采用硼氢化钠作还原剂将吸附于石墨相氮化碳(g-C 3 N 4)表面的硝酸银还原成纳米银(Ag)颗粒,通过调控在氮化碳上原位沉积时硝酸银的用量,制备了不同Ag负载量的g-C 3 N 4@Ag复合催化剂.使用场发射扫描电子显微镜(FE-SEM)观察、X射线粉末衍...采用硼氢化钠作还原剂将吸附于石墨相氮化碳(g-C 3 N 4)表面的硝酸银还原成纳米银(Ag)颗粒,通过调控在氮化碳上原位沉积时硝酸银的用量,制备了不同Ag负载量的g-C 3 N 4@Ag复合催化剂.使用场发射扫描电子显微镜(FE-SEM)观察、X射线粉末衍射(XRD)分析、N 2吸附-脱附等温曲线(BET)分析、X射线光电子能谱(XPS)分析等方法对制备的材料进行了表征.由紫外-可见吸收光谱(UV-Vis)分析和光微量热-荧光光谱联用分析研究了复合催化剂对罗丹明B降解的原位热动力学性质.结果表明:当Ag纳米颗粒的质量分数为4%时其降解罗丹明B的反应速率常数为1.55×10^-2 min^-1,其催化性能是未修饰g-C 3 N 4的1.9倍;在光密度为10、20、32 W/m^2条件下,反应均在120 s左右达到表观吸热最大值,随后放热,最终恒定放热速率依次为7.293×10^-8、1.316×10^-7和1.162×10^-7 mJ/s.文中的研究结果对研究光催化原位过程的热力学、动力学及光谱性质具有重要意义和潜在应用价值.展开更多
The ternary plasmonic Ag Cl/Ag/g-C_3N_4 photocatalysts were successfully fabricated by a modified deposition–precipitation method, through which Ag/Ag Cl nanoparticles(5–15 nm in size) were evenly dispersed on the s...The ternary plasmonic Ag Cl/Ag/g-C_3N_4 photocatalysts were successfully fabricated by a modified deposition–precipitation method, through which Ag/Ag Cl nanoparticles(5–15 nm in size) were evenly dispersed on the surface of g-C_3N_4. The Ag Cl/Ag/g-C_3N_4 composites exhibited higher photocatalytic activity than Ag/Ag Cl and g-C_3N_4. The enhanced photocatalytic performance could be attributed to an efficient separation of electron–hole pairs through a Z-scheme mechanism, in which Ag nanoparticles acted as charge separation centers.展开更多
Silver‐modified semiconductor photocatalysts typically exhibit enhanced photocatalytic activitytoward the degradation of organic substances.In comparison,their hydrogen‐evolution rates arerelatively low owing to poo...Silver‐modified semiconductor photocatalysts typically exhibit enhanced photocatalytic activitytoward the degradation of organic substances.In comparison,their hydrogen‐evolution rates arerelatively low owing to poor interfacial catalytic reactions to producing hydrogen.In the presentstudy,thiocyanate anions(SCN–)as interfacial catalytic active sites were selectively adsorbed ontothe Ag surface of g‐C3N4/Ag photocatalyst to promote interfacial H2‐evolution reactions.The thiocyanate‐modified g‐C3N4/Ag(g‐C3N4/Ag‐SCN)photocatalysts were synthesized via photodepositionof metallic Ag on g‐C3N4and subsequent selective adsorption of SCN– ions on the Ag surface by animpregnation method.The resulting g‐C3N4/Ag‐SCN photocatalysts exhibited considerably higherphotocatalytic H2‐evolution activity than the g‐C3N4,g‐C3N4/Ag,and g‐C3N4/SCN photocatalysts.Furthermore,the g‐C3N4/Ag‐SCN photocatalyst displayed the highest H2‐evolution rate(3.9μmolh?1)when the concentration of the SCN– ions was adjusted to0.3mmol L?1.The H2‐evolution rateobtained was higher than those of g‐C3N4(0.15μmol h?1)and g‐C3N4/Ag(0.71μmol h?1).Consideringthe enhanced performance of g‐C3N4/Ag upon minimal addition of SCN– ions,a synergistic effectof metallic Ag and SCN– ions is proposed―the Ag nanoparticles act as an effective electron‐transfermediator for the steady capture and rapid transportation of photogenerated electrons,while theadsorbed SCN– ions serve as an interfacial active site to effectively absorb protons from solution andpromote rapid interfacial H2‐evolution reactions.Considering the present facile synthesis and itshigh efficacy,the present work may provide new insights into preparing high‐performance photocatalytic materials展开更多
It is extremely important for photocatalysts to exhibit intelligent responsiveness to their environment. Herein, a poly N-isopropyl acrylamide(PNIPAM)-modified Ag/Ag3PO4-20/CN hybrid material with excellent convertibl...It is extremely important for photocatalysts to exhibit intelligent responsiveness to their environment. Herein, a poly N-isopropyl acrylamide(PNIPAM)-modified Ag/Ag3PO4-20/CN hybrid material with excellent convertible photocatalytic activity is prepared. PNIPAM has good hydrophilicity below the lower critical solution temperature(LCST);this increases the capacity of the photocatalyst for adsorbing tetracycline(TC) molecules. In addition, the PNIPAM-modified Ag/Ag3PO4-20/CN can prevent the loss of Ag3PO4. The dispersity is improved by loading g-C3N4 nanosheets(CN) for enhancing the efficiency of photocatalytic activity. Furthermore, a Z-scheme heterostructure is formed between CN and Ag3PO4, accelerating the separation efficiency of the holes and electrons. Ag nanoparticles can be used as electron-shuttle mediators, and electrons receiving more energy are transferred via the localized surface plasmon resonance(LSPR) effect. Furthermore, the PNIPAM@Ag/Ag3PO4-20/CN photocatalyst exhibits an excellent degradation rate for the degradation of TC when the temperature is lower than the LCST. The photoluminescence spectra and photocurrent curves prove that the carrier-separation efficiency of PNIPAM@Ag/Ag3PO4-20/CN is higher than those of Ag/Ag3PO4/CN and CN. The main active species of ·O2-and h+ are detected to reveal the plausible mechanism of the PNIPAM@Ag/Ag3PO4-20/CN hybrid material system. This work provides a way to develop intelligent materials for switchable photocatalytic applications.展开更多
文摘采用硼氢化钠作还原剂将吸附于石墨相氮化碳(g-C 3 N 4)表面的硝酸银还原成纳米银(Ag)颗粒,通过调控在氮化碳上原位沉积时硝酸银的用量,制备了不同Ag负载量的g-C 3 N 4@Ag复合催化剂.使用场发射扫描电子显微镜(FE-SEM)观察、X射线粉末衍射(XRD)分析、N 2吸附-脱附等温曲线(BET)分析、X射线光电子能谱(XPS)分析等方法对制备的材料进行了表征.由紫外-可见吸收光谱(UV-Vis)分析和光微量热-荧光光谱联用分析研究了复合催化剂对罗丹明B降解的原位热动力学性质.结果表明:当Ag纳米颗粒的质量分数为4%时其降解罗丹明B的反应速率常数为1.55×10^-2 min^-1,其催化性能是未修饰g-C 3 N 4的1.9倍;在光密度为10、20、32 W/m^2条件下,反应均在120 s左右达到表观吸热最大值,随后放热,最终恒定放热速率依次为7.293×10^-8、1.316×10^-7和1.162×10^-7 mJ/s.文中的研究结果对研究光催化原位过程的热力学、动力学及光谱性质具有重要意义和潜在应用价值.
基金financial aid from the National Natural Science Foundation of China(NSFC No.51472133)
文摘The ternary plasmonic Ag Cl/Ag/g-C_3N_4 photocatalysts were successfully fabricated by a modified deposition–precipitation method, through which Ag/Ag Cl nanoparticles(5–15 nm in size) were evenly dispersed on the surface of g-C_3N_4. The Ag Cl/Ag/g-C_3N_4 composites exhibited higher photocatalytic activity than Ag/Ag Cl and g-C_3N_4. The enhanced photocatalytic performance could be attributed to an efficient separation of electron–hole pairs through a Z-scheme mechanism, in which Ag nanoparticles acted as charge separation centers.
基金supported by the National Natural Science Foundation of China(51472192,21477094,21771142)the Fundamental Research Funds for the Central Universities(WUT 2017IB002)~~
文摘Silver‐modified semiconductor photocatalysts typically exhibit enhanced photocatalytic activitytoward the degradation of organic substances.In comparison,their hydrogen‐evolution rates arerelatively low owing to poor interfacial catalytic reactions to producing hydrogen.In the presentstudy,thiocyanate anions(SCN–)as interfacial catalytic active sites were selectively adsorbed ontothe Ag surface of g‐C3N4/Ag photocatalyst to promote interfacial H2‐evolution reactions.The thiocyanate‐modified g‐C3N4/Ag(g‐C3N4/Ag‐SCN)photocatalysts were synthesized via photodepositionof metallic Ag on g‐C3N4and subsequent selective adsorption of SCN– ions on the Ag surface by animpregnation method.The resulting g‐C3N4/Ag‐SCN photocatalysts exhibited considerably higherphotocatalytic H2‐evolution activity than the g‐C3N4,g‐C3N4/Ag,and g‐C3N4/SCN photocatalysts.Furthermore,the g‐C3N4/Ag‐SCN photocatalyst displayed the highest H2‐evolution rate(3.9μmolh?1)when the concentration of the SCN– ions was adjusted to0.3mmol L?1.The H2‐evolution rateobtained was higher than those of g‐C3N4(0.15μmol h?1)and g‐C3N4/Ag(0.71μmol h?1).Consideringthe enhanced performance of g‐C3N4/Ag upon minimal addition of SCN– ions,a synergistic effectof metallic Ag and SCN– ions is proposed―the Ag nanoparticles act as an effective electron‐transfermediator for the steady capture and rapid transportation of photogenerated electrons,while theadsorbed SCN– ions serve as an interfacial active site to effectively absorb protons from solution andpromote rapid interfacial H2‐evolution reactions.Considering the present facile synthesis and itshigh efficacy,the present work may provide new insights into preparing high‐performance photocatalytic materials
文摘It is extremely important for photocatalysts to exhibit intelligent responsiveness to their environment. Herein, a poly N-isopropyl acrylamide(PNIPAM)-modified Ag/Ag3PO4-20/CN hybrid material with excellent convertible photocatalytic activity is prepared. PNIPAM has good hydrophilicity below the lower critical solution temperature(LCST);this increases the capacity of the photocatalyst for adsorbing tetracycline(TC) molecules. In addition, the PNIPAM-modified Ag/Ag3PO4-20/CN can prevent the loss of Ag3PO4. The dispersity is improved by loading g-C3N4 nanosheets(CN) for enhancing the efficiency of photocatalytic activity. Furthermore, a Z-scheme heterostructure is formed between CN and Ag3PO4, accelerating the separation efficiency of the holes and electrons. Ag nanoparticles can be used as electron-shuttle mediators, and electrons receiving more energy are transferred via the localized surface plasmon resonance(LSPR) effect. Furthermore, the PNIPAM@Ag/Ag3PO4-20/CN photocatalyst exhibits an excellent degradation rate for the degradation of TC when the temperature is lower than the LCST. The photoluminescence spectra and photocurrent curves prove that the carrier-separation efficiency of PNIPAM@Ag/Ag3PO4-20/CN is higher than those of Ag/Ag3PO4/CN and CN. The main active species of ·O2-and h+ are detected to reveal the plausible mechanism of the PNIPAM@Ag/Ag3PO4-20/CN hybrid material system. This work provides a way to develop intelligent materials for switchable photocatalytic applications.