The discovery of massive galaxies at high redshifts,especially the passive ones,poses a big challenge for the current standard galaxy formation models.Here we use the semi-analytic galaxy formation model developed by ...The discovery of massive galaxies at high redshifts,especially the passive ones,poses a big challenge for the current standard galaxy formation models.Here we use the semi-analytic galaxy formation model developed by Henriques et al.to explore the formation and evolution of massive galaxies(MGs,stellar-mass M*>1011 M⊙).Different from previous works,we focus on the ones just formed(e.g.just reach?1011 M⊙).We find that most of the MGs are formed around z=0.6,with the earliest formation at z>4.Interestingly,although most of the MGs in the local Universe are passive,we find that only 13%of the MGs are quenched at the formation time.Most of the quenched MGs at formation already host a very massive supermassive black hole(SMBH)which could power the very effective AGN feedback.For the star-forming MGs,the ones with more massive SMBH prefer to quench in shorter timescales;in particular,those with MSMBH>107.5 M⊙have a quenching timescale of~0.5 Gyr and the characteristic MSMBH depends on the chosen stellar mass threshold in the definition of MGs as a result of their co-evolution.We also find that the"in-situ"star formation dominates the stellar mass growth of MGs until they are formed.Over the whole redshift range,we find the quiescent MGs prefer to stay in more massive dark matter halos,and have more massive SMBH and less cold gas masses.Our results provide a new angle on the whole life of the growth of MGs in the Universe.展开更多
Using a sample of 13 early-type spiral galaxies hosting nuclear rings,we report remarkable correlations between the properties of the nuclear rings and the central intensity ratio(CIR) of their host galaxies.The CIR,a...Using a sample of 13 early-type spiral galaxies hosting nuclear rings,we report remarkable correlations between the properties of the nuclear rings and the central intensity ratio(CIR) of their host galaxies.The CIR,a function of intensity of light within the central 1.5 and 3 arcsec region,is found to be a vital parameter in galaxy evolution,as it shares strong correlations with many structural and dynamical properties of early-type galaxies,including mass of the central supermassive black hole(SMBH).We use archival HST images for aperture photometry at the centre of the galaxy image to compute the CIR.We observe that the relative sizes of nuclear rings and ring cluster surface densities strongly correlate with the CIR.These correlations suggest reduced star formation in the centres of galaxies hosting small and dense nuclear rings.This scenario appears to be a consequence of strong bars as advocated by the significant connection observed between the CIR and bar strengths.In addition,we observe that the CIR is closely related with the integrated properties of the stellar population in the nuclear rings,associating the rings hosting older and less massive star clusters with low values of CIR.Thus,the CIR can serve as a crucial parameter in unfolding the coupled evolution of bars and rings as it is intimately connected with both their properties.展开更多
The coevolution between supermassive black holes(SMBHs) and their host galaxies has been proposed for more than a decade,albeit with little direct evidence about black hole accretion activities regulating galaxy star ...The coevolution between supermassive black holes(SMBHs) and their host galaxies has been proposed for more than a decade,albeit with little direct evidence about black hole accretion activities regulating galaxy star formation at z> 1.In this paper,we study the lifetimes of X-ray active galactic nuclei(AGNs) in UV-selected red sequence(RS),blue cloud(BC) and green valley(GV) galaxies,finding that AGN accretion activities are most prominent in GV galaxies at z ~1.5-2,compared with RS and BC galaxies.We also compare AGN accretion timescales with typical color transition timescales of UV-selected galaxies.We find that the lifetime of GV galaxies at z~1.5-2 is very close to the typical timescale when the AGNs residing in them stay in the high-accretion-rate mode at these redshifts;for BC galaxies,the consistency between the color transition timescale and the black hole strong accretion lifetime is more likely to happen at lower redshifts(z <1).Our results support the scenario where AGN accretion activities govern UV color transitions of host galaxies,making galaxies and their central SMBHs coevolve with each other.展开更多
We present galactic spectroscopic data from a pencil beam of 10.75×7.5 centered on the X-ray cluster RXJ0054.0–2823 at z=0.29.We study the spectral evolution of galaxies from z=1 down to the cluster redshift in ...We present galactic spectroscopic data from a pencil beam of 10.75×7.5 centered on the X-ray cluster RXJ0054.0–2823 at z=0.29.We study the spectral evolution of galaxies from z=1 down to the cluster redshift in a magnitude-limited sample at R≤23,for which the statistical properties of the sample are well understood.We divide emission-line galaxies into star-forming galaxies,Low Ionization Nuclear Emission line Regions(LINERs) ,and Seyferts by using emission-line ratios of[OII],Hβ,and[OIII],and derive stellar fractions from population synthesis models. We focus our analysis on absorption and low-ionization galaxies.For absorption-line galaxies,we recover the well-known result that these galaxies have had no detectable evolution since z~0.6-0.7,but we also find that in the range z=0.65-1,at least 50% of the stars in bright absorption systems are younger than 2.5 Gyr.Faint absorption-line galaxies in the cluster at z=0.29 also had significant star formation during the previous 2-3 Gyr,but their brighter counterparts seem to be only composed of old stars.At z~0.8,our dynamically young cluster had a truncated red-sequence.This result seems to be consistent with a scenario where the final assembly of E/S0 took place at z1.In the volume-limited range 0.35≤z≤0.65,we find that 23% of the early-type galaxies have LINER-like spectra with Hβin absorption and have a significant component of A stars.The vast majority of LINERs in our sample have significant populations of young and intermediate-aged stars and are thus not related to AGNs,but to the population of‘retired galaxies’recently identified by Cid Fernandes et al.in the Sloan Digital Sky Survey(SDSS) .Early-type LINERs with various fractions of A stars and E+A galaxies appear to play an important role in the formation of the red sequence.展开更多
Galaxy formation and evolution is one of the most active research areas in astrophysics,so many people have studied this area.But since they didn’t understand thoroughly the evolution law from satellite to planet the...Galaxy formation and evolution is one of the most active research areas in astrophysics,so many people have studied this area.But since they didn’t understand thoroughly the evolution law from satellite to planet then to star,their theories are very weak.In their theories,they proposed that large gas clouds collapsing to form a galaxy or more recently that matter started out in smaller clumps merged to form galaxy,which is incredible.Hence,the author of this paper,through studying the formation and orbit-variation of satellites,planets and stars,has put forward a new theory of galaxy formation and evolution,therefore revealing the hierarchical structure of galaxies and the formation and evolution of black holes and quasars.展开更多
We used the Sloan Digital Sky Survey (SDSS) Data Release 5 (DR5) to study the morphological properties of 1137 nearby infrared (IR) galaxies, most of which are brighter than 15.9 mag in r-band. This sample was d...We used the Sloan Digital Sky Survey (SDSS) Data Release 5 (DR5) to study the morphological properties of 1137 nearby infrared (IR) galaxies, most of which are brighter than 15.9 mag in r-band. This sample was drawn from a cross-correlation of the Infra-Red Astronomical Satellite (IRAS) point source catalog redshift survey with DR5 at z ≤ 0.08. Based on this IR galaxy sample, we constructed five volume-limited sub-samples with IR luminosity ranging from 10^9.5 L⊙ to 10^12L⊙. By deriving the IR luminosity functions (LF) for different morphological types, we found that normal spiral galaxies are the dominant population below LIR ~ 8 ~ 10^10 L⊙; while the fraction of barred spiral galaxies increases with increasing IR luminosity and becomes dominant in spiral galaxies beyond LIR ≈ 5 × 10^10L⊙. As the IR luminosity decreases, the IR galaxies become more compact and have lower stellar masses. The analysis also shows that normal spiral galaxies give the dominant contribution to the total comoving IR energy density in the nearby universe, while, in contrast, the contribution from peculiar galaxies is only 39%.展开更多
Early-type galaxies (ETGs) are very important for understanding the formation and evolution of galaxies. Recent observations suggest that ETGs are not simply old stellar spheroids as we previously thought. Widesprea...Early-type galaxies (ETGs) are very important for understanding the formation and evolution of galaxies. Recent observations suggest that ETGs are not simply old stellar spheroids as we previously thought. Widespread recent star formation, cool gas and dust have been detected in a substantial fraction of ETGs. We make use of the radial profiles of 9 - r color and the concentration index from the Sloan Digital Sky Survey database to pick out 31 peculiar ETGs with central blue cores. By analyzing the photometric and spectroscopic data, we suggest that the blue cores are caused by star formation activities rather than the central weak active galactic nucleus. From the results of stellar population synthesis, we find that the stellar population of the blue cores is relatively young, spreading from several Myr to less than one Gyr. In 14 galaxies with H I observations, we find that the average gas fraction of these galaxies is about 0.55. The bluer galaxies show a higher gas fraction, and the total star forma- tion rate (SFR) correlates very well with the H I gas mass. The star formation history of these ETGs is affected by the environment, e.g. in the denser environment the H I gas is less and the total SFR is lower. We also discuss the origin of the central star formation of these early-type galaxies.展开更多
A cosmological model was developed using the equation of state of photon gas, as well as cosmic time. The primary objective of this model is to see if determining the observed rotation speed of galactic matter is poss...A cosmological model was developed using the equation of state of photon gas, as well as cosmic time. The primary objective of this model is to see if determining the observed rotation speed of galactic matter is possible, without using dark matter (halo) as a parameter. To do so, a numerical application of the evolution of variables in accordance with cosmic time and a new state equation was developed to determine precise, realistic values for a number of cosmological parameters, such as energy of the universe <i>U</i>, cosmological constant <i>E</i><sub>Λ</sub>, curvature of space <i>k</i>, energy density <i>ρ</i><sub>Λ<i>e</i></sub>, age of the universe <i>t</i><sub>Ω</sub> (part 1). That energy of the universe, when taken into consideration during the formation of the first galaxies (<1 [Gy]), provides a relatively adequate explanation of the non-Keplerian rotation of galactic masses (part 2). Indeed, such residual, non-baryonic energy, when considered in Newton’s gravity equation, adds the term <i>F</i><sub>Λ</sub>(<i>r</i>), which can partially explain, without recourse to dark matter, the rotations of some galaxies, such as M33, UGC12591, UGC2885, NGC3198, NGC253, DDO161, UDG44, the MW and the Coma cluster. Today, in the MW, that cosmological gravity force is in the order of 10<sup>26</sup> times smaller than the conventional gravity force. The model predicts an acceleration of the mass in the universe (<i>q</i>~-0.986);the energy associated with curvature <i>E<sub>k</sub></i> is the driving force behind the expansion of the universe, rather than the energy associated with the cosmological constant <i>E</i><sub>Λ</sub>. An equation to determine expansion is obtained using the energy form of the Friedmann equation relative to Planck power <i>P<sub>P</sub></i> and cosmic time or Planck force <i>F<sub>P</sub></i> acting at the frontier of the universe moving at <i>c</i>. This constant Planck force, from unknown sources, acts everywhere to the expansion of the universe as a stretching effect on the volume. Finally, the model partly explains the value a<sub>0</sub> of the MOND theory. Indeed, <i>a</i><sub>0</sub> is not a true constant, but depends on the cosmological constant at the time the great structures were formed (~1 [Gy]), as well as an adjustment of the typical mass and dimension of those great structures, such as galaxies. The constant a<sub>0</sub> is a different expression of the cosmological gravity force <i>F</i><sub>Λ</sub> as expressed by the cosmological constant, Λ, acting through the energy-mass equivalent during the formation of the structures. It does not put in question the value of <i>G</i>.展开更多
Based on a sample of 79 local advanced merger (adv-merger) (U)LIRGs, we search for evidence of quenching processes by investigating the distributions of star formation history indicators (EW(Ha), EW(HfiA) and...Based on a sample of 79 local advanced merger (adv-merger) (U)LIRGs, we search for evidence of quenching processes by investigating the distributions of star formation history indicators (EW(Ha), EW(HfiA) and D,(4000)) on the NUV-r color-mass and SFR-M, diagrams. The distributions of EW(Ha) and Dn(4000) on the NUV-r color-mass diagram show clear trends that at a given stellar mass, galaxies with redder NUV-r colors have smaller EW(Ha) and larger Dn (4000). The reddest adv-merger (U)LIRGs close to the green valley mostly have Dn(4000)〉 1.4. In addition, in the SFR-M, diagram, as the SFR decreases, the EW(Ha) decreases and the Dn (4000) increases, implying that the adv-merger (U)LIRGs on the star formation main sequence have more evolved stellar populations than those above the main sequence. These results indicate that a fraction of the adv-merger (U)LIRGs have already exhibited signs of fading from the starburst phase and that the NUV-r reddest adv-merger (U)LIRGs are likely at the initial stage of post-starbursts with an age of - 1 Gyr, which is consistent with the gas exhaustion time-scales. Therefore, our results offer additional support for the fast evolutionary track from the blue cloud to the red sequence.展开更多
We use a semi-analytic galaxy formation model to study the co-evolution of supermassive black holes(SMBHs) with their host galaxies.Although the coalescence of SMBHs is not important,the quasarmode accretion induced b...We use a semi-analytic galaxy formation model to study the co-evolution of supermassive black holes(SMBHs) with their host galaxies.Although the coalescence of SMBHs is not important,the quasarmode accretion induced by mergers plays a dominant role in the growth of SMBHs.Mergers play a more important role in the growth of SMBH host galaxies than in the SMBH growth.It is the combined contribution from quasar mode accretion and mergers to the SMBH growth and the combined contribution from starburst and mergers to their host galaxy growth that determine the observed scaling relation between the SMBH masses and their host galaxy masses.We also find that mergers are more important in the growth of SMBH host galaxies compared to normal galaxies which share the same stellar mass range as the SMBH host galaxies.展开更多
We compile a new sample of 89 open clusters with ages, distances and metallicities available. We derive a radial iron gradient of about -0.099±0.008 dex kpc^(-1) (unweighted) for the whole sample, which is somewh...We compile a new sample of 89 open clusters with ages, distances and metallicities available. We derive a radial iron gradient of about -0.099±0.008 dex kpc^(-1) (unweighted) for the whole sample, which is somewhat greater than the most recent determination of oxygen gradient from nebulae and young stars. By dividing the clusters into age groups, we show that the iron gradient was steeper in the past and has evolved slowly in time. Current data show a substantial scatter of the cluster metallicities indicating that the Galactic disk has undergone a very rapid, inhomogeneous enrichment. Also, based on a simple, but quite successful model of chemical evolution of the Milky Way disk, we make a detailed calculation of the iron abundance gradient and its time evolution. The predicted current iron gradient is about -0.072 dex kpc^(-1). The model also predicts a steady flattening of the iron gradient with time, which agrees with the result from our open cluster sample.展开更多
Based on the undisturbed, finite thickness disk gravitational potential, we carried out 3-D Monte Carlo simulations of normal pulsars. We find that their scale height evolves in a similar way for different velocity di...Based on the undisturbed, finite thickness disk gravitational potential, we carried out 3-D Monte Carlo simulations of normal pulsars. We find that their scale height evolves in a similar way for different velocity dispersions (δv): it first increases linearly with time, reaches a peak, then gradually decreases, and finally approaches a stable asymptotic value. The initial velocity dispersion has a very large influence on the scale height. The time evolution of the scale height is studied. When the magnetic decay age is used as the time variable, the observed scale height has a similar trend as the simulated results in the linear stage, from which we derive velocity dispersions in the range 70 - 178km s^-1, which are near the statistical result of 90 - 270km s^-1 for 92 pulsars with known transverse velocities. If the characteristic age is used as the time variable, then the observed and theoretical curves roughly agree for t 〉 10^8 yr only if av 〈 25km s^-1.展开更多
Accurate measurements of stellar metallicity gradients in the radial and vertical directions of the disk and their temporal variations provide important constraints on the formation and evolution of the Milky Way disk...Accurate measurements of stellar metallicity gradients in the radial and vertical directions of the disk and their temporal variations provide important constraints on the formation and evolution of the Milky Way disk. We use 297 042 main sequence turn-off stars selected from the LAMOST Spectroscopic Survey of the Galactic Anticenter(LSS-GAC) to determine the radial and vertical gradients of stellar metallicity,△[Fe/H]/△R and △[Fe/H]/△|Z | of the Milky Way disk in the direction of the anticenter. We determine ages of those turn-off stars by isochrone fitting and measure the temporal variations of metallicity gradients. We have carried out a detailed analysis of the selection effects resulting from the selection, observation and data reduction of LSS-GAC targets and the potential biases of a magnitude limited sample on the determinations of metallicity gradients. Our results show that the gradients, both in the radial and vertical directions, exhibit significant spatial and temporal variations. The radial gradients yielded by stars with the oldest ages( 11 Gyr) are essentially zero at all heights from the disk midplane, while those given by younger stars are always negative. The vertical gradients deduced from stars with the oldest ages( 11 Gyr)are negative and only show very weak variations with Galactocentric distance in the disk plane, R, while those yielded by younger stars show strong variations with R.After being essentially flat at the earliest epochs of disk formation, the radial gradients steepen as age decreases, reaching a maximum(steepest) at age 7–8 Gyr, and then they flatten again. Similar temporal trends are also found for the vertical gradients. We infer that the assembly of the Milky Way disk may have experienced at least two distinct phases. The earlier phase is probably related to a slow, pressure-supported collapse of gas, when the gas settles down to the disk mainly in the vertical direction. In the later phase, there are significant radial flows of gas in the disk, and the rate of gas inflow near the solar neighborhood reaches a maximum around a lookback time of 7–8 Gyr.The transition between the two phases occurs around a lookback time between 8 and11 Gyr. The two phases may be responsible for the formation of the Milky Way's thick and thin disks, respectively. Also, as a consequence, we recommend that stellar age is a natural, physical criterion to distinguish stars from the thin and thick disks. From an epoch earlier than 11 Gyr to one between 8 and 11 Gyr, there is an abrupt, significant change in magnitude of both the radial and vertical metallicity gradients, suggesting that stellar radial migration is unlikely to play an important role in the formation of the thick disk.展开更多
We study the ages of a large sample (1802) of nearly face-on disk low surface brightness galaxies (LSBGs) using the evolutionary population synthesis (EPS) model PEGASE with an exponentially decreasing star form...We study the ages of a large sample (1802) of nearly face-on disk low surface brightness galaxies (LSBGs) using the evolutionary population synthesis (EPS) model PEGASE with an exponentially decreasing star formation rate to fit their mul- tiwavelength spectral energy distributions (SEDs) from far-ultraviolet (FUV) to nearinfrared (NIR). The derived ages of LSBGs are 1-5 Gyr for most of the sample no matter if constant or varying dust extinction is adopted, which are similar to most of the previous studies on smaller samples. This means that these LSBGs formed the majority of their stars quite recently. However, a small part of the sample (~2%-3%) has larger ages of 5-8 Gyr, meaning their major star forming process may have occurred earlier. At the same time, a large sample (5886) of high surface brightness galaxies (HSBGs) are selected and studied using the same method for comparisons. The de- rived ages are 1-5 Gyr for most of the sample (97%) as well. These results probably mean that these LSBGs have not much different star formation histories from their HSBGs counterparts. However, we should notice that the HSBGs are generally about 0.2 Gyr younger, which could mean that the HSBGs may have undergone more recent star forming activities than the LSBGs.展开更多
A project of a spectroscopic survey of Galactic structure and evolution with a Large sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST) is presented. The spectroscopic survey consists of two observational ...A project of a spectroscopic survey of Galactic structure and evolution with a Large sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST) is presented. The spectroscopic survey consists of two observational modes for various targets in our Galaxy. One is a major survey of the Milky Way aimed at a systematic study of the stellar abundance and Galactic chemical evolution through low resolution (R = 1000 2000) spectroscopy. Another is a follow-up observation with medium resolution (R = 10000) spectrographs aimed at detailed studies of the selected stars with different chemical composition, kinematics and dynamics.展开更多
In Part 1 of this work, we showed that our new model of cosmology can account for the origin of all cosmic structures ranging in size from stars up to superclusters. In this model, at the time of nucleosynthesis, an i...In Part 1 of this work, we showed that our new model of cosmology can account for the origin of all cosmic structures ranging in size from stars up to superclusters. In this model, at the time of nucleosynthesis, an imprint embedded in the vacuum regulated the creation of the protons (and electrons) that later made up the structures. Immediately after nucleosynthesis and for a considerable period afterward, the evolution was completely determined by the expansion of the universe. Gradually, however, gravitational influences became more important until finally, the expansion of the structures-to-be ceased at their zero velocity points. Stars, galaxies, and galaxy clusters all reached their zero velocity points more or less simultaneously at the usually accepted time of the beginning of galaxy formation. From that point onward, the evolution gravitation came to dominate the evolution although the expansion still exerted its influence. In this paper, we examine the subsequent cluster evolution in some detail. We establish the conditions required to prevent a free-fall collapse of the clusters and then show that galaxies with quasar-like active nuclei located within the cluster were the sources of the necessary radiation. We also show that the required galactic supermassive black holes were a consequence of the initial free-fall collapse of all galaxies.展开更多
The Spitzer Extended Deep Survey(SEDS)as a deep and wide mid-infrared(MIR)survey project provides a sample of 500000+sources spreading 1.46 square degree and a depth of 26 AB mag(3σ).Combining with the previous avail...The Spitzer Extended Deep Survey(SEDS)as a deep and wide mid-infrared(MIR)survey project provides a sample of 500000+sources spreading 1.46 square degree and a depth of 26 AB mag(3σ).Combining with the previous available data,we build a PSF-matched multi-wavelength photometry catalog from u band to 8μm.We fit the SEDS galaxies spectral energy distributions by the local galaxy templates.The results show that the SEDS galaxy can be fitted well,indicating the high redshift galaxy(z~1)shares the same templates with the local galaxies.This study would facilitate the further study of the galaxy luminosity and high redshift mass function.展开更多
Environments play an important role in galaxy formation and evolution,particularly in regulating the content of neutral gas.However,current HI surveys have limitations in their depth,which prevents them from adequatel...Environments play an important role in galaxy formation and evolution,particularly in regulating the content of neutral gas.However,current HI surveys have limitations in their depth,which prevents them from adequately studying low HI content galaxies in high-density regions.In this study,we address this issue by employing the Five-hundred-meter Aperture Spherical radio Telescope with extensive integration times to complement the relatively shallow Arecibo Legacy Fast Arecibo L-band Feed Array HI survey.This approach allows us to explore the gas content of dwarf galaxies across various environments.We observe a positive relationship between HI mass and stellar mass in dwarf galaxies,with a well-defined upper boundary for HI mass that holds true in both observations and simulations.Furthermore,we find a decrease in the H I-to-stellar mass ratio(M_(HI)/M_*)as the density of the environment increases,irrespective of whether it is determined by the proximity to the nearest group or the projected number density.Comparing our observations to simulations,we note a steeper slope in the relationship,indicating a gradual gas-stripping process in the observational data.Additionally,we find that the scaling relation between the M_(HI)/M_*and optical properties can be improved by incorporating galaxy environments.展开更多
We investigate the evolution of nuclear gas-phase oxygen abundance and star formation rate(SFR) of local far-infrared selected star-forming galaxies along the merger sequence, as traced by their optical morphologies...We investigate the evolution of nuclear gas-phase oxygen abundance and star formation rate(SFR) of local far-infrared selected star-forming galaxies along the merger sequence, as traced by their optical morphologies. The sample was drawn from a cross-correlation analysis of the IRAS Point Source Catalog Redshift Survey and 1 Jy ultraluminous infrared galaxy sample with the Sloan Digital Sky Survey Data Release 7 database. The investigation is done by comparing our sample to a control sample matched in the normalized redshift distribution in two diagnostics, which are the nuclear gas-phase metallicity vs.stellar mass and the nuclear SFR vs. stellar mass diagrams. Galaxies with different morphological types show different mass-metallicity relations(MZRs). Compared to the MZR defined by the control sample,isolated spirals have comparable metallicities with the control sample at a given stellar mass. Spirals in pairs and interacting galaxies with projected separations of rp 〉 20 kpc show a mild metallicity dilution of0.02–0.03 dex. Interacting galaxies with rp 〈 20 kpc, pre-mergers and advanced mergers are underabundant by~0.06,~0.05 and~0.04 dex, respectively. This shows an evolutionary trend that the metallicity is increasingly depressed as the merging proceeds and it is diluted most dramatically when two galaxies are closely interacting. Afterwards, the interstellar medium(ISM) is enriched when the galaxies coalesce.This is the first time that such ISM enrichment at the final coalescence stage has been observed, which demonstrates the importance of supernova explosions in affecting the nuclear metallicity. Moreover, the central SFR enhancement relative to the control sample evolves simultaneously with the nuclear gas-phase oxygen abundance. Our results support the predictions from numerical simulations.展开更多
The alignment between satellite and central galaxies serves as a proxy for addressing the issue of galaxy formation and evolution, and has been investigated abundantly in observations and theoretical works.Most scenar...The alignment between satellite and central galaxies serves as a proxy for addressing the issue of galaxy formation and evolution, and has been investigated abundantly in observations and theoretical works.Most scenarios indicate that the satellites preferentially are located along the major axis of their central galaxy. Recent work shows that the strength of alignment signals depends on the large-scale environment in observations. We use the publicly-released data from EAGLE to figure out whether the same effect can be found in the associated hydrodynamic simulation. We found much stronger environmental dependency of alignment signals in the simulation. We also explore change of alignments to address the formation of this effect.展开更多
基金supports from National Key R&D Program of China(Grant Nos.2018YFA0404503,2018YFE0202902)the National Key Program for Science and Technology Research and Development of China(2017YFB0203300,2015CB857005)+2 种基金the National Natural Science Foundation of China(NSFC,Nos.11988101,11425312,11503032,11773032,11390372,11873051,118513,11573033,11622325,12033008,and 11622325)funding supports from FONDECYT Postdoctoral Fellowship Project(No.3190354)NSFC(No.11703037)。
文摘The discovery of massive galaxies at high redshifts,especially the passive ones,poses a big challenge for the current standard galaxy formation models.Here we use the semi-analytic galaxy formation model developed by Henriques et al.to explore the formation and evolution of massive galaxies(MGs,stellar-mass M*>1011 M⊙).Different from previous works,we focus on the ones just formed(e.g.just reach?1011 M⊙).We find that most of the MGs are formed around z=0.6,with the earliest formation at z>4.Interestingly,although most of the MGs in the local Universe are passive,we find that only 13%of the MGs are quenched at the formation time.Most of the quenched MGs at formation already host a very massive supermassive black hole(SMBH)which could power the very effective AGN feedback.For the star-forming MGs,the ones with more massive SMBH prefer to quench in shorter timescales;in particular,those with MSMBH>107.5 M⊙have a quenching timescale of~0.5 Gyr and the characteristic MSMBH depends on the chosen stellar mass threshold in the definition of MGs as a result of their co-evolution.We also find that the"in-situ"star formation dominates the stellar mass growth of MGs until they are formed.Over the whole redshift range,we find the quiescent MGs prefer to stay in more massive dark matter halos,and have more massive SMBH and less cold gas masses.Our results provide a new angle on the whole life of the growth of MGs in the Universe.
基金the financial support from Kerala State Council for Science,Technology and Environment(KSCSTE)
文摘Using a sample of 13 early-type spiral galaxies hosting nuclear rings,we report remarkable correlations between the properties of the nuclear rings and the central intensity ratio(CIR) of their host galaxies.The CIR,a function of intensity of light within the central 1.5 and 3 arcsec region,is found to be a vital parameter in galaxy evolution,as it shares strong correlations with many structural and dynamical properties of early-type galaxies,including mass of the central supermassive black hole(SMBH).We use archival HST images for aperture photometry at the centre of the galaxy image to compute the CIR.We observe that the relative sizes of nuclear rings and ring cluster surface densities strongly correlate with the CIR.These correlations suggest reduced star formation in the centres of galaxies hosting small and dense nuclear rings.This scenario appears to be a consequence of strong bars as advocated by the significant connection observed between the CIR and bar strengths.In addition,we observe that the CIR is closely related with the integrated properties of the stellar population in the nuclear rings,associating the rings hosting older and less massive star clusters with low values of CIR.Thus,the CIR can serve as a crucial parameter in unfolding the coupled evolution of bars and rings as it is intimately connected with both their properties.
基金support from the National Natural Science Foundation of China (grant Nos. 12025303, 11890693,11421303 and 12003031)the CAS Frontier Science Key Research Program (QYZDJ-SSW-SLH006)+2 种基金the K.C. Wong Education Foundationthe science research grants from the China Manned Space Project with No. CMS-CSST-2021-A06support from the Chinese Academy of Sciences President’s International Fellowship Initiative (grant No. 2019PM0020)。
文摘The coevolution between supermassive black holes(SMBHs) and their host galaxies has been proposed for more than a decade,albeit with little direct evidence about black hole accretion activities regulating galaxy star formation at z> 1.In this paper,we study the lifetimes of X-ray active galactic nuclei(AGNs) in UV-selected red sequence(RS),blue cloud(BC) and green valley(GV) galaxies,finding that AGN accretion activities are most prominent in GV galaxies at z ~1.5-2,compared with RS and BC galaxies.We also compare AGN accretion timescales with typical color transition timescales of UV-selected galaxies.We find that the lifetime of GV galaxies at z~1.5-2 is very close to the typical timescale when the AGNs residing in them stay in the high-accretion-rate mode at these redshifts;for BC galaxies,the consistency between the color transition timescale and the black hole strong accretion lifetime is more likely to happen at lower redshifts(z <1).Our results support the scenario where AGN accretion activities govern UV color transitions of host galaxies,making galaxies and their central SMBHs coevolve with each other.
基金Supported by the National Natural Science Foundation of China(Grant Nos.10878010,10221001 and 10633040)the National Basic Research Program(973 program,No.2007CB815405)
文摘We present galactic spectroscopic data from a pencil beam of 10.75×7.5 centered on the X-ray cluster RXJ0054.0–2823 at z=0.29.We study the spectral evolution of galaxies from z=1 down to the cluster redshift in a magnitude-limited sample at R≤23,for which the statistical properties of the sample are well understood.We divide emission-line galaxies into star-forming galaxies,Low Ionization Nuclear Emission line Regions(LINERs) ,and Seyferts by using emission-line ratios of[OII],Hβ,and[OIII],and derive stellar fractions from population synthesis models. We focus our analysis on absorption and low-ionization galaxies.For absorption-line galaxies,we recover the well-known result that these galaxies have had no detectable evolution since z~0.6-0.7,but we also find that in the range z=0.65-1,at least 50% of the stars in bright absorption systems are younger than 2.5 Gyr.Faint absorption-line galaxies in the cluster at z=0.29 also had significant star formation during the previous 2-3 Gyr,but their brighter counterparts seem to be only composed of old stars.At z~0.8,our dynamically young cluster had a truncated red-sequence.This result seems to be consistent with a scenario where the final assembly of E/S0 took place at z1.In the volume-limited range 0.35≤z≤0.65,we find that 23% of the early-type galaxies have LINER-like spectra with Hβin absorption and have a significant component of A stars.The vast majority of LINERs in our sample have significant populations of young and intermediate-aged stars and are thus not related to AGNs,but to the population of‘retired galaxies’recently identified by Cid Fernandes et al.in the Sloan Digital Sky Survey(SDSS) .Early-type LINERs with various fractions of A stars and E+A galaxies appear to play an important role in the formation of the red sequence.
文摘Galaxy formation and evolution is one of the most active research areas in astrophysics,so many people have studied this area.But since they didn’t understand thoroughly the evolution law from satellite to planet then to star,their theories are very weak.In their theories,they proposed that large gas clouds collapsing to form a galaxy or more recently that matter started out in smaller clumps merged to form galaxy,which is incredible.Hence,the author of this paper,through studying the formation and orbit-variation of satellites,planets and stars,has put forward a new theory of galaxy formation and evolution,therefore revealing the hierarchical structure of galaxies and the formation and evolution of black holes and quasars.
基金Supported by the National Natural Science Foundation of China grant Nos. 10333060 and 10778622.
文摘We used the Sloan Digital Sky Survey (SDSS) Data Release 5 (DR5) to study the morphological properties of 1137 nearby infrared (IR) galaxies, most of which are brighter than 15.9 mag in r-band. This sample was drawn from a cross-correlation of the Infra-Red Astronomical Satellite (IRAS) point source catalog redshift survey with DR5 at z ≤ 0.08. Based on this IR galaxy sample, we constructed five volume-limited sub-samples with IR luminosity ranging from 10^9.5 L⊙ to 10^12L⊙. By deriving the IR luminosity functions (LF) for different morphological types, we found that normal spiral galaxies are the dominant population below LIR ~ 8 ~ 10^10 L⊙; while the fraction of barred spiral galaxies increases with increasing IR luminosity and becomes dominant in spiral galaxies beyond LIR ≈ 5 × 10^10L⊙. As the IR luminosity decreases, the IR galaxies become more compact and have lower stellar masses. The analysis also shows that normal spiral galaxies give the dominant contribution to the total comoving IR energy density in the nearby universe, while, in contrast, the contribution from peculiar galaxies is only 39%.
基金supported by the Doctoral Fund of the Ministry of Education of China (20100091110009)the National Natural Science Foundation of China (Grant Nos. 10878010, 10221001 and 10633040)the National Basic Research Program (973 Program, No. 2007CB815405)
文摘Early-type galaxies (ETGs) are very important for understanding the formation and evolution of galaxies. Recent observations suggest that ETGs are not simply old stellar spheroids as we previously thought. Widespread recent star formation, cool gas and dust have been detected in a substantial fraction of ETGs. We make use of the radial profiles of 9 - r color and the concentration index from the Sloan Digital Sky Survey database to pick out 31 peculiar ETGs with central blue cores. By analyzing the photometric and spectroscopic data, we suggest that the blue cores are caused by star formation activities rather than the central weak active galactic nucleus. From the results of stellar population synthesis, we find that the stellar population of the blue cores is relatively young, spreading from several Myr to less than one Gyr. In 14 galaxies with H I observations, we find that the average gas fraction of these galaxies is about 0.55. The bluer galaxies show a higher gas fraction, and the total star forma- tion rate (SFR) correlates very well with the H I gas mass. The star formation history of these ETGs is affected by the environment, e.g. in the denser environment the H I gas is less and the total SFR is lower. We also discuss the origin of the central star formation of these early-type galaxies.
文摘A cosmological model was developed using the equation of state of photon gas, as well as cosmic time. The primary objective of this model is to see if determining the observed rotation speed of galactic matter is possible, without using dark matter (halo) as a parameter. To do so, a numerical application of the evolution of variables in accordance with cosmic time and a new state equation was developed to determine precise, realistic values for a number of cosmological parameters, such as energy of the universe <i>U</i>, cosmological constant <i>E</i><sub>Λ</sub>, curvature of space <i>k</i>, energy density <i>ρ</i><sub>Λ<i>e</i></sub>, age of the universe <i>t</i><sub>Ω</sub> (part 1). That energy of the universe, when taken into consideration during the formation of the first galaxies (<1 [Gy]), provides a relatively adequate explanation of the non-Keplerian rotation of galactic masses (part 2). Indeed, such residual, non-baryonic energy, when considered in Newton’s gravity equation, adds the term <i>F</i><sub>Λ</sub>(<i>r</i>), which can partially explain, without recourse to dark matter, the rotations of some galaxies, such as M33, UGC12591, UGC2885, NGC3198, NGC253, DDO161, UDG44, the MW and the Coma cluster. Today, in the MW, that cosmological gravity force is in the order of 10<sup>26</sup> times smaller than the conventional gravity force. The model predicts an acceleration of the mass in the universe (<i>q</i>~-0.986);the energy associated with curvature <i>E<sub>k</sub></i> is the driving force behind the expansion of the universe, rather than the energy associated with the cosmological constant <i>E</i><sub>Λ</sub>. An equation to determine expansion is obtained using the energy form of the Friedmann equation relative to Planck power <i>P<sub>P</sub></i> and cosmic time or Planck force <i>F<sub>P</sub></i> acting at the frontier of the universe moving at <i>c</i>. This constant Planck force, from unknown sources, acts everywhere to the expansion of the universe as a stretching effect on the volume. Finally, the model partly explains the value a<sub>0</sub> of the MOND theory. Indeed, <i>a</i><sub>0</sub> is not a true constant, but depends on the cosmological constant at the time the great structures were formed (~1 [Gy]), as well as an adjustment of the typical mass and dimension of those great structures, such as galaxies. The constant a<sub>0</sub> is a different expression of the cosmological gravity force <i>F</i><sub>Λ</sub> as expressed by the cosmological constant, Λ, acting through the energy-mass equivalent during the formation of the structures. It does not put in question the value of <i>G</i>.
基金supported by the National Natural Science Foundation of China(Grant Nos11373027,10973011 and 11003015)sponsored by SRF for ROCS, SEM
文摘Based on a sample of 79 local advanced merger (adv-merger) (U)LIRGs, we search for evidence of quenching processes by investigating the distributions of star formation history indicators (EW(Ha), EW(HfiA) and D,(4000)) on the NUV-r color-mass and SFR-M, diagrams. The distributions of EW(Ha) and Dn(4000) on the NUV-r color-mass diagram show clear trends that at a given stellar mass, galaxies with redder NUV-r colors have smaller EW(Ha) and larger Dn (4000). The reddest adv-merger (U)LIRGs close to the green valley mostly have Dn(4000)〉 1.4. In addition, in the SFR-M, diagram, as the SFR decreases, the EW(Ha) decreases and the Dn (4000) increases, implying that the adv-merger (U)LIRGs on the star formation main sequence have more evolved stellar populations than those above the main sequence. These results indicate that a fraction of the adv-merger (U)LIRGs have already exhibited signs of fading from the starburst phase and that the NUV-r reddest adv-merger (U)LIRGs are likely at the initial stage of post-starbursts with an age of - 1 Gyr, which is consistent with the gas exhaustion time-scales. Therefore, our results offer additional support for the fast evolutionary track from the blue cloud to the red sequence.
基金supported by NSFC grants (Nos.11573033,11622325,11425312 and 11988101)supported by NSFC grant (No.11803045)+2 种基金the “Recruitment Program of Global Youth Experts” of China,the NAOC (Grant Y434011V01)supported by the National Key R&D Program of China (No.2017YFB0203300)the Key Program of NFSC (Grant 11733010)。
文摘We use a semi-analytic galaxy formation model to study the co-evolution of supermassive black holes(SMBHs) with their host galaxies.Although the coalescence of SMBHs is not important,the quasarmode accretion induced by mergers plays a dominant role in the growth of SMBHs.Mergers play a more important role in the growth of SMBH host galaxies than in the SMBH growth.It is the combined contribution from quasar mode accretion and mergers to the SMBH growth and the combined contribution from starburst and mergers to their host galaxy growth that determine the observed scaling relation between the SMBH masses and their host galaxy masses.We also find that mergers are more important in the growth of SMBH host galaxies compared to normal galaxies which share the same stellar mass range as the SMBH host galaxies.
基金the National Natural Science Foundation ofChina (No. 19873014) and NKBRSFG19990754, and partly by SRF for ROCS, SEM.
文摘We compile a new sample of 89 open clusters with ages, distances and metallicities available. We derive a radial iron gradient of about -0.099±0.008 dex kpc^(-1) (unweighted) for the whole sample, which is somewhat greater than the most recent determination of oxygen gradient from nebulae and young stars. By dividing the clusters into age groups, we show that the iron gradient was steeper in the past and has evolved slowly in time. Current data show a substantial scatter of the cluster metallicities indicating that the Galactic disk has undergone a very rapid, inhomogeneous enrichment. Also, based on a simple, but quite successful model of chemical evolution of the Milky Way disk, we make a detailed calculation of the iron abundance gradient and its time evolution. The predicted current iron gradient is about -0.072 dex kpc^(-1). The model also predicts a steady flattening of the iron gradient with time, which agrees with the result from our open cluster sample.
基金Supported by the National Natural Science Foundation of China.
文摘Based on the undisturbed, finite thickness disk gravitational potential, we carried out 3-D Monte Carlo simulations of normal pulsars. We find that their scale height evolves in a similar way for different velocity dispersions (δv): it first increases linearly with time, reaches a peak, then gradually decreases, and finally approaches a stable asymptotic value. The initial velocity dispersion has a very large influence on the scale height. The time evolution of the scale height is studied. When the magnetic decay age is used as the time variable, the observed scale height has a similar trend as the simulated results in the linear stage, from which we derive velocity dispersions in the range 70 - 178km s^-1, which are near the statistical result of 90 - 270km s^-1 for 92 pulsars with known transverse velocities. If the characteristic age is used as the time variable, then the observed and theoretical curves roughly agree for t 〉 10^8 yr only if av 〈 25km s^-1.
基金supported by the National Key Basic Research Program of China (2014CB845700)supported by the National Natural Science Foundation of China (Grant No.11473001)B.Q.C acknowledges partial funding from the China Postdoctoral Science Foundation (2014M560843)
文摘Accurate measurements of stellar metallicity gradients in the radial and vertical directions of the disk and their temporal variations provide important constraints on the formation and evolution of the Milky Way disk. We use 297 042 main sequence turn-off stars selected from the LAMOST Spectroscopic Survey of the Galactic Anticenter(LSS-GAC) to determine the radial and vertical gradients of stellar metallicity,△[Fe/H]/△R and △[Fe/H]/△|Z | of the Milky Way disk in the direction of the anticenter. We determine ages of those turn-off stars by isochrone fitting and measure the temporal variations of metallicity gradients. We have carried out a detailed analysis of the selection effects resulting from the selection, observation and data reduction of LSS-GAC targets and the potential biases of a magnitude limited sample on the determinations of metallicity gradients. Our results show that the gradients, both in the radial and vertical directions, exhibit significant spatial and temporal variations. The radial gradients yielded by stars with the oldest ages( 11 Gyr) are essentially zero at all heights from the disk midplane, while those given by younger stars are always negative. The vertical gradients deduced from stars with the oldest ages( 11 Gyr)are negative and only show very weak variations with Galactocentric distance in the disk plane, R, while those yielded by younger stars show strong variations with R.After being essentially flat at the earliest epochs of disk formation, the radial gradients steepen as age decreases, reaching a maximum(steepest) at age 7–8 Gyr, and then they flatten again. Similar temporal trends are also found for the vertical gradients. We infer that the assembly of the Milky Way disk may have experienced at least two distinct phases. The earlier phase is probably related to a slow, pressure-supported collapse of gas, when the gas settles down to the disk mainly in the vertical direction. In the later phase, there are significant radial flows of gas in the disk, and the rate of gas inflow near the solar neighborhood reaches a maximum around a lookback time of 7–8 Gyr.The transition between the two phases occurs around a lookback time between 8 and11 Gyr. The two phases may be responsible for the formation of the Milky Way's thick and thin disks, respectively. Also, as a consequence, we recommend that stellar age is a natural, physical criterion to distinguish stars from the thin and thick disks. From an epoch earlier than 11 Gyr to one between 8 and 11 Gyr, there is an abrupt, significant change in magnitude of both the radial and vertical metallicity gradients, suggesting that stellar radial migration is unlikely to play an important role in the formation of the thick disk.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10933001, 10973006, 10973015 and 10673002)the National Basic Research Program of China (973 Program+1 种基金Nos. 2007CB815404 and 2007CB815406)the Young Researcher Grant of National Astronomical Observatories, Chinese Academy of Sciences
文摘We study the ages of a large sample (1802) of nearly face-on disk low surface brightness galaxies (LSBGs) using the evolutionary population synthesis (EPS) model PEGASE with an exponentially decreasing star formation rate to fit their mul- tiwavelength spectral energy distributions (SEDs) from far-ultraviolet (FUV) to nearinfrared (NIR). The derived ages of LSBGs are 1-5 Gyr for most of the sample no matter if constant or varying dust extinction is adopted, which are similar to most of the previous studies on smaller samples. This means that these LSBGs formed the majority of their stars quite recently. However, a small part of the sample (~2%-3%) has larger ages of 5-8 Gyr, meaning their major star forming process may have occurred earlier. At the same time, a large sample (5886) of high surface brightness galaxies (HSBGs) are selected and studied using the same method for comparisons. The de- rived ages are 1-5 Gyr for most of the sample (97%) as well. These results probably mean that these LSBGs have not much different star formation histories from their HSBGs counterparts. However, we should notice that the HSBGs are generally about 0.2 Gyr younger, which could mean that the HSBGs may have undergone more recent star forming activities than the LSBGs.
基金Supported by the National Natural Science Foundation of China.
文摘A project of a spectroscopic survey of Galactic structure and evolution with a Large sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST) is presented. The spectroscopic survey consists of two observational modes for various targets in our Galaxy. One is a major survey of the Milky Way aimed at a systematic study of the stellar abundance and Galactic chemical evolution through low resolution (R = 1000 2000) spectroscopy. Another is a follow-up observation with medium resolution (R = 10000) spectrographs aimed at detailed studies of the selected stars with different chemical composition, kinematics and dynamics.
文摘In Part 1 of this work, we showed that our new model of cosmology can account for the origin of all cosmic structures ranging in size from stars up to superclusters. In this model, at the time of nucleosynthesis, an imprint embedded in the vacuum regulated the creation of the protons (and electrons) that later made up the structures. Immediately after nucleosynthesis and for a considerable period afterward, the evolution was completely determined by the expansion of the universe. Gradually, however, gravitational influences became more important until finally, the expansion of the structures-to-be ceased at their zero velocity points. Stars, galaxies, and galaxy clusters all reached their zero velocity points more or less simultaneously at the usually accepted time of the beginning of galaxy formation. From that point onward, the evolution gravitation came to dominate the evolution although the expansion still exerted its influence. In this paper, we examine the subsequent cluster evolution in some detail. We establish the conditions required to prevent a free-fall collapse of the clusters and then show that galaxies with quasar-like active nuclei located within the cluster were the sources of the necessary radiation. We also show that the required galactic supermassive black holes were a consequence of the initial free-fall collapse of all galaxies.
基金supported by the National Key R&D Program of China(Grant No.2017YFA0402704)the National Natural Science Foundation of China(Grant Nos.11803044 and 11933003)+2 种基金the China Manned Space Project with No.CMSCSST-2021-A05sponsored(in part)by the Chinese Academy of Sciences(CAS)through a grant to the CAS South America Center for Astronomy(CASSACA)。
文摘The Spitzer Extended Deep Survey(SEDS)as a deep and wide mid-infrared(MIR)survey project provides a sample of 500000+sources spreading 1.46 square degree and a depth of 26 AB mag(3σ).Combining with the previous available data,we build a PSF-matched multi-wavelength photometry catalog from u band to 8μm.We fit the SEDS galaxies spectral energy distributions by the local galaxy templates.The results show that the SEDS galaxy can be fitted well,indicating the high redshift galaxy(z~1)shares the same templates with the local galaxies.This study would facilitate the further study of the galaxy luminosity and high redshift mass function.
基金supported by the National SKA Program of China(Nos.2022SKA0110201 and 2022SKA0110200)CAS Project for Young Scientists in Basic Research grant No.YSBR-062+11 种基金the National Natural Science Foundation of China(NSFC)(grant Nos.12033008,11622325,11988101)the K.C.Wong Education Foundationthe science research grants from the China Manned Space Project(CMSP)with NO.CMS-CSST-2021-A03 and NO.CMS-CSST-2021-A07support of the Tsinghua Shui Mu ScholarshipNSFC(grant No.12073014)the science research grants from the China Manned Space Project with No.CMS-CSST2021-A05Tsinghua University Initiative Scientific Research Program(No.20223080023)supported by NSFC(grant Nos.11988101,12041302,and U1931110)supported by the science research grant from the China Manned Space Project with grant No.CMS-CSST-2021-A08support from the European Union's Horizon 2020 Research and Innovation Programme under the Marie Sk?odowska-Curie grant agreement No.101086388supported by the Cultivation Project for FAST Scientific Payoff and Research Achievement of CAMS-CASsupported by the Key Research Project of Zhejiang Lab(No.2021PE0AC03)。
文摘Environments play an important role in galaxy formation and evolution,particularly in regulating the content of neutral gas.However,current HI surveys have limitations in their depth,which prevents them from adequately studying low HI content galaxies in high-density regions.In this study,we address this issue by employing the Five-hundred-meter Aperture Spherical radio Telescope with extensive integration times to complement the relatively shallow Arecibo Legacy Fast Arecibo L-band Feed Array HI survey.This approach allows us to explore the gas content of dwarf galaxies across various environments.We observe a positive relationship between HI mass and stellar mass in dwarf galaxies,with a well-defined upper boundary for HI mass that holds true in both observations and simulations.Furthermore,we find a decrease in the H I-to-stellar mass ratio(M_(HI)/M_*)as the density of the environment increases,irrespective of whether it is determined by the proximity to the nearest group or the projected number density.Comparing our observations to simulations,we note a steeper slope in the relationship,indicating a gradual gas-stripping process in the observational data.Additionally,we find that the scaling relation between the M_(HI)/M_*and optical properties can be improved by incorporating galaxy environments.
基金supported by the National Natural Science Foundation of China(Grant Nos.11373027 and11003015)SRF for ROCS,SEM.Funding for the creation and distribution of the SDSS Archive has been provided by the Alfred P.Sloan Foundation,the Participating Institutions,the National Aeronautics and Space Administration,the National Science Foundation,the U.S.Department of Energy,the Japanese Monbukagakusho,and the Max Planck Society
文摘We investigate the evolution of nuclear gas-phase oxygen abundance and star formation rate(SFR) of local far-infrared selected star-forming galaxies along the merger sequence, as traced by their optical morphologies. The sample was drawn from a cross-correlation analysis of the IRAS Point Source Catalog Redshift Survey and 1 Jy ultraluminous infrared galaxy sample with the Sloan Digital Sky Survey Data Release 7 database. The investigation is done by comparing our sample to a control sample matched in the normalized redshift distribution in two diagnostics, which are the nuclear gas-phase metallicity vs.stellar mass and the nuclear SFR vs. stellar mass diagrams. Galaxies with different morphological types show different mass-metallicity relations(MZRs). Compared to the MZR defined by the control sample,isolated spirals have comparable metallicities with the control sample at a given stellar mass. Spirals in pairs and interacting galaxies with projected separations of rp 〉 20 kpc show a mild metallicity dilution of0.02–0.03 dex. Interacting galaxies with rp 〈 20 kpc, pre-mergers and advanced mergers are underabundant by~0.06,~0.05 and~0.04 dex, respectively. This shows an evolutionary trend that the metallicity is increasingly depressed as the merging proceeds and it is diluted most dramatically when two galaxies are closely interacting. Afterwards, the interstellar medium(ISM) is enriched when the galaxies coalesce.This is the first time that such ISM enrichment at the final coalescence stage has been observed, which demonstrates the importance of supernova explosions in affecting the nuclear metallicity. Moreover, the central SFR enhancement relative to the control sample evolves simultaneously with the nuclear gas-phase oxygen abundance. Our results support the predictions from numerical simulations.
基金supported by NSFC (No. 11803095)supported by NSFC (No. 11733010)
文摘The alignment between satellite and central galaxies serves as a proxy for addressing the issue of galaxy formation and evolution, and has been investigated abundantly in observations and theoretical works.Most scenarios indicate that the satellites preferentially are located along the major axis of their central galaxy. Recent work shows that the strength of alignment signals depends on the large-scale environment in observations. We use the publicly-released data from EAGLE to figure out whether the same effect can be found in the associated hydrodynamic simulation. We found much stronger environmental dependency of alignment signals in the simulation. We also explore change of alignments to address the formation of this effect.