The steady-state gain distribution in cladding pumped thulium-doped fiber laser(TDFL) is analytically and numerically solved based on the rate equations including loss coefficients and cross relaxation effect. With ...The steady-state gain distribution in cladding pumped thulium-doped fiber laser(TDFL) is analytically and numerically solved based on the rate equations including loss coefficients and cross relaxation effect. With the gain curve, a problem, which is named optical feedback inhibition(OFI) and always occurs in tandem TDFL-Ho:YAG laser system, is analyzed quantitatively. The actual characteristics of output spectra and power basically prove the conclusion of theoretical analysis. Then a simple mirror-deflected L-shaped cavity is employed to restrain the external feedback and simplify the structure of fiber-bulk Ho:YAG laser. Finally, 25 W of 2097-nm laser power and 51.2% of optical-to-optical conversion efficiency are obtained, and the beam quality factor is less than 1.43 obtained by knife-edge method.展开更多
In this study,it is proposed that the diffusion least mean square(LMS)algorithm can be improved by applying the fractional order signal processing methodologies.Application of Caputo’s fractional derivatives are cons...In this study,it is proposed that the diffusion least mean square(LMS)algorithm can be improved by applying the fractional order signal processing methodologies.Application of Caputo’s fractional derivatives are considered in the optimization of cost function.It is suggested to derive a fractional order variant of the diffusion LMS algorithm.The applicability is tested for the estimation of channel parameters in a distributed environment consisting of randomly distributed sensors communicating through wireless medium.The topology of the network is selected such that a smaller number of nodes are informed.In the network,a random sleep strategy is followed to conserve the transmission power at the nodes.The proposed fractional ordermodified diffusionLMS algorithms are applied in the two configurations of combine-then-adapt and adapt-then-combine.The average squared error performance of the proposed algorithms along with its traditional counterparts are evaluated for the estimation of the Rayleigh channel parameters.Amathematical proof of convergence is provided showing that the addition of the nonlinear term resulting from fractional derivatives helps adjusts the autocorrelation matrix in such a way that the spread of its eigenvalues decreases.This increases the convergence as well as the steady state response even for the larger step sizes.Experimental results are shown for different number of nodes and fractional orders.The simulation results establish that the accuracy of the proposed scheme is far better than its classical counterparts,therefore,helps better solves the channel gains estimation problem in a distributed wireless environment.The algorithm has the potential to be applied in other applications related to learning and adaptation.展开更多
After considering Kerr nonlinear effect, group velocity dispersion of host and gain distribution of active particle in laser amplifying medium, a basic equation describing propagation of the coupling optical pulse und...After considering Kerr nonlinear effect, group velocity dispersion of host and gain distribution of active particle in laser amplifying medium, a basic equation describing propagation of the coupling optical pulse under the multi-photon nonlinear Compton scattering in the laser amplifying medium has been deduced. Besides, the profile and power spectrum of a picosecond-level super-Gaussian coupling pulse in the laser amplifying medium have been discussed when its central frequency coincides with the gain peak frequency of the laser amplifying medium.展开更多
Runoff is a major component of the water cycle, and its multi-scale fluctuations are important to water resources management across arid and semi-arid regions. This paper coupled the Distributed Time Variant Gain Mod...Runoff is a major component of the water cycle, and its multi-scale fluctuations are important to water resources management across arid and semi-arid regions. This paper coupled the Distributed Time Variant Gain Model (DTVGM) into the Community Land Model (CLM 3.5), replacing the TOPMODEL-based method to simulate runoff in the arid and semi-arid regions of China. The coupled model was calibrated at five gauging stations for the period 1980-2005 and validated for the period 2006-2010. Then, future runoff (2010-2100) was simulated for different Representative Concentration Pathways (RCP) emission scenarios. After that, the spatial distributions of the future runoff for these scenarios were discussed, and the multi-scale fluctuation characteristics of the future annual runoff for the RCP scenarios were explored using the Ensemble Empirical Mode Decomposition (EEMD) analysis method. Finally, the decadal variabilities of the future annual runoff for the entire study area and the five catchments in it were investigated. The results showed that the future annual runoff had slowly decreasing trends for scenarios RCP 2.6 and RCP 8.5 during the period 2010-2100, whereas it had a non-monotonic trend for the RCP 4.5 scenario, with a slow increase after the 2050s. Additionally, the future annual runoff clearly varied over a decadal time scale, indicating that it had clear divisions between dry and wet periods. The longest dry period was approximately 15 years (2040-2055) for the RCP 2.6 scenario and 25 years (2045-2070) for the RCP 4.5 scenario. However, the RCP 8.5 scenario was predicted to have a long dry period starting from 2045. Under these scenarios, the water resources situation of the study area will be extremely severe. Therefore, adaptive water management measures addressing climate change should be adopted to proactively confront the risks of water resources.展开更多
Accurately estimating of Retransmission TimeOut (RTO) in Content-Centric Networking (CCN) is crucial for efficient rate control in end nodes and effective interface ranking in intermediate routers. Toward this end, th...Accurately estimating of Retransmission TimeOut (RTO) in Content-Centric Networking (CCN) is crucial for efficient rate control in end nodes and effective interface ranking in intermediate routers. Toward this end, the Jacobson algorithm, which is an Exponentially Weighted Moving Average (EWMA) on the Round Trip Time (RTT) of previous packets, is a promising scheme. Assigning the lower bound to RTO, determining how an EWMA rapidly adapts to changes, and setting the multiplier of variance RTT have the most impact on the accuracy of this estimator for which several evaluations have been performed to set them in Transmission Control Protocol/Internet Protocol (TCP/IP) networks. However, the performance of this estimator in CCN has not been explored yet, despite CCN having a significant architectural difference with TCP/IP networks. In this study, two new metrics for assessing the performance of RTO estimators in CCN are defined and the performance of the Jacobson algorithm in CCN is evaluated. This evaluation is performed by varying the minimum RTO, EWMA parameters, and multiplier of variance RTT against different content popularity distribution gains. The obtained results are used to reconsider the Jacobson algorithm for accurately estimating RTO in CCN. Comparing the performance of the reconsidered Jacobson estimator with the existing solutions shows that it can estimate RTO simply and more accurately without any additional information or computation overhead.展开更多
We show theoretically and experimentally that Raman PDG can be formulated as a function of the pump light DOP and the transmission fiber PMD. Raman PDG is sufficiently reduced thanks to the inevitable fiber PMD.
基金Project supported by the National Natural Science Foundation of China(Grant No.61275146)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120002110066)the Special Program of the Co-construction with Beijing Municipal Government of China(Grant No.20121000302)
文摘The steady-state gain distribution in cladding pumped thulium-doped fiber laser(TDFL) is analytically and numerically solved based on the rate equations including loss coefficients and cross relaxation effect. With the gain curve, a problem, which is named optical feedback inhibition(OFI) and always occurs in tandem TDFL-Ho:YAG laser system, is analyzed quantitatively. The actual characteristics of output spectra and power basically prove the conclusion of theoretical analysis. Then a simple mirror-deflected L-shaped cavity is employed to restrain the external feedback and simplify the structure of fiber-bulk Ho:YAG laser. Finally, 25 W of 2097-nm laser power and 51.2% of optical-to-optical conversion efficiency are obtained, and the beam quality factor is less than 1.43 obtained by knife-edge method.
文摘In this study,it is proposed that the diffusion least mean square(LMS)algorithm can be improved by applying the fractional order signal processing methodologies.Application of Caputo’s fractional derivatives are considered in the optimization of cost function.It is suggested to derive a fractional order variant of the diffusion LMS algorithm.The applicability is tested for the estimation of channel parameters in a distributed environment consisting of randomly distributed sensors communicating through wireless medium.The topology of the network is selected such that a smaller number of nodes are informed.In the network,a random sleep strategy is followed to conserve the transmission power at the nodes.The proposed fractional ordermodified diffusionLMS algorithms are applied in the two configurations of combine-then-adapt and adapt-then-combine.The average squared error performance of the proposed algorithms along with its traditional counterparts are evaluated for the estimation of the Rayleigh channel parameters.Amathematical proof of convergence is provided showing that the addition of the nonlinear term resulting from fractional derivatives helps adjusts the autocorrelation matrix in such a way that the spread of its eigenvalues decreases.This increases the convergence as well as the steady state response even for the larger step sizes.Experimental results are shown for different number of nodes and fractional orders.The simulation results establish that the accuracy of the proposed scheme is far better than its classical counterparts,therefore,helps better solves the channel gains estimation problem in a distributed wireless environment.The algorithm has the potential to be applied in other applications related to learning and adaptation.
文摘After considering Kerr nonlinear effect, group velocity dispersion of host and gain distribution of active particle in laser amplifying medium, a basic equation describing propagation of the coupling optical pulse under the multi-photon nonlinear Compton scattering in the laser amplifying medium has been deduced. Besides, the profile and power spectrum of a picosecond-level super-Gaussian coupling pulse in the laser amplifying medium have been discussed when its central frequency coincides with the gain peak frequency of the laser amplifying medium.
基金supported by the National Basic Research Program of China(2012CB956204)We acknowledge the modeling groups for providing the data for analysis,the Program for Climate Model Diagnosis and Intercomparison(PCMDI)the World Climate Research Programme’s(WCRP’s)Coupled Model Intercomparison Project for collecting and archiving the model output and organizing the data analysis
文摘Runoff is a major component of the water cycle, and its multi-scale fluctuations are important to water resources management across arid and semi-arid regions. This paper coupled the Distributed Time Variant Gain Model (DTVGM) into the Community Land Model (CLM 3.5), replacing the TOPMODEL-based method to simulate runoff in the arid and semi-arid regions of China. The coupled model was calibrated at five gauging stations for the period 1980-2005 and validated for the period 2006-2010. Then, future runoff (2010-2100) was simulated for different Representative Concentration Pathways (RCP) emission scenarios. After that, the spatial distributions of the future runoff for these scenarios were discussed, and the multi-scale fluctuation characteristics of the future annual runoff for the RCP scenarios were explored using the Ensemble Empirical Mode Decomposition (EEMD) analysis method. Finally, the decadal variabilities of the future annual runoff for the entire study area and the five catchments in it were investigated. The results showed that the future annual runoff had slowly decreasing trends for scenarios RCP 2.6 and RCP 8.5 during the period 2010-2100, whereas it had a non-monotonic trend for the RCP 4.5 scenario, with a slow increase after the 2050s. Additionally, the future annual runoff clearly varied over a decadal time scale, indicating that it had clear divisions between dry and wet periods. The longest dry period was approximately 15 years (2040-2055) for the RCP 2.6 scenario and 25 years (2045-2070) for the RCP 4.5 scenario. However, the RCP 8.5 scenario was predicted to have a long dry period starting from 2045. Under these scenarios, the water resources situation of the study area will be extremely severe. Therefore, adaptive water management measures addressing climate change should be adopted to proactively confront the risks of water resources.
文摘Accurately estimating of Retransmission TimeOut (RTO) in Content-Centric Networking (CCN) is crucial for efficient rate control in end nodes and effective interface ranking in intermediate routers. Toward this end, the Jacobson algorithm, which is an Exponentially Weighted Moving Average (EWMA) on the Round Trip Time (RTT) of previous packets, is a promising scheme. Assigning the lower bound to RTO, determining how an EWMA rapidly adapts to changes, and setting the multiplier of variance RTT have the most impact on the accuracy of this estimator for which several evaluations have been performed to set them in Transmission Control Protocol/Internet Protocol (TCP/IP) networks. However, the performance of this estimator in CCN has not been explored yet, despite CCN having a significant architectural difference with TCP/IP networks. In this study, two new metrics for assessing the performance of RTO estimators in CCN are defined and the performance of the Jacobson algorithm in CCN is evaluated. This evaluation is performed by varying the minimum RTO, EWMA parameters, and multiplier of variance RTT against different content popularity distribution gains. The obtained results are used to reconsider the Jacobson algorithm for accurately estimating RTO in CCN. Comparing the performance of the reconsidered Jacobson estimator with the existing solutions shows that it can estimate RTO simply and more accurately without any additional information or computation overhead.
文摘We show theoretically and experimentally that Raman PDG can be formulated as a function of the pump light DOP and the transmission fiber PMD. Raman PDG is sufficiently reduced thanks to the inevitable fiber PMD.