以水和氧气为原料,光催化产过氧化氢(H_(2)O_(2))具有绿色、清洁的特点而受到广泛关注。针对氮化碳(g-C_(3)N_(4))本征光催化活性低的问题,本文采用两步热聚合法制备了具有大比表面积和结晶性增强的超薄g-C_(3)N_(4)纳米片光催化剂。煅...以水和氧气为原料,光催化产过氧化氢(H_(2)O_(2))具有绿色、清洁的特点而受到广泛关注。针对氮化碳(g-C_(3)N_(4))本征光催化活性低的问题,本文采用两步热聚合法制备了具有大比表面积和结晶性增强的超薄g-C_(3)N_(4)纳米片光催化剂。煅烧条件对g-C_(3)N_(4)的结构属性和催化性能有显著影响。两步焙烧和1℃·min^(-1)最佳升温速率制备的样品(CN-T-1)表现出显著提高的光催化产H_(2)O_(2)效率(3177.0μmol·g^(-1)·h^(-1)),为一步焙烧和1℃·min^(-1)升温速率制备的样品(CN-O-1)(858.6μmol·g^(-1)·h^(-1))的3.7倍,高于文献报导的纯g-C_(3)N_(4)产H_(2)O_(2)效率。CN-T-1在5次循环使用中H_(2)O_(2)产率先略有下降,后基本保持不变,表现出良好的稳定性。相较于CN-O-1,CN-T-1增强的催化性能归因于更大的比表面积、增强的结晶性、更高氧吸附能力和光生载流子分离效率、更长的载流子寿命,以及超薄片层使其具有更大的带隙(3.07 e V,比CN-O-1大+0.26 e V)和更正的价带位置。·O_(2)^(-)自由基被证实为主要的活性物种。CN-T-1光催化产H_(2)O_(2)被证实为两步单电子ORR路径(O_(2)+e^(-)→·O_(2)^(-)→H_(2)O_(2))。展开更多
Direct-Z-scheme g-C_(3)N_(4)/Ti_(3)C_(2)/TiO_(2)photocatalyst with giant internal electric field was prepared by onestep aqueous sonication self-assembly method using g-C_(3)N_(4)and MXene of Ti_(3)C_(2)as the source ...Direct-Z-scheme g-C_(3)N_(4)/Ti_(3)C_(2)/TiO_(2)photocatalyst with giant internal electric field was prepared by onestep aqueous sonication self-assembly method using g-C_(3)N_(4)and MXene of Ti_(3)C_(2)as the source materials.The chemical composition and structure of the catalysts was characterized by FT-IR,XRD,SEM,TEM,and XPS.The XPS characterization indicated that Ti_(3)C_(2)was partially oxidized to TiO_(2)during the composite process.As a result,an efficient direct-Z-scheme heterojunction structure consisting of the g-C_(3)N_(4)and TiO_(2)with Ti_(3)C_(2)as an electron bridge was constructed.The photocatalytic performance of the prepared catalysts was evaluated by degrading the Rhodamine B(RhB)wastewater.Compared with the single g-C_(3)N_(4),the g-C_(3)N_(4)/Ti_(3)C_(2)/TiO_(2)composite photocatalyst exhibited efficient and stable photocatalytic degradation ability,with a degradation efficiency as high as 99.2%for RhB under optimal conditions(2%Ti_(3)C_(2),pH=3).The high degradation performance of g-C_(3)N_(4)/Ti_(3)C_(2)/TiO_(2)for RhB was attributed to the combination of Ti_(3)C_(2),TiO_(2),and g-C_(3)N_(4)components,forming a direct-Z-scheme heterojunction with a high-speed electron transport channel structure.The role of Z-scheme heterojunctions in electron transport is verified by photoelectrochemical characterization,along with photoluminescence(PL).Our research provides a simple method to design photocatalysts by constructing direct-Z-scheme electron transport channels for highly efficient treatment of dye wastewater.展开更多
The development of an efficient artificial H_(2)O_(2) photosynthesis system is a challenging work using H_(2)O and O_(2) as starting materials.Herein,3D In_(2.77)S_(4) nanoflower precursor was in-situ deposited on K^(...The development of an efficient artificial H_(2)O_(2) photosynthesis system is a challenging work using H_(2)O and O_(2) as starting materials.Herein,3D In_(2.77)S_(4) nanoflower precursor was in-situ deposited on K^(+)-doped g-C_(3)N_(4)(KCN)nanosheets using a solvothermal method,then In_(2.77)S_(4)/KCN(IS/KCN)het-erojunction with an intimate interface was obtained after a calcination process.The investigation shows that the photocatalytic H_(2)O_(2) production rate of 50IS/KCN can reach up to 1.36 mmol g^(-1)h^(-1)without any sacrificial reagents under visible light irradiation,which is 9.2 times and 4.1 times higher than that of KCN and In_(2.77)S_(4)/respectively.The enhanced activity of the above composite can be mainly attributed to the S-scheme charge transfer route between KCN and In_(2.77)S_(4) according to density functional theory calculations,electron paramagnetic resonance and free radical capture tests,leading to an expanded light response range and rapid charge separation at their interface,as well as preserving the active electrons and holes for H_(2)O_(2) production.Besides,the unique 3D nanostructure and surface hydrophobicity of IS/KCN facilitate the diffusion and transportation of O_(2) around the active centers,the energy barriers of O_(2) protonation and H_(2)O_(2) desorption steps are ef-fectively reduced over the composite.In addition,this system also exhibits excellent light harvesting ability and stability.This work provides a potential strategy to explore a sustainable H_(2)O_(2) photo-synthesis pathway through the design of heterojunctions with intimate interfaces and desired reac-tion thermodynamics and kinetics.展开更多
Plasma-catalysis is considered as one of the most promising technologies for antibiotic degradation in water.In the plasma-catalytic system,one of the factors affecting the degradation effect is the performance of the...Plasma-catalysis is considered as one of the most promising technologies for antibiotic degradation in water.In the plasma-catalytic system,one of the factors affecting the degradation effect is the performance of the photocatalyst,which is usually restricted by the rapid recombination of electrons and holes as well as narrow light absorption range.In this research,a photocatalyst g-C_(3)N_(4)/TiO_(2) was prepared and coupled with gas-liquid discharge(GLD)to degrade tetracycline(TC).The performance was examined,and the degradation pathways and mechanisms were studied.Results show that a 90%degradation rate is achieved in the GLD with g-C_(3)N_(4)/TiO_(2) over a 10 min treatment.Increasing the pulse voltage is conducive to increasing the degradation rate,whereas the addition of excessive g-C_(3)N_(4)/TiO_(2) tends to precipitate agglomerates,resulting in a poor degradation efficiency.The redox properties of the g-C_(3)N_(4)/TiO_(2) surface promote the generation of oxidizing active species(H2O2,O3)in solution.Radical quenching experiments showed that·OH,hole(h^(+)),play important roles in the TC degradation by the discharge with g-C_(3)N_(4)/TiO_(2).Two potential degradation pathways were proposed based on the intermediates.The toxicity of tetracycline was reduced by treatment in the system.Furthermore,the g-C_(3)N_(4)/TiO_(2) composites exhibited excellent recoverability and stability.展开更多
High-capacity nickel-rich layered oxides are promising cathode materials for high-energy-density lithium batteries.However,the poor structural stability and severe side reactions at the electrode/electrolyte interface...High-capacity nickel-rich layered oxides are promising cathode materials for high-energy-density lithium batteries.However,the poor structural stability and severe side reactions at the electrode/electrolyte interface result in unsatisfactory cycle performance.Herein,the thin layer of two-dimensional(2D)graphitic carbon-nitride(g-C_(3)N_(4))is uniformly coated on the LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(denoted as NCM811@CN)using a facile chemical vaporization-assisted synthesis method.As an ideal protective layer,the g-C_(3)N_(4)layer effectively avoids direct contact between the NCM811 cathode and the electrolyte,preventing harmful side reactions and inhibiting secondary crystal cracking.Moreover,the unique nanopore structure and abundant nitrogen vacancy edges in g-C_(3)N_(4)facilitate the adsorption and diffusion of lithium ions,which enhances the lithium deintercalation/intercalation kinetics of the NCM811 cathode.As a result,the NCM811@CN-3wt%cathode exhibits 161.3 mAh g^(−1)and capacity retention of 84.6%at 0.5 C and 55°C after 400 cycles and 95.7 mAh g^(−1)at 10 C,which is greatly superior to the uncoated NCM811(i.e.129.3 mAh g^(−1)and capacity retention of 67.4%at 0.5 C and 55°C after 220 cycles and 28.8 mAh g^(−1)at 10 C).The improved cycle performance of the NCM811@CN-3wt%cathode is also applicable to solid–liquid-hybrid cells composed of PVDF:LLZTO electrolyte membranes,which show 163.8 mAh g^(−1)and the capacity retention of 88.1%at 0.1 C and 30°C after 200 cycles and 95.3 mAh g^(−1)at 1 C.展开更多
基金supported by the Natural Science Foundation of China(51572074)Open Fund of Key Laboratory of Drug Analysis and Anti-drug Technology of the Ministry of Public Security(YNPL-B2021002)。
文摘以水和氧气为原料,光催化产过氧化氢(H_(2)O_(2))具有绿色、清洁的特点而受到广泛关注。针对氮化碳(g-C_(3)N_(4))本征光催化活性低的问题,本文采用两步热聚合法制备了具有大比表面积和结晶性增强的超薄g-C_(3)N_(4)纳米片光催化剂。煅烧条件对g-C_(3)N_(4)的结构属性和催化性能有显著影响。两步焙烧和1℃·min^(-1)最佳升温速率制备的样品(CN-T-1)表现出显著提高的光催化产H_(2)O_(2)效率(3177.0μmol·g^(-1)·h^(-1)),为一步焙烧和1℃·min^(-1)升温速率制备的样品(CN-O-1)(858.6μmol·g^(-1)·h^(-1))的3.7倍,高于文献报导的纯g-C_(3)N_(4)产H_(2)O_(2)效率。CN-T-1在5次循环使用中H_(2)O_(2)产率先略有下降,后基本保持不变,表现出良好的稳定性。相较于CN-O-1,CN-T-1增强的催化性能归因于更大的比表面积、增强的结晶性、更高氧吸附能力和光生载流子分离效率、更长的载流子寿命,以及超薄片层使其具有更大的带隙(3.07 e V,比CN-O-1大+0.26 e V)和更正的价带位置。·O_(2)^(-)自由基被证实为主要的活性物种。CN-T-1光催化产H_(2)O_(2)被证实为两步单电子ORR路径(O_(2)+e^(-)→·O_(2)^(-)→H_(2)O_(2))。
基金supported by the National Natural Science Foundation of China(22078138)the Natural Science Foundation of Jiangxi Province(20202ACBL203009).
文摘Direct-Z-scheme g-C_(3)N_(4)/Ti_(3)C_(2)/TiO_(2)photocatalyst with giant internal electric field was prepared by onestep aqueous sonication self-assembly method using g-C_(3)N_(4)and MXene of Ti_(3)C_(2)as the source materials.The chemical composition and structure of the catalysts was characterized by FT-IR,XRD,SEM,TEM,and XPS.The XPS characterization indicated that Ti_(3)C_(2)was partially oxidized to TiO_(2)during the composite process.As a result,an efficient direct-Z-scheme heterojunction structure consisting of the g-C_(3)N_(4)and TiO_(2)with Ti_(3)C_(2)as an electron bridge was constructed.The photocatalytic performance of the prepared catalysts was evaluated by degrading the Rhodamine B(RhB)wastewater.Compared with the single g-C_(3)N_(4),the g-C_(3)N_(4)/Ti_(3)C_(2)/TiO_(2)composite photocatalyst exhibited efficient and stable photocatalytic degradation ability,with a degradation efficiency as high as 99.2%for RhB under optimal conditions(2%Ti_(3)C_(2),pH=3).The high degradation performance of g-C_(3)N_(4)/Ti_(3)C_(2)/TiO_(2)for RhB was attributed to the combination of Ti_(3)C_(2),TiO_(2),and g-C_(3)N_(4)components,forming a direct-Z-scheme heterojunction with a high-speed electron transport channel structure.The role of Z-scheme heterojunctions in electron transport is verified by photoelectrochemical characterization,along with photoluminescence(PL).Our research provides a simple method to design photocatalysts by constructing direct-Z-scheme electron transport channels for highly efficient treatment of dye wastewater.
文摘The development of an efficient artificial H_(2)O_(2) photosynthesis system is a challenging work using H_(2)O and O_(2) as starting materials.Herein,3D In_(2.77)S_(4) nanoflower precursor was in-situ deposited on K^(+)-doped g-C_(3)N_(4)(KCN)nanosheets using a solvothermal method,then In_(2.77)S_(4)/KCN(IS/KCN)het-erojunction with an intimate interface was obtained after a calcination process.The investigation shows that the photocatalytic H_(2)O_(2) production rate of 50IS/KCN can reach up to 1.36 mmol g^(-1)h^(-1)without any sacrificial reagents under visible light irradiation,which is 9.2 times and 4.1 times higher than that of KCN and In_(2.77)S_(4)/respectively.The enhanced activity of the above composite can be mainly attributed to the S-scheme charge transfer route between KCN and In_(2.77)S_(4) according to density functional theory calculations,electron paramagnetic resonance and free radical capture tests,leading to an expanded light response range and rapid charge separation at their interface,as well as preserving the active electrons and holes for H_(2)O_(2) production.Besides,the unique 3D nanostructure and surface hydrophobicity of IS/KCN facilitate the diffusion and transportation of O_(2) around the active centers,the energy barriers of O_(2) protonation and H_(2)O_(2) desorption steps are ef-fectively reduced over the composite.In addition,this system also exhibits excellent light harvesting ability and stability.This work provides a potential strategy to explore a sustainable H_(2)O_(2) photo-synthesis pathway through the design of heterojunctions with intimate interfaces and desired reac-tion thermodynamics and kinetics.
基金supported by National Natural Science Foundation of China(Nos.52277151 and 51907088)Innovative Talents Team Project of‘Six Talent Peaks’of Jiangsu Province(No.TD-JNHB-006).
文摘Plasma-catalysis is considered as one of the most promising technologies for antibiotic degradation in water.In the plasma-catalytic system,one of the factors affecting the degradation effect is the performance of the photocatalyst,which is usually restricted by the rapid recombination of electrons and holes as well as narrow light absorption range.In this research,a photocatalyst g-C_(3)N_(4)/TiO_(2) was prepared and coupled with gas-liquid discharge(GLD)to degrade tetracycline(TC).The performance was examined,and the degradation pathways and mechanisms were studied.Results show that a 90%degradation rate is achieved in the GLD with g-C_(3)N_(4)/TiO_(2) over a 10 min treatment.Increasing the pulse voltage is conducive to increasing the degradation rate,whereas the addition of excessive g-C_(3)N_(4)/TiO_(2) tends to precipitate agglomerates,resulting in a poor degradation efficiency.The redox properties of the g-C_(3)N_(4)/TiO_(2) surface promote the generation of oxidizing active species(H2O2,O3)in solution.Radical quenching experiments showed that·OH,hole(h^(+)),play important roles in the TC degradation by the discharge with g-C_(3)N_(4)/TiO_(2).Two potential degradation pathways were proposed based on the intermediates.The toxicity of tetracycline was reduced by treatment in the system.Furthermore,the g-C_(3)N_(4)/TiO_(2) composites exhibited excellent recoverability and stability.
基金supported by the National Key R&D Program of China(Grant No.2023YFB2503900)the National Natural Science Foundation of China(Grant No.52372203)+1 种基金the National Natural Science Foundation of China(Grant No.52202259)the Shandong Province Natural Science Foundation(ZR2022QE093).
文摘High-capacity nickel-rich layered oxides are promising cathode materials for high-energy-density lithium batteries.However,the poor structural stability and severe side reactions at the electrode/electrolyte interface result in unsatisfactory cycle performance.Herein,the thin layer of two-dimensional(2D)graphitic carbon-nitride(g-C_(3)N_(4))is uniformly coated on the LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(denoted as NCM811@CN)using a facile chemical vaporization-assisted synthesis method.As an ideal protective layer,the g-C_(3)N_(4)layer effectively avoids direct contact between the NCM811 cathode and the electrolyte,preventing harmful side reactions and inhibiting secondary crystal cracking.Moreover,the unique nanopore structure and abundant nitrogen vacancy edges in g-C_(3)N_(4)facilitate the adsorption and diffusion of lithium ions,which enhances the lithium deintercalation/intercalation kinetics of the NCM811 cathode.As a result,the NCM811@CN-3wt%cathode exhibits 161.3 mAh g^(−1)and capacity retention of 84.6%at 0.5 C and 55°C after 400 cycles and 95.7 mAh g^(−1)at 10 C,which is greatly superior to the uncoated NCM811(i.e.129.3 mAh g^(−1)and capacity retention of 67.4%at 0.5 C and 55°C after 220 cycles and 28.8 mAh g^(−1)at 10 C).The improved cycle performance of the NCM811@CN-3wt%cathode is also applicable to solid–liquid-hybrid cells composed of PVDF:LLZTO electrolyte membranes,which show 163.8 mAh g^(−1)and the capacity retention of 88.1%at 0.1 C and 30°C after 200 cycles and 95.3 mAh g^(−1)at 1 C.