In order to study the engineering behaviors of reinforced gabion retaining wall,laboratory model test was carried out.Cyclic load and unload of five levels(0-50,0-100,0-50,0-200 and 0-250 kPa) were imposed.Vertical ea...In order to study the engineering behaviors of reinforced gabion retaining wall,laboratory model test was carried out.Cyclic load and unload of five levels(0-50,0-100,0-50,0-200 and 0-250 kPa) were imposed.Vertical earth pressure,lateral earth pressure,deformation behaviors of reinforcements,potential failure surface and deformation behaviors of wall face were studied.Results show that vertical earth pressure is less than theoretical value,the ratio of vertical earth pressure to theoretical value increases nearly linearly with increasing load,and the correlation coefficient of regression equation is 0.92 for the second layer and 0.79 for the fifth layer.The distribution of lateral earth pressure along the wall back is nonlinear and it is less than theoretical value especially when the load imposed at the top of retaining wall is large.Therefore,reinforced gabion retaining wall will be in great safety when current method is adopted.The deformation behaviors of reinforcements both in the third layer and the fifth layer are single-peak distributions,and the position of the maximum strain is behind that determined by 0.3H(Here H refers to the height of retaining wall) method or Rankine theory.Lateral deformation of wall face increases with increasing load,and the largest lateral deformation occurs in the fourth layer,which lead to a bulging in the middle of wall face.展开更多
Over recent years, there has been a clear increase in the frequency of reported flooding events around the world. Gabion structures offer one means of flood mitigation in dam spillways. These types of structures provi...Over recent years, there has been a clear increase in the frequency of reported flooding events around the world. Gabion structures offer one means of flood mitigation in dam spillways. These types of structures provide an additional challenge to the computational modeller in that flow through the porous gabions must be simulated. We have used a computational model to investigate the flow over gabion stepped spillways. The model was first validated against published experimental results. Then, gabion stepped spillways with four different step geometries were tested under the same conditions in order to facilitate inter-comparisons and to choose the best option in terms of energy dissipation. The results show that normal gabion steps can dissipate more energy than overlap, inclined, and pooled steps. An intensive set of tests with varying slope, stone size, and porosity were undertaken. The location of the inception point and the water depth at this point obtained from this study were compared with those from existing formulae. Two new empirical equations have been derived, on the basis of a regression analysis, to provide improved results for gabion stepped spillways.展开更多
基金Project(50778180) supported by the National Natural Science Foundation of ChinaProject(CX2010B049) supported by Hunan Provincial Innovation Foundation for Postgraduate,China
文摘In order to study the engineering behaviors of reinforced gabion retaining wall,laboratory model test was carried out.Cyclic load and unload of five levels(0-50,0-100,0-50,0-200 and 0-250 kPa) were imposed.Vertical earth pressure,lateral earth pressure,deformation behaviors of reinforcements,potential failure surface and deformation behaviors of wall face were studied.Results show that vertical earth pressure is less than theoretical value,the ratio of vertical earth pressure to theoretical value increases nearly linearly with increasing load,and the correlation coefficient of regression equation is 0.92 for the second layer and 0.79 for the fifth layer.The distribution of lateral earth pressure along the wall back is nonlinear and it is less than theoretical value especially when the load imposed at the top of retaining wall is large.Therefore,reinforced gabion retaining wall will be in great safety when current method is adopted.The deformation behaviors of reinforcements both in the third layer and the fifth layer are single-peak distributions,and the position of the maximum strain is behind that determined by 0.3H(Here H refers to the height of retaining wall) method or Rankine theory.Lateral deformation of wall face increases with increasing load,and the largest lateral deformation occurs in the fourth layer,which lead to a bulging in the middle of wall face.
基金supported by the Higher Committee for Education Development(HCED)in Iraq
文摘Over recent years, there has been a clear increase in the frequency of reported flooding events around the world. Gabion structures offer one means of flood mitigation in dam spillways. These types of structures provide an additional challenge to the computational modeller in that flow through the porous gabions must be simulated. We have used a computational model to investigate the flow over gabion stepped spillways. The model was first validated against published experimental results. Then, gabion stepped spillways with four different step geometries were tested under the same conditions in order to facilitate inter-comparisons and to choose the best option in terms of energy dissipation. The results show that normal gabion steps can dissipate more energy than overlap, inclined, and pooled steps. An intensive set of tests with varying slope, stone size, and porosity were undertaken. The location of the inception point and the water depth at this point obtained from this study were compared with those from existing formulae. Two new empirical equations have been derived, on the basis of a regression analysis, to provide improved results for gabion stepped spillways.