to the class of gradient-free optimization methods that extract gradient information from successive objective function evaluation. This paper describes an improved SPSA algorithm, which entails fuzzy adaptive gain sequences, gradient smoothing, and a step rejection procedure to enhance convergence and stability. The proposed fuzzy adaptive simultaneous perturbation approximation (FASPA) algorithm is particularly well suited to problems involving a large number of parameters such as those encountered in nonlinear system identification using neural networks (NNs). Accordingly, a multilayer perceptron (MLP) network with popular training algorithms was used to predicate the system response. We found that an MLP trained by FASPSA had the desired accuracy that was comparable to results obtained by traditional system identification algorithms. Simulation results for typical nonlinear systems demonstrate that the proposed NN architecture trained with FASPSA yields improved system identification as measured by reduced time of convergence and a smaller identification error.
文摘A reinforcemen based fuzzy neural network control with automatic rule generation (RBFNNC) is proposed. A set of optimized fuzzy control rules can be automatically generated through reinforcement learning based on the state variables of object system. RBFNNC was applied to a cart pole balancing system and simulation result shows significant improvements on the rule generation.
文摘There are fundamentally two different communication media in wireless underground sensor networks. The first of these is a solid medium where the sensor nodes are buried underground and wirelessly transmit data from underground to aboveground. The second is an underground medium such as tunnel, cave etc. and the data is transmitted from underground to the aboveground through partially solid medium. The quality of communication is greatly influenced by the humidity of the soil in both environments. The placement of wireless underground sensor nodes at hard-to-reach locations makes energy efficient work compulsory. In this paper, rule based collector station selection scheme is proposed for lossless data transmission in underground sensor networks. In order for sensor nodes to transmit energy-efficient lossless data, rulebased selection operations are carried out with the help of fuzzy logic. The proposed wireless underground sensor network is simulated using Riverbed software, and fuzzy logic-based selection scheme is implemented utilizing Matlab software. In order to evaluate the performance of the sensor network;the parameters of delay, throughput and energy consumption are investigated. Examining performance evaluation results, it is seen that average delay and maximum throughput are accomplished in the proposed underground sensor network. Under these conditions, it has been shown that the most appropriate collector station selection decision is made with the aim of minimizing energy consumption.
文摘In view of the main weaknesses of current fuzzy neural networks such as low reasoning precision and long training time, an Additive Multiplicative Fuzzy Neural Network (AMFNN) model and its architecture are presented. AMFNN combines additive inference and multiplicative inference into an integral whole, reasonably makes use of their advantages of inference and effectively overcomes their weaknesses when they are used for inference separately. Here, an error back propagation algorithm for AMFNN is presented based on the gradient descent method. Comparisons between the AMFNN and six representative fuzzy inference methods shows that the AMFNN is characterized by higher reasoning precision, wider application scope, stronger generalization capability and easier implementation.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 61673295the Natural Science Foundation of Tianjin under Grant 18JCYBJC85200by the National College Students’ innovation and entrepreneurship project under Grant 201710060041.
文摘In this paper, polynomial fuzzy neural network classifiers (PFNNCs) is proposed by means of density fuzzy c-means and L2-norm regularization. The overall design of PFNNCs was realized by means of fuzzy rules that come in form of three parts, namely premise part, consequence part and aggregation part. The premise part was developed by density fuzzy c-means that helps determine the apex parameters of membership functions, while the consequence part was realized by means of two types of polynomials including linear and quadratic. L2-norm regularization that can alleviate the overfitting problem was exploited to estimate the parameters of polynomials, which constructed the aggregation part. Experimental results of several data sets demonstrate that the proposed classifiers show higher classification accuracy in comparison with some other classifiers reported in the literature.
基金Authors extend their appreciation to King Saud University for funding the publication of this research through the Researchers Supporting Project number(RSPD2024R809),King Saud University,Riyadh,Saudi Arabia.
文摘The security of the wireless sensor network-Internet of Things(WSN-IoT)network is more challenging due to its randomness and self-organized nature.Intrusion detection is one of the key methodologies utilized to ensure the security of the network.Conventional intrusion detection mechanisms have issues such as higher misclassification rates,increased model complexity,insignificant feature extraction,increased training time,increased run time complexity,computation overhead,failure to identify new attacks,increased energy consumption,and a variety of other factors that limit the performance of the intrusion system model.In this research a security framework for WSN-IoT,through a deep learning technique is introduced using Modified Fuzzy-Adaptive DenseNet(MF_AdaDenseNet)and is benchmarked with datasets like NSL-KDD,UNSWNB15,CIDDS-001,Edge IIoT,Bot IoT.In this,the optimal feature selection using Capturing Dingo Optimization(CDO)is devised to acquire relevant features by removing redundant features.The proposed MF_AdaDenseNet intrusion detection model offers significant benefits by utilizing optimal feature selection with the CDO algorithm.This results in enhanced Detection Capacity with minimal computation complexity,as well as a reduction in False Alarm Rate(FAR)due to the consideration of classification error in the fitness estimation.As a result,the combined CDO-based feature selection and MF_AdaDenseNet intrusion detection mechanism outperform other state-of-the-art techniques,achieving maximal Detection Capacity,precision,recall,and F-Measure of 99.46%,99.54%,99.91%,and 99.68%,respectively,along with minimal FAR and Mean Absolute Error(MAE)of 0.9%and 0.11.
基金This project was supported by the National Natural Science Foundation of China (60141002).
文摘A hybrid approach for fuzzy system design based on clustering and a kind of neurofuzzy networks is proposed. An unsupervised clustering technique is firstly used to determine the number of if-then fuzzy rules and generate an initial fuzzy rule base from the given input-output data. Then, a class of neurofuzzy networks is constructed and its weights are tuned so that the obtained fuzzy rule base has a high accuracy. Finally, two examples of function approximation problems are given to illustrate the effectiveness of the proposed approach.
文摘This paper proposes a new neural fuzzy inference system that mainly consists of four parts. The first part is about how to use neural network to express the relation within a fuzzy rule. The second part is the simplification of the first part, and experiments show that these simplifications work. On the contrary to the second part, the third part is the enhancement of the first part and it can be used when the first part cannot work very well in the fuzzy inference algorithm, which would be introduced in the fourth part. Finally, the fourth part "neural fuzzy inference algorithm" is been introduced. It can inference the new membership function of the output based on previous fuzzy rules. The accuracy of the fuzzy inference algorithm is dependent on neural network generalization ability. Even if the generalization ability of the neural network we used is good, we still get inaccurate results since the new coming rule may not be related to any of the previous rules. Experiments show this algorithm is successful in situations which satisfy these conditions.
文摘This paper introduces a new methodology for the damage assessment of existing-transmission structures using six layers, zero order Sugeno model. The model is a hybrid fuzzy-neural system that combines the power of neural networks and fuzzy systems. It is a learning expert system that finds the parameters of the fuzzy sets and fuzzy rules by exploiting approximation techniques from neural networks. The condition ratings of the structural components are determined based on visually observed deterioration-symptoms and the severity of those symptoms. A supervised learning process using training data and expert opinions is used to develop the expert system rules and determine the ratings of the structural components. For the learning from training data, the model uses a combination of least-square estimator and gradient descent method. A sequential least square algorithm is used to determine the weighting factors that minimized the errors. A test case is given to illustrate the power of the proposed fuzzy-neural system. It is concluded that the Sugeno model's ability to tune the parameters based on the training data makes it superior to the rules produced by an expert in the conventional fuzzy logic systems.
基金supported by the National Natural Science Foundation of China Grant Numbers(61622301,61533002)Beijing Municipal Education Commission Science and Technology Development Program Grant Numbers(KZ201410005002,201410005001)the PhD Programs Foundation of Ministry of Education of China Grant Number(20131103110016).
文摘Purpose-The purpose of this paper is to present an on-line modeling and controlling scheme based on the dynamic recurrent neural network for wastewater treatment system.Design/methodology/approach-A control strategy based on rule adaptive recurrent neural network(RARFNN)is proposed in this paper to control the dissolved oxygen(DO)concentration and nitrate nitrogen(SNo)concentration.The structure of the RARFNN is self-organized by a rule adaptive algorithm,and the rule adaptive algorithm considers the overall information processing ability of neural network.Furthermore,a stability analysis method is given to prove the convergence of the proposed RARFNN.Findings-By application in the control problem of wastewater treatment process(WWTP),results show that the proposed control method achieves better performance compared to other methods.Originality/value-The proposed on-line modeling and controlling method uses the RARFNN to model and control the dynamic WWTP.The RARFNN can adjust its structure and parameters according to the changes of biochemical reactions and pollutant concentrations.And,the rule adaptive mechanism considers the overall information processing ability judgment of the neural network,which can ensure that the neural network contains the information of the biochemical reactions.