利用多体格林函数理论,本文研究了二维CN体系(包括triazine和tri-s-triazine)的激发态特性。通过GW方法,我们计算了准粒子的能量。考虑电子-空穴相互作用,通过求解Bethe-Salpeter方程,我们获得了激发态能量和光谱。我们发现,在这两种CN...利用多体格林函数理论,本文研究了二维CN体系(包括triazine和tri-s-triazine)的激发态特性。通过GW方法,我们计算了准粒子的能量。考虑电子-空穴相互作用,通过求解Bethe-Salpeter方程,我们获得了激发态能量和光谱。我们发现,在这两种CN体系的价带中,σ轨道和π轨道之间的交换作用非常强烈。由于占据的σ轨道和π轨道之间的准粒子修正量非常不同,因此,为了得到准确的带隙值和光谱,我们需要对这两种轨道开展精确的GW计算。与单层的CN体系相比,双层结构中层与层之间的范德华相互作用使带隙值降低了0.6 e V,而光吸收谱红移了0.2 e V,这是由于双层结构具有更小的激子束缚能。我们计算的吸收峰的位置与实验结果符合很好。实验中的吸收峰主要是由深能级的π轨道到π*轨道的跃迁形成的。π→π*跃迁和σ→π*跃迁之间的耦合能够在长波长范围产生弱的吸收尾巴,如果调整入射光的极化方向,由σ→π*跃迁产生的高强度的吸收峰将会在更低能量处出现。展开更多
本文利用多体格林函数理论,计算了石墨相g-CN的准粒子能带结构和光吸收谱.准粒子能带结构通过GW方法进行计算.考虑电子-空穴相互作用,通过求解Bethe-Salpeter方程获得了激发能和光吸收谱.计算的准粒子带隙为4.88 e V,极大地修正了密度...本文利用多体格林函数理论,计算了石墨相g-CN的准粒子能带结构和光吸收谱.准粒子能带结构通过GW方法进行计算.考虑电子-空穴相互作用,通过求解Bethe-Salpeter方程获得了激发能和光吸收谱.计算的准粒子带隙为4.88 e V,极大地修正了密度泛函理论的结果.光吸收谱在4.85 e V处有一个强烈的吸收峰,这与实验结果一致.该吸收峰对应的激子空间分布局域,激子束缚能达到2.32 e V.在低能量处有一些来源于?轨道的暗激子态,对光化学过程产生一定的影响.展开更多
The Ag^+photoreduction by graphitic carbon nitride(g-CN)materials in a high concentration of Ag^+solution is reported,and a series of colorful Ag/g-CN composites is prepared and characterized.The chromatic change corr...The Ag^+photoreduction by graphitic carbon nitride(g-CN)materials in a high concentration of Ag^+solution is reported,and a series of colorful Ag/g-CN composites is prepared and characterized.The chromatic change correlates to the carbon nitride materials synthesized at different heating temperatures(CNr,where T means heating temperature),takingadvantage of the different photocatalytic activities of different CNr.The mechanism beneath this phenomenon is attributed to two factors:the particle size of Ag NPs and the coordinate effect of Ag NPs on CNr sheets.Interestingly,the multi-colors of Ag/g-CN composites display only on the CNr materials synthesized from heating melamine-cyanuric acid pre-cursor,but not on the CNr from heating pure melamine.The color of the as-prepared Ag/g-CN composites can endure the corrosion of HNO;and ethanol,which shows a good chemical stability and may hint its application as chromophores.展开更多
Antimony-doped tin oxide(ATO) nanoparticles with an average size of ~ 6 nm were prepared by co-precipitation and subsequent heat treatment. Graphitic carbon nitride(g-CN)/ATO hybrid nanocomposite was designed by the ...Antimony-doped tin oxide(ATO) nanoparticles with an average size of ~ 6 nm were prepared by co-precipitation and subsequent heat treatment. Graphitic carbon nitride(g-CN)/ATO hybrid nanocomposite was designed by the combination of thermally synthesized g-CN and ATO nanoparticles by ultrasonication. The materials were characterized using N2 adsorption/desorption(BET), X-ray diffraction(XRD), scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), transmission electron microscopy(TEM) and Fourier transform infrared spectroscopy(FTIR). A mixture of five volatile organic compounds(VOCs, chloroform, benzene, toluene, xylene and styrene) was used to compare the adsorption capacity of the samples. The adsorption capacity of ATO nanoparticles was improved by the addition of g-CN. Experimental data showed that, among the five VOCs,chloroform was the least adsorbed, regardless of the samples. The g-CN/ATO showed nearly three times greater adsorption capacity for the VOC mixture than pure ATO. The unchanged efficiency of VOC adsorption during cyclic use demonstrated the completely reversible adsorption and desorption behavior of the nanocomposite at room conditions. This economically and environmentally friendly material can be a practical solution for outdoor and indoor VOC removal.展开更多
As a typical two-dimensional material,graphitic carbon nitride(g-CN)has attracted great interest because of its distinctive electronic,optical,and catalytic properties.However,the absence of a feasible route toward la...As a typical two-dimensional material,graphitic carbon nitride(g-CN)has attracted great interest because of its distinctive electronic,optical,and catalytic properties.However,the absence of a feasible route toward large-area and high-quality films hinders its development in optoelectronics.Herein,high-quality g-CN films have been grown on Si substrate via a vapor-phase transport-assisted condensation method.The g-CN/Si heterojunction shows an obvious response to ultraviolet–visible-near infrared photons with a responsivity of 133 A·W−1,which is two orders of magnitude higher than the best value ever reported for g-CN photodetectors.A position-sensitive detector(PSD)has been developed using the lateral photovoltaic effect of the g-CN/Si heterojunction.The PSD shows a wide response spectrum ranging from 300 to 1,100 nm,and a position sensitivity and rise/decay time of 395 mV·mm−1 and 3.1/50μs,respectively.Moreover,the application of the g-CN/Si heterojunction photodetector in trajectory tracking and acoustic detection has been realized for the first time.This work unveils the potential of g-CN for large-area photodetectors,and prospects for their applications in trajectory tracking and acoustic detection.展开更多
Graphitic carbon nitride(g-C3N4,CN)has attracted increasing interests in the field of photocatalysis due to its high visible-light-response.However,its photocatalytic activity is still lower for degradation of refract...Graphitic carbon nitride(g-C3N4,CN)has attracted increasing interests in the field of photocatalysis due to its high visible-light-response.However,its photocatalytic activity is still lower for degradation of refractory contaminants such as Cr(Ⅵ)and Rhodamine B(RhB)etc.Herein,we report a facile method to synthesize a novel sulfur(S)-doped CN/reduced graphene oxide(rGO)porous nanosheet(S-CN/rGO PNs)via a supramolecular self-assembling followed by a solvothermal treatment.The as-prepared porous SCN/rGO PNs are stable with high specific surface area^188.5 m2 g-1 and exhibit a significantly enhanced photocatalytic activity of^17-fold and 15-fold higher than that of bulk CN for the degradation of RhB and Cr(Ⅵ)under visible light irradiation,respectively.Typically,50 mL of 15 mg/mL RhB can be degraded within 20 min by 10 mg S-CN/rGO PNs.The mechanism can be explained by the synergistic effect of S doping and porous structure which can effectively reduce the band gap of CN and increase the specific surface area to promote the separation and transfer of photo-generated charge carriers.The results have provided a new way to significantly enhance the photocatalytic activity of g-C3N4 for degradation of refractory contaminants.展开更多
基金supported by the National Natural Science Foundation of China(21173130,21433006,21573131)~~
文摘利用多体格林函数理论,本文研究了二维CN体系(包括triazine和tri-s-triazine)的激发态特性。通过GW方法,我们计算了准粒子的能量。考虑电子-空穴相互作用,通过求解Bethe-Salpeter方程,我们获得了激发态能量和光谱。我们发现,在这两种CN体系的价带中,σ轨道和π轨道之间的交换作用非常强烈。由于占据的σ轨道和π轨道之间的准粒子修正量非常不同,因此,为了得到准确的带隙值和光谱,我们需要对这两种轨道开展精确的GW计算。与单层的CN体系相比,双层结构中层与层之间的范德华相互作用使带隙值降低了0.6 e V,而光吸收谱红移了0.2 e V,这是由于双层结构具有更小的激子束缚能。我们计算的吸收峰的位置与实验结果符合很好。实验中的吸收峰主要是由深能级的π轨道到π*轨道的跃迁形成的。π→π*跃迁和σ→π*跃迁之间的耦合能够在长波长范围产生弱的吸收尾巴,如果调整入射光的极化方向,由σ→π*跃迁产生的高强度的吸收峰将会在更低能量处出现。
文摘本文利用多体格林函数理论,计算了石墨相g-CN的准粒子能带结构和光吸收谱.准粒子能带结构通过GW方法进行计算.考虑电子-空穴相互作用,通过求解Bethe-Salpeter方程获得了激发能和光吸收谱.计算的准粒子带隙为4.88 e V,极大地修正了密度泛函理论的结果.光吸收谱在4.85 e V处有一个强烈的吸收峰,这与实验结果一致.该吸收峰对应的激子空间分布局域,激子束缚能达到2.32 e V.在低能量处有一些来源于?轨道的暗激子态,对光化学过程产生一定的影响.
文摘The Ag^+photoreduction by graphitic carbon nitride(g-CN)materials in a high concentration of Ag^+solution is reported,and a series of colorful Ag/g-CN composites is prepared and characterized.The chromatic change correlates to the carbon nitride materials synthesized at different heating temperatures(CNr,where T means heating temperature),takingadvantage of the different photocatalytic activities of different CNr.The mechanism beneath this phenomenon is attributed to two factors:the particle size of Ag NPs and the coordinate effect of Ag NPs on CNr sheets.Interestingly,the multi-colors of Ag/g-CN composites display only on the CNr materials synthesized from heating melamine-cyanuric acid pre-cursor,but not on the CNr from heating pure melamine.The color of the as-prepared Ag/g-CN composites can endure the corrosion of HNO;and ethanol,which shows a good chemical stability and may hint its application as chromophores.
基金supported by a grant from the Korean Ministry of Education, Science, and Technology (MEST)Republic of Korea through the National Research Foundation (NRF) (No. 2017-R1C1B2011968)
文摘Antimony-doped tin oxide(ATO) nanoparticles with an average size of ~ 6 nm were prepared by co-precipitation and subsequent heat treatment. Graphitic carbon nitride(g-CN)/ATO hybrid nanocomposite was designed by the combination of thermally synthesized g-CN and ATO nanoparticles by ultrasonication. The materials were characterized using N2 adsorption/desorption(BET), X-ray diffraction(XRD), scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), transmission electron microscopy(TEM) and Fourier transform infrared spectroscopy(FTIR). A mixture of five volatile organic compounds(VOCs, chloroform, benzene, toluene, xylene and styrene) was used to compare the adsorption capacity of the samples. The adsorption capacity of ATO nanoparticles was improved by the addition of g-CN. Experimental data showed that, among the five VOCs,chloroform was the least adsorbed, regardless of the samples. The g-CN/ATO showed nearly three times greater adsorption capacity for the VOC mixture than pure ATO. The unchanged efficiency of VOC adsorption during cyclic use demonstrated the completely reversible adsorption and desorption behavior of the nanocomposite at room conditions. This economically and environmentally friendly material can be a practical solution for outdoor and indoor VOC removal.
基金This work was financially supported by Henan Center for Outstanding Overseas Scientists(No.GZS201903)the National Natural Science Foundation of China(Nos.61804136,11974317,and 62027816)+2 种基金Henan Science Fund for Distinguished Young Scholars(No.212300410020)Key Project of Henan Higher Education(No.21A140001)the Zhengzhou University Physics Discipline Improvement Program.
文摘As a typical two-dimensional material,graphitic carbon nitride(g-CN)has attracted great interest because of its distinctive electronic,optical,and catalytic properties.However,the absence of a feasible route toward large-area and high-quality films hinders its development in optoelectronics.Herein,high-quality g-CN films have been grown on Si substrate via a vapor-phase transport-assisted condensation method.The g-CN/Si heterojunction shows an obvious response to ultraviolet–visible-near infrared photons with a responsivity of 133 A·W−1,which is two orders of magnitude higher than the best value ever reported for g-CN photodetectors.A position-sensitive detector(PSD)has been developed using the lateral photovoltaic effect of the g-CN/Si heterojunction.The PSD shows a wide response spectrum ranging from 300 to 1,100 nm,and a position sensitivity and rise/decay time of 395 mV·mm−1 and 3.1/50μs,respectively.Moreover,the application of the g-CN/Si heterojunction photodetector in trajectory tracking and acoustic detection has been realized for the first time.This work unveils the potential of g-CN for large-area photodetectors,and prospects for their applications in trajectory tracking and acoustic detection.
基金the Science and Technology Major Project of Shanxi Province(Grant Numbers MC2016-06)National Natural Science Foundation of China(21173041)the Opening Project of Jiangsu Key Laboratory of Advanced Metallic Materials,China.
文摘Graphitic carbon nitride(g-C3N4,CN)has attracted increasing interests in the field of photocatalysis due to its high visible-light-response.However,its photocatalytic activity is still lower for degradation of refractory contaminants such as Cr(Ⅵ)and Rhodamine B(RhB)etc.Herein,we report a facile method to synthesize a novel sulfur(S)-doped CN/reduced graphene oxide(rGO)porous nanosheet(S-CN/rGO PNs)via a supramolecular self-assembling followed by a solvothermal treatment.The as-prepared porous SCN/rGO PNs are stable with high specific surface area^188.5 m2 g-1 and exhibit a significantly enhanced photocatalytic activity of^17-fold and 15-fold higher than that of bulk CN for the degradation of RhB and Cr(Ⅵ)under visible light irradiation,respectively.Typically,50 mL of 15 mg/mL RhB can be degraded within 20 min by 10 mg S-CN/rGO PNs.The mechanism can be explained by the synergistic effect of S doping and porous structure which can effectively reduce the band gap of CN and increase the specific surface area to promote the separation and transfer of photo-generated charge carriers.The results have provided a new way to significantly enhance the photocatalytic activity of g-C3N4 for degradation of refractory contaminants.