We investigate optical force on a graphene-coated gain microparticle by adopting the Maxwell's stress tensor method.It is found that there exists a threshold gain in obtaining the Fano-profile optical force which ...We investigate optical force on a graphene-coated gain microparticle by adopting the Maxwell's stress tensor method.It is found that there exists a threshold gain in obtaining the Fano-profile optical force which indicates the reversal of optical pushing and pulling force. And giant pushing/pulling force can be achieved if the gain value of the material is in the proximity of the threshold gain. Our results show that the threshold gain is more sensitive to the relaxation time than to the Fermi energy of the graphene. We further study the optical force on larger microparticle to demonstrate the pulling force occurring at octupole resonance with small gain value and then it will appear at quadrupole resonance by increasing gain value. Our work provides an in-depth insight into the interaction between light and gain material and gives the additional degree of freedom to optical manipulation of microparticle.展开更多
The electric and magnetic energy distributions in photonic crystals (PC) are calculated by using the plane wave expansion (PWE) method. Even though the total electric and magnetic energy in each unit cell of photo...The electric and magnetic energy distributions in photonic crystals (PC) are calculated by using the plane wave expansion (PWE) method. Even though the total electric and magnetic energy in each unit cell of photonic crystals are equal to each other, the ratio of electric and magnetic energy densities varies depending on the local position. Based on Fermi's golden rule, the optical gain is analysed in the full quantum framework that takes the nonuniform energy density ratio into account. This nonuniform energy density ratio in photonic crystals, defined in an equal form as gain modification factor, leads to spatially inhomogeneous modification of optical gain. Results reported in the paper provide a new perspective for analysing gain characteristics, as well as the lasing properties, in photonic crystals.展开更多
In adaptive beamforming system adaptive algorithm of digital filter is applied to update the weighting vector of the antenna elements to get antenna gain along the desired direction and attenuation along the jammer. T...In adaptive beamforming system adaptive algorithm of digital filter is applied to update the weighting vector of the antenna elements to get antenna gain along the desired direction and attenuation along the jammer. The objective of the paper is to evaluate the threshold gain of the adaptive beam former along the line of sight (LOS) between the transmitter and the receiver (including jammer suppression) to make the single hop link comparable with 2-hop link. The single hop and 2-hop communication systems are compared in context of symbol error rate (SER) under fading condition theoretically and verified by simulation. Finally we evaluate the numerical value of threshold gain of adaptive beamformer of two antenna elements under Rayleigh and Nakagami-m fading conditions.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 11904184, 11847033, and 11704158)the Natural Science Foundation of Jiangsu Province,China (Grant No. BK20170170)。
文摘We investigate optical force on a graphene-coated gain microparticle by adopting the Maxwell's stress tensor method.It is found that there exists a threshold gain in obtaining the Fano-profile optical force which indicates the reversal of optical pushing and pulling force. And giant pushing/pulling force can be achieved if the gain value of the material is in the proximity of the threshold gain. Our results show that the threshold gain is more sensitive to the relaxation time than to the Fermi energy of the graphene. We further study the optical force on larger microparticle to demonstrate the pulling force occurring at octupole resonance with small gain value and then it will appear at quadrupole resonance by increasing gain value. Our work provides an in-depth insight into the interaction between light and gain material and gives the additional degree of freedom to optical manipulation of microparticle.
基金Supported by, the National Natural Science Foundation of China under Grant No 60537010.
文摘The electric and magnetic energy distributions in photonic crystals (PC) are calculated by using the plane wave expansion (PWE) method. Even though the total electric and magnetic energy in each unit cell of photonic crystals are equal to each other, the ratio of electric and magnetic energy densities varies depending on the local position. Based on Fermi's golden rule, the optical gain is analysed in the full quantum framework that takes the nonuniform energy density ratio into account. This nonuniform energy density ratio in photonic crystals, defined in an equal form as gain modification factor, leads to spatially inhomogeneous modification of optical gain. Results reported in the paper provide a new perspective for analysing gain characteristics, as well as the lasing properties, in photonic crystals.
文摘In adaptive beamforming system adaptive algorithm of digital filter is applied to update the weighting vector of the antenna elements to get antenna gain along the desired direction and attenuation along the jammer. The objective of the paper is to evaluate the threshold gain of the adaptive beam former along the line of sight (LOS) between the transmitter and the receiver (including jammer suppression) to make the single hop link comparable with 2-hop link. The single hop and 2-hop communication systems are compared in context of symbol error rate (SER) under fading condition theoretically and verified by simulation. Finally we evaluate the numerical value of threshold gain of adaptive beamformer of two antenna elements under Rayleigh and Nakagami-m fading conditions.