We present a study of star-forming galaxies (SFGs) with pseudobulges (bulges with Sérsic index n<2) in a loca close major-merger galaxy pair sample (H-KPAIR).With data from new aperture photometries in the opt...We present a study of star-forming galaxies (SFGs) with pseudobulges (bulges with Sérsic index n<2) in a loca close major-merger galaxy pair sample (H-KPAIR).With data from new aperture photometries in the optical and near-infrared bands (aperture size of 7 kpc) and from the literature,we find that the mean Age of central stellar populations in Spirals with pseudobulges is consistent with that of disky galaxies and is nearly constant against the bulge-to-total ratio (B/T).Paired Spirals have a slightly lower fraction of pure disk galaxies (B/T≤0.1) than their counterparts in the control sample.Compared to SFGs with classical bulges,those with pseudobulges have a higher (>2σ) mean of specific star formation rate (sSFR) enhancement (sSFR_(enh)=0.33±0.07 versus sSFR_(enh)=0.12±0.06) and broader scatter (by~1 dex).The eight SFGs that have the highest sSFR_(enh)in the sample all have pseudobulges.A majority (69%) of paired SFGs with strong enhancement (having sSFR more than5 times the median of the control galaxies) have pseudobulges.The Spitzer data show that the pseudobulges in these galaxies are tightly linked to nuclear/circum-nuclear starbursts.Pseudobulge SFGs in S+S and in S+E pairs have significantly (>3σ) different sSFR enhancement,with the means of sSFR_(enh)=0.45±0.08 and-0.04±0.11respectively.We find a decrease in the sSFR enhancements with the density of the environment for SFGs with pseudobulges.Since a high fraction (5/11) of pseudobulge SFGs in S+E pairs are in rich groups/clusters (loca density N_(1Mpc)≥7),the dense environment might be the cause for their low s SFR_(enh).展开更多
The star-forming clumps in star-bursting dwarf galaxies provide valuable insights into understanding the evolution of dwarf galaxies.In this paper,we focus on five star-bursting dwarf galaxies featuring off-centered c...The star-forming clumps in star-bursting dwarf galaxies provide valuable insights into understanding the evolution of dwarf galaxies.In this paper,we focus on five star-bursting dwarf galaxies featuring off-centered clumps in the Mapping Nearby Galaxies at Apache Point Observatory survey.Using the stellar population synthesis software Fitting Analysis using Differential evolution Optimization,we obtain the spatially resolved distribution of the star formation history,which allows us to construct the g-band images of the five galaxies at different ages.These images can help us to probe the evolution of the morphological structures of these galaxies.While images of a stellar population older than 1 Gyr are typically smooth,images of a stellar population younger than 1 Gyr reveal significant clumps,including multiple clumps which appear at different locations and even different ages.To study the evolutionary connections of these five galaxies to other dwarf galaxies before their star-forming clumps appear,we construct the images of the stellar populations older than three age nodes,and define them to be the images of the"host"galaxies.We find that the properties such as the central surface brightness and the effective radii of the hosts of the five galaxies are in between those of dwarf ellipticals(dEs)and dwarf irregulars(dIrrs),with two clearly more similar to dEs and one more similar to dIrrs.Among the five galaxies,8257-3704 is particularly interesting,as it shows a previous starburst event that is not quite visible from its gri image,but only visible from images of the stellar population at a few hundred million years.The star-forming clump associated with this event may have appeared at around 600 Myr ago and disappeared at around 40 Myr ago.展开更多
In this work,we present the probabilities of mergers of binary black holes(BBHs)and binary neutron stars(BNSs)as functions of stellar mass,metallicity,specific star formation rate(sSFR),and age for galaxies with redsh...In this work,we present the probabilities of mergers of binary black holes(BBHs)and binary neutron stars(BNSs)as functions of stellar mass,metallicity,specific star formation rate(sSFR),and age for galaxies with redshift z≤0.1.Using the binary-star evolution(BSE)code and some fitting formulae,we construct a phenomenological model of cosmic gravitational wave(GW)merger events.By using the Bayesian analysis method and the observations from Advanced LIGO and Virgo,we obtain the relevant parameters of the phenomenological model(such as the maximum black hole mass is 93_(-22)^(+73)M_(⊙)).Combining the above model results with the galaxy catalog given by the EMERGE empirical galaxy model,we find the normalized probability of occurrence of a merger event varying with log10 sSFR yr(-1)for galaxies with z≤0.1 is different from that in previous studies,that is,two peaks exist in this work while there is only one peak(log_(10)(sSFR/yr^(−1))=−10)in the previous work.The sSFR value corresponding to the new peak is log_(10)(sSFR/yr^(−1))=−12 and in line with the value(log_(10)(sSFR yr^-1)=-12.65_(-0.66)^(+0.44)of NGC 4493,the host galaxy of BNS merger event GW170817.The new peak is caused by today’s quenched galaxies,which give a large contribution to the total SFR at high redshift in the EMERGE empirical galaxy model.Moreover,we find that the BNS mergers are most likely detected in galaxies with age∼11 Gyr,which is greater than previous results(6−8Gyr)and close to the age of NGC 4993,13.2_(-0.9)^(+0.5)Gyr.展开更多
Can pulsar-like compact objects release further huge free energy besides the kinematic energy of rotation?This is actually relevant to the equation of state of cold supra-nuclear matter,which is still under hot debate...Can pulsar-like compact objects release further huge free energy besides the kinematic energy of rotation?This is actually relevant to the equation of state of cold supra-nuclear matter,which is still under hot debate.Enormous energy is surely needed to understand various observations,such asγ-ray bursts,fast radio bursts and softγ-ray repeaters.In this paper,the elastic/gravitational free energy of solid strangeon stars is revisited for strangeon stars,with two anisotropic models to calculate in general relativity.It is found that huge free energy(>10^(46)erg)could be released via starquakes,given an extremely small anisotropy((p_(t)-p_(r))/p_(r)~10^(-4),with pt/pr the tangential/radial pressure),implying that pulsar-like stars could have great potential of free energy release without extremely strong magnetic fields in the solid strangeon star model.展开更多
The initial condition of high-mass star formation is a complex area of study because of the high densities(n_(H_(2))>106cm^(-3))and low temperatures(T_(dust)<18 K)involved.Under such conditions,many molecules be...The initial condition of high-mass star formation is a complex area of study because of the high densities(n_(H_(2))>106cm^(-3))and low temperatures(T_(dust)<18 K)involved.Under such conditions,many molecules become depleted from the gas phase by freezing out onto dust grains.However,the N-bearing and deuterated species could remain gaseous under these extreme conditions,suggesting that they may serve as ideal tracers.In this paper,using the Plateau de Bure Interferometer and Very Large Array observations at 1.3 mm,3.5 mm,and 1.3 cm,we investigate the possible habitats for NH_(3),NH_(2)D,H^(13)CN,HC^(15)N,SO,and C^(18)O in eight massive precluster and protocluster clumps G18.17,G18.21,G23.97N,G23.98,G23.44,G23.97S,G25.38,and G25.71.We found that the NH3cores are in good agreement with the 3.5 mm peak emission,but the NH_(3)is much more extended than the 3.5 mm emission structure.The SO distributions agree well with the 3.5 mm peaks for the evolved star formation stage,but we did not detect any SO emission in the four earliest star formation sources.C^(18)O is a poor tracer in conditions of the cold(■18 K)and dense(■10^(4)cm^(-3))cores,e.g.,the prestellar cores.We also found that the NH_(2)D cores are mainly located in the temperature range of 13.0-20.0 K,and the NH_(2)D lines may be strongly depleted above 20 K.展开更多
In the present paper, the establishment of a systematic multi-barycenter mechanics is based on the multi-particle mechanics. The new theory perfects the basic theoretical system of classical mechanics, which finds the...In the present paper, the establishment of a systematic multi-barycenter mechanics is based on the multi-particle mechanics. The new theory perfects the basic theoretical system of classical mechanics, which finds the law of mutual interaction between particle groups, reveals the limitations of Newton’s third law, discovers the principle of the intrinsic relationship between gravity and tidal force, reasonably interprets the origin and change laws for the rotation angular momentum of galaxies and stars and so on. By applying new theory, the multi-body problem can be transformed into a special two-body problem and for which an approximate solution method is proposed, the motion law of each particle can be roughly obtained.展开更多
We measure the significance of thermally pulsing asymptotic giant branch(TP-AGB)stars via the spectral energy distributions(SEDs)of a sample of post-starburst(PSB)galaxies at z=0.2-0.7.Using ground-and space-based pho...We measure the significance of thermally pulsing asymptotic giant branch(TP-AGB)stars via the spectral energy distributions(SEDs)of a sample of post-starburst(PSB)galaxies at z=0.2-0.7.Using ground-and space-based photometry from the 3D-HST catalog,as well as associated near-infrared(NIR)Hubble Space Telescope(HST)slitless grism spectroscopy,we evaluate the importance of TP-AGB stars in the SEDs of 177 PSB galaxies by fitting simple stellar populations with different levels of TP-AGB contributions.The grism spectra,despite their low resolution of R~100,enable the detection of molecular features specific to TP-AGB stars and thus improve constraints on their contribution.A majority(~70%)of galaxies in the PSB sample show features indicative of TPAGB stars,while the remainder does not and they are well fit by Bruzual&Charlot TP-AGB light models.Stacked spectra of sources classified to be the best fit by TP-AGB heavy/mild models reveal strong detections of NIR molecular features associated with TP-AGB stars.Additionally,we observe a tentative trend with redshift where more TP-AGB heavy galaxies are observed in the higher redshift PSB galaxy population.Finally,neglecting the contribution of TP-AGB stars can yield an over-prediction of stellar masses measured in the K-band ranging from 0.13-0.23 dex.展开更多
Using 9943 OB-type stars from LAMOST DR7 in the solar neighborhood,we fit the vertical stellar density profile with the model including a single exponential distribution at different positions(R,Φ).The distributions ...Using 9943 OB-type stars from LAMOST DR7 in the solar neighborhood,we fit the vertical stellar density profile with the model including a single exponential distribution at different positions(R,Φ).The distributions of the scale heights and scale length show that the young disk traced by the OB-type stars is not axisymmetric.The scale length decreases versus the azimuthal angleΦ,i.e.,from.■kpc withΦ=-3°to■kpc withΦ=9°.Meanwhile we find signal of non-symmetry in the distribution of the scale height of the north and south of the disk plane.The scale height in the north side shows signal of flaring of the disk,while that of the south disk stays almost constant around h_(s)=130 pc.The distribution of the displaceeent of the disk plane Z_(0)also shows variance versus the azimuthal angleΦ,which displays significant differences with the warp model constrained by the Cepheid stars.We also test different values for the position of the Sun,and the distance between the Sun and the Galactic center affects the scale heights and the displacement of the disk significantly,but that does not change our conclusion that the disk is not axisymmetric.展开更多
Superthin galaxies are observed to have stellar disks with extremely small minor-to-major axis ratios.In this work,we investigate the formation of superthin galaxies in the TNG100 simulation.We trace the merger histor...Superthin galaxies are observed to have stellar disks with extremely small minor-to-major axis ratios.In this work,we investigate the formation of superthin galaxies in the TNG100 simulation.We trace the merger history and investigate the evolution of galaxy properties of a selected sample of superthin galaxies and a control sample of galaxies that share the same joint probability distribution in the stellar-mass and color diagram.Through making comparisons between the two galaxy samples,we find that present-day superthin galaxies had similar morphologies as the control sample counterparts at higher redshifts,but have developed extended flat“superthin”morphologies since z~1.During this latter evolution stage,superthin galaxies undergo an overwhelmingly higher frequency of prograde mergers(with orbit-spin angleθ_(orb)≤40°).Accordingly the spins of their dark matter halos have grown significantly and become noticeably higher than those of their normal disk counterparts.This further results in the buildup of their stellar disks at larger distances much beyond the regimes of normal disk galaxies.We also discuss the formation scenario of those superthin galaxies that live in larger dark matter halos as satellite galaxies therein.展开更多
How galaxies assemble masses through their own star formation or interaction with the external environment is still an important topic in the field of galaxy formation and evolution.We use Value Added Catalogs with ga...How galaxies assemble masses through their own star formation or interaction with the external environment is still an important topic in the field of galaxy formation and evolution.We use Value Added Catalogs with galaxy features that are spatially and temporally resolved from Sloan Digital Sky Survey Data Release 17 to investigate the mass growth histories of early-type galaxies(ETGs)and late-type galaxies(LTGs).We find that the mass growth of ETGs is earlier than that of LTGs for massive galaxies(M_(*)>10^(10)M_⊙),while low-mass(M_(*)≤10^(10)M_⊙)ETGs have statistically similar mass assembly histories as low-mass LTGs.The stellar metallicity of all massive galaxies shows a negative gradient and basically does not change with time.However,in low-mass galaxies,the stellar metallicity gradient of elliptical galaxies is negative,and the stellar metallicity gradient of lenticular and spiral galaxies evolves from positive to negative.ETGs are not all in a high-density environment,but exhibit mass dependence.As the tidal strength increases,the star formation rate of low-mass ETGs rapidly decreases.These results support a picture where massive galaxies exhibit inside-out quenching mode,while low-mass galaxies show outside-in quenching mode.Environmental effects play an important role in regulating the mass assembly histories of low-mass ETGs.展开更多
Open clusters are the basic building blocks that serve as a laboratory for the study of young stellar populations in the Milky Way.Variable stars in open clusters provide a unique way to accurately probe the internal ...Open clusters are the basic building blocks that serve as a laboratory for the study of young stellar populations in the Milky Way.Variable stars in open clusters provide a unique way to accurately probe the internal structure,temporal and dynamical evolutionary stages of individual stars and the host cluster.The most powerful tool for such studies is time-domain photometric observations.This paper follows the route of our previous work,concentrating on a photometric search for variable stars in NGC 884.The target cluster is the companion of NGC869,forming the well-known double cluster system that is gravitationally bound.From the observation run in 2016 November,a total of 9247 B-band CCD images and 8218Ⅴ-band CCD images were obtained.We detected a total of 15 stars with variability in visual brightness,including five Be stars,three eclipsing binaries,and seven of unknown types.Two new variable stars were discovered in this work.We also compared the variable star content of NGC 884 with its companion NGC 869.展开更多
The triggering mechanism for radio lobes from late-type galaxies is not fully understood.More samples are desired for a thorough investigation and statistics.By utilizing the optical data from the newly released Dark ...The triggering mechanism for radio lobes from late-type galaxies is not fully understood.More samples are desired for a thorough investigation and statistics.By utilizing the optical data from the newly released Dark Energy Spectroscopic Instrument imaging surveys and the radio sources from the NRAO VLA Sky Survey and the Faint Images of the Radio Sky at Twenty-centimeter,we identify four Late-type Galaxies with double Radio Lobes(La GRLs):J0217-3645,J0947+6220,J1412+3723 and J1736+5108.Including previously known La GRLs,we confirm the correlation between radio power P_(1.4GHz)and stellar mass M_(*)of host galaxies.Most(25/35)La GRLs belong to the blue cloud galaxies,while the newly identified cases in this work are located within the region of the red sequence.We find a clear correlation between the differential radio power,i.e.,the offset from the P_(1.4GHz)-M_(*)relation,and the galaxy color,indicating that bluer galaxies at a fixed M_(*)tend to host more powerful radio lobes.Furthermore,the majority(31/36)of La GRLs are either located in a galaxy group or displaying a disturbed morphology.We suggest that all of the galaxy mass,color and surrounding environment could play important roles in triggering radio lobes in late-type galaxies.展开更多
We present optical spectra of 10 Galactic Wolf-Rayet(WR)stars that consist of five WN and five WC stars.The optical observation was conducted using a low-resolution spectrograph NEO-R1000(λ/Δλ~1000)at GAO-ITB RTS(2...We present optical spectra of 10 Galactic Wolf-Rayet(WR)stars that consist of five WN and five WC stars.The optical observation was conducted using a low-resolution spectrograph NEO-R1000(λ/Δλ~1000)at GAO-ITB RTS(27.94 cm,F/10.0),Bosscha Observatory,Lembang.We implemented stellar atmosphere Postdam Wolf-Rayet(PoWR)grid modeling to derive stellar parameters.The normalized optical spectrum can be used to find the best model from the available PoWR grid,then we could derive stellar temperature and transformation radius.To derive luminosity,stellar radius and color excess,we conducted a Spectral Energy Distribution(SED)analysis with additional data on the near-ultraviolet spectrum from the International Ultraviolet Explorer(IUE)database,and UBV and 2MASS JHK broadband filter data.Additional analysis to derive asymptotic terminal wind velocity was conducted from the P-Cygni profile analysis of the high-resolution IUE ultraviolet spectrum.With previously derived parameters,we could determine the mass loss rate of the WR stars.Furthermore,we compared our results with previous work that used PoWR code and the differences are not more than 20%.We conclude that the PoWR spectral grid is sufficient to derive WR stellar parameters quickly and could provide more accurate initial parameter input to the PoWR program code.展开更多
In this paper we investigate the stellar populations and star formation histories of 235 active galactic nucleus(AGN)-host dwarf galaxies,consisting of four samples identified separately with different methods(i.e.,ra...In this paper we investigate the stellar populations and star formation histories of 235 active galactic nucleus(AGN)-host dwarf galaxies,consisting of four samples identified separately with different methods(i.e.,radio,X-ray,mid-IR and variability),utilizing the synthesis code STARLIGHT and spectra from the Sloan Digital Sky Survey Data Release 8.Our results show that the variability sample is the oldest,while the mid-IR sample is the youngest,for which the luminosity at 4020?is dominated(>50%)by the young population(t<10~8yr).The light-weighted mean stellar age of the whole sample is in general about 0.7 dex younger than the optical sample studied in Cai et al.We compare the population results between fitting models with and without a power-law(PL)component and find that the neglect of a PL component would lead to an under-and over-estimation by 0.2 and0.1 dex for the light-and mass-weighted mean stellar age,respectively,for our sample of dwarf galaxies,which has a mean fractional contribution of~16%from the AGN.In addition,we obtain further evidence for a possible suppression of star formation in the host galaxy by the central AGN.We also find that there exists an anticorrelation between the extinction-corrected[O III]luminosity and light-weighted mean stellar age,confirming our previous finding that there is a physical connection between AGN and star-forming activities in AGN-host dwarfs.展开更多
Great experimental results and observations achieved by Astronomy in the last decades revealed new unexplainable phenomena. Astronomers have conclusive new evidence that a recently discovered “dark galaxy” is, in fa...Great experimental results and observations achieved by Astronomy in the last decades revealed new unexplainable phenomena. Astronomers have conclusive new evidence that a recently discovered “dark galaxy” is, in fact, an object the size of a galaxy, made entirely of dark matter. They found that the speed of the Earth’s rotation varies randomly each day. 115 years ago, the Tunguska Event was observed, and astronomers still do not have an explanation of It. Main results of the present article are: 1) Dark galaxies explained by the spinning of their Dark Matter Cores with the surface speed at equator less than the escape velocity. Their Rotational Fission is not happening. Extrasolar systems do not emerge;2) 21-cm Emission explained by the self-annihilation of Dark Matter particles XIONs (5.3 μeV);3) Sun-Earth-Moon Interaction explained by the influence of the Sun’s and the Moon’s magnetic field on the electrical currents of the charged Geomagma (the 660-km layer), and, as a result, the Earth’s daylength varies;4) Tunguska Event explained by a huge atmospheric explosion of the Superbolide, which was a stable Dark Matter Bubble before entering the Earth’s atmosphere.展开更多
This study introduces a novel convolutional neural network,the WISE Galaxy Classification Network(WGC),for classifying spiral and elliptical galaxies using Wide-field Infrared Survey Explorer(WISE)images.WGC attains a...This study introduces a novel convolutional neural network,the WISE Galaxy Classification Network(WGC),for classifying spiral and elliptical galaxies using Wide-field Infrared Survey Explorer(WISE)images.WGC attains an accuracy of 89.03%,surpassing the combined use of K-means or SVM with the Color-Color method in more accurately identifying galaxy morphologies.The enhanced variant,WGC_mag,integrates magnitude parameters with image features,further boosting the accuracy to 89.89%.The research also delves into the criteria for galaxy classification,discovering that WGC primarily categorizes dust-rich images as elliptical galaxies,corresponding to their lower star formation rates,and classifies less dusty images as spiral galaxies.The paper explores the consistency and complementarity of WISE infrared images with SDSS optical images in galaxy morphology classification.The SDSS Galaxy Classification Network(SGC),trained on SDSS images,achieved an accuracy of 94.64%.The accuracy reached 99.30% when predictions from SGC and WGC were consistent.Leveraging the complementarity of features in WISE and SDSS images,a novel variant of a classifier,namely the Multi-band Galaxy Morphology Integrated Classifier,has been developed.This classifier elevates the overall prediction accuracy to 95.39%.Lastly,the versatility of WGC was validated in other data sets.On the HyperLEDA data set,the distinction between elliptical galaxies and Sc,Scd and Sd spiral galaxies was most pronounced,achieving an accuracy of 90%,surpassing the classification results of the Galaxy Zoo 2 labeled WISE data set.This research not only demonstrates the effectiveness of WISE images in galaxy morphology classification but also represents an attempt to integrate multi-band astronomical data to enhance understanding of galaxy structures and evolution.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)No.11873055 and No.11933003sponsored(in part)by the Chinese Academy of Sciences(CAS)through a grant to the CAS South America Center for Astronomy(CASSACA)+4 种基金support from project PID2020-114414GB-100,financed by MCIN/AEI/10.13039/501100011033the Junta de Andaluciaía(Spain)grant FQM108support by the National Key R&D Program of China No.2017YFA0402600the National Natural Science Foundation of China(NSFC)grant Nos.11890692,12133008,and 12221003China Manned Space Project No.CMS-CSST2021-A04。
文摘We present a study of star-forming galaxies (SFGs) with pseudobulges (bulges with Sérsic index n<2) in a loca close major-merger galaxy pair sample (H-KPAIR).With data from new aperture photometries in the optical and near-infrared bands (aperture size of 7 kpc) and from the literature,we find that the mean Age of central stellar populations in Spirals with pseudobulges is consistent with that of disky galaxies and is nearly constant against the bulge-to-total ratio (B/T).Paired Spirals have a slightly lower fraction of pure disk galaxies (B/T≤0.1) than their counterparts in the control sample.Compared to SFGs with classical bulges,those with pseudobulges have a higher (>2σ) mean of specific star formation rate (sSFR) enhancement (sSFR_(enh)=0.33±0.07 versus sSFR_(enh)=0.12±0.06) and broader scatter (by~1 dex).The eight SFGs that have the highest sSFR_(enh)in the sample all have pseudobulges.A majority (69%) of paired SFGs with strong enhancement (having sSFR more than5 times the median of the control galaxies) have pseudobulges.The Spitzer data show that the pseudobulges in these galaxies are tightly linked to nuclear/circum-nuclear starbursts.Pseudobulge SFGs in S+S and in S+E pairs have significantly (>3σ) different sSFR enhancement,with the means of sSFR_(enh)=0.45±0.08 and-0.04±0.11respectively.We find a decrease in the sSFR enhancements with the density of the environment for SFGs with pseudobulges.Since a high fraction (5/11) of pseudobulge SFGs in S+E pairs are in rich groups/clusters (loca density N_(1Mpc)≥7),the dense environment might be the cause for their low s SFR_(enh).
基金supported by National Key R&D Program of China(Nos.2019YFA0405501 and 2022YFF0503402)the National Natural Science Foundation of China(NSFC,Nos.12233005 and 12041302)+6 种基金support from the Natural Science Foundation of Shanghai(Project Number:22ZR1473000)the Program of Shanghai Academic Research Leader(No.22XD1404200)supports from the CAS Pioneer Hundred Talents ProgramUSTC Research Funds of the Double First-Class Initiativethe NSFC grant 12273037the NSFC grants 12033004,12333003support from the NSFC through grants 12273091 and U2031139。
文摘The star-forming clumps in star-bursting dwarf galaxies provide valuable insights into understanding the evolution of dwarf galaxies.In this paper,we focus on five star-bursting dwarf galaxies featuring off-centered clumps in the Mapping Nearby Galaxies at Apache Point Observatory survey.Using the stellar population synthesis software Fitting Analysis using Differential evolution Optimization,we obtain the spatially resolved distribution of the star formation history,which allows us to construct the g-band images of the five galaxies at different ages.These images can help us to probe the evolution of the morphological structures of these galaxies.While images of a stellar population older than 1 Gyr are typically smooth,images of a stellar population younger than 1 Gyr reveal significant clumps,including multiple clumps which appear at different locations and even different ages.To study the evolutionary connections of these five galaxies to other dwarf galaxies before their star-forming clumps appear,we construct the images of the stellar populations older than three age nodes,and define them to be the images of the"host"galaxies.We find that the properties such as the central surface brightness and the effective radii of the hosts of the five galaxies are in between those of dwarf ellipticals(dEs)and dwarf irregulars(dIrrs),with two clearly more similar to dEs and one more similar to dIrrs.Among the five galaxies,8257-3704 is particularly interesting,as it shows a previous starburst event that is not quite visible from its gri image,but only visible from images of the stellar population at a few hundred million years.The star-forming clump associated with this event may have appeared at around 600 Myr ago and disappeared at around 40 Myr ago.
基金the National Key R&D Program of China(No.2021YFA1600403)the National Natural Science Foundation(NSF)of China(No.11973081,11573062,11403092,11390374,11521303)+5 种基金the YIPACAS Foundation(No.2012048)the Chinese Academy of Sciences(CAS,KJZD-EW-M06-01)the NSF of Yunnan Province(No.2019FB006)the Basic Science Center project of the NSF of China(No.12288102)the Science Research grants from the China Manned Space Project(No.CMSCSST-2021-A08)the Youth Project of Western Light of CAS,the International Centre of Supernovae,Yunnan Key Laboratory(No.202302AN360001).
文摘In this work,we present the probabilities of mergers of binary black holes(BBHs)and binary neutron stars(BNSs)as functions of stellar mass,metallicity,specific star formation rate(sSFR),and age for galaxies with redshift z≤0.1.Using the binary-star evolution(BSE)code and some fitting formulae,we construct a phenomenological model of cosmic gravitational wave(GW)merger events.By using the Bayesian analysis method and the observations from Advanced LIGO and Virgo,we obtain the relevant parameters of the phenomenological model(such as the maximum black hole mass is 93_(-22)^(+73)M_(⊙)).Combining the above model results with the galaxy catalog given by the EMERGE empirical galaxy model,we find the normalized probability of occurrence of a merger event varying with log10 sSFR yr(-1)for galaxies with z≤0.1 is different from that in previous studies,that is,two peaks exist in this work while there is only one peak(log_(10)(sSFR/yr^(−1))=−10)in the previous work.The sSFR value corresponding to the new peak is log_(10)(sSFR/yr^(−1))=−12 and in line with the value(log_(10)(sSFR yr^-1)=-12.65_(-0.66)^(+0.44)of NGC 4493,the host galaxy of BNS merger event GW170817.The new peak is caused by today’s quenched galaxies,which give a large contribution to the total SFR at high redshift in the EMERGE empirical galaxy model.Moreover,we find that the BNS mergers are most likely detected in galaxies with age∼11 Gyr,which is greater than previous results(6−8Gyr)and close to the age of NGC 4993,13.2_(-0.9)^(+0.5)Gyr.
基金supported by the National SKA Program of China(2020SKA0120100)supported by NSFC grant No.12203017。
文摘Can pulsar-like compact objects release further huge free energy besides the kinematic energy of rotation?This is actually relevant to the equation of state of cold supra-nuclear matter,which is still under hot debate.Enormous energy is surely needed to understand various observations,such asγ-ray bursts,fast radio bursts and softγ-ray repeaters.In this paper,the elastic/gravitational free energy of solid strangeon stars is revisited for strangeon stars,with two anisotropic models to calculate in general relativity.It is found that huge free energy(>10^(46)erg)could be released via starquakes,given an extremely small anisotropy((p_(t)-p_(r))/p_(r)~10^(-4),with pt/pr the tangential/radial pressure),implying that pulsar-like stars could have great potential of free energy release without extremely strong magnetic fields in the solid strangeon star model.
基金supported by the National Key R&D Program of China(No.2022YFA1602901)the local Science and Technology innovation projects of the central government(No.XZ202301YD0037C)the National Natural Science Foundation of China(NSFC,grant No.11933011)。
文摘The initial condition of high-mass star formation is a complex area of study because of the high densities(n_(H_(2))>106cm^(-3))and low temperatures(T_(dust)<18 K)involved.Under such conditions,many molecules become depleted from the gas phase by freezing out onto dust grains.However,the N-bearing and deuterated species could remain gaseous under these extreme conditions,suggesting that they may serve as ideal tracers.In this paper,using the Plateau de Bure Interferometer and Very Large Array observations at 1.3 mm,3.5 mm,and 1.3 cm,we investigate the possible habitats for NH_(3),NH_(2)D,H^(13)CN,HC^(15)N,SO,and C^(18)O in eight massive precluster and protocluster clumps G18.17,G18.21,G23.97N,G23.98,G23.44,G23.97S,G25.38,and G25.71.We found that the NH3cores are in good agreement with the 3.5 mm peak emission,but the NH_(3)is much more extended than the 3.5 mm emission structure.The SO distributions agree well with the 3.5 mm peaks for the evolved star formation stage,but we did not detect any SO emission in the four earliest star formation sources.C^(18)O is a poor tracer in conditions of the cold(■18 K)and dense(■10^(4)cm^(-3))cores,e.g.,the prestellar cores.We also found that the NH_(2)D cores are mainly located in the temperature range of 13.0-20.0 K,and the NH_(2)D lines may be strongly depleted above 20 K.
文摘In the present paper, the establishment of a systematic multi-barycenter mechanics is based on the multi-particle mechanics. The new theory perfects the basic theoretical system of classical mechanics, which finds the law of mutual interaction between particle groups, reveals the limitations of Newton’s third law, discovers the principle of the intrinsic relationship between gravity and tidal force, reasonably interprets the origin and change laws for the rotation angular momentum of galaxies and stars and so on. By applying new theory, the multi-body problem can be transformed into a special two-body problem and for which an approximate solution method is proposed, the motion law of each particle can be roughly obtained.
基金based on observation taken by the 3D-HST Treasury Program(GO 12177 and 12328)with NASA/ESA HSToperated by the Association of Universities for Research in Astronomy Inc.,under NASA contract NAS5-26555+1 种基金supported by the National Natural Science Foundation of China(NSFC,Grant No.U1931209)the National Key R&D Program of China(No.2019YFA0405502)。
文摘We measure the significance of thermally pulsing asymptotic giant branch(TP-AGB)stars via the spectral energy distributions(SEDs)of a sample of post-starburst(PSB)galaxies at z=0.2-0.7.Using ground-and space-based photometry from the 3D-HST catalog,as well as associated near-infrared(NIR)Hubble Space Telescope(HST)slitless grism spectroscopy,we evaluate the importance of TP-AGB stars in the SEDs of 177 PSB galaxies by fitting simple stellar populations with different levels of TP-AGB contributions.The grism spectra,despite their low resolution of R~100,enable the detection of molecular features specific to TP-AGB stars and thus improve constraints on their contribution.A majority(~70%)of galaxies in the PSB sample show features indicative of TPAGB stars,while the remainder does not and they are well fit by Bruzual&Charlot TP-AGB light models.Stacked spectra of sources classified to be the best fit by TP-AGB heavy/mild models reveal strong detections of NIR molecular features associated with TP-AGB stars.Additionally,we observe a tentative trend with redshift where more TP-AGB heavy galaxies are observed in the higher redshift PSB galaxy population.Finally,neglecting the contribution of TP-AGB stars can yield an over-prediction of stellar masses measured in the K-band ranging from 0.13-0.23 dex.
基金supported by the National Natural Science Foundation of China(NSFC,grant Nos.12173013,12103062,12003045,and 11903012)the National Key Basic R&D Program of China via 2019YFA0405500+2 种基金supported by the Natural Science Foundation of Hebei Province under grant A2021205006 and A2019205166by the project of the Hebei provincial department of science and technology under grant number 226Z7604Gthe science research grants from the China Manned Space Project。
文摘Using 9943 OB-type stars from LAMOST DR7 in the solar neighborhood,we fit the vertical stellar density profile with the model including a single exponential distribution at different positions(R,Φ).The distributions of the scale heights and scale length show that the young disk traced by the OB-type stars is not axisymmetric.The scale length decreases versus the azimuthal angleΦ,i.e.,from.■kpc withΦ=-3°to■kpc withΦ=9°.Meanwhile we find signal of non-symmetry in the distribution of the scale height of the north and south of the disk plane.The scale height in the north side shows signal of flaring of the disk,while that of the south disk stays almost constant around h_(s)=130 pc.The distribution of the displaceeent of the disk plane Z_(0)also shows variance versus the azimuthal angleΦ,which displays significant differences with the warp model constrained by the Cepheid stars.We also test different values for the position of the Sun,and the distance between the Sun and the Galactic center affects the scale heights and the displacement of the disk significantly,but that does not change our conclusion that the disk is not axisymmetric.
基金supported by the National Key Research Development Program of China(grant Nos.2022YFA1602902 and 2022YFA1602903)。
文摘Superthin galaxies are observed to have stellar disks with extremely small minor-to-major axis ratios.In this work,we investigate the formation of superthin galaxies in the TNG100 simulation.We trace the merger history and investigate the evolution of galaxy properties of a selected sample of superthin galaxies and a control sample of galaxies that share the same joint probability distribution in the stellar-mass and color diagram.Through making comparisons between the two galaxy samples,we find that present-day superthin galaxies had similar morphologies as the control sample counterparts at higher redshifts,but have developed extended flat“superthin”morphologies since z~1.During this latter evolution stage,superthin galaxies undergo an overwhelmingly higher frequency of prograde mergers(with orbit-spin angleθ_(orb)≤40°).Accordingly the spins of their dark matter halos have grown significantly and become noticeably higher than those of their normal disk counterparts.This further results in the buildup of their stellar disks at larger distances much beyond the regimes of normal disk galaxies.We also discuss the formation scenario of those superthin galaxies that live in larger dark matter halos as satellite galaxies therein.
基金supported by the Natural Science Research Programs of Jiangsu Province University(23KJB160001 and 23KJB140004)by the support of the scientific research fund of Jiangsu Second Normal University(927801/032)+1 种基金supported by the Hebei Natural Science Foundation(grant No.A2022408002)the Fundamental Research Funds for the Universities in Hebei Province(grant No.JYQ202003)。
文摘How galaxies assemble masses through their own star formation or interaction with the external environment is still an important topic in the field of galaxy formation and evolution.We use Value Added Catalogs with galaxy features that are spatially and temporally resolved from Sloan Digital Sky Survey Data Release 17 to investigate the mass growth histories of early-type galaxies(ETGs)and late-type galaxies(LTGs).We find that the mass growth of ETGs is earlier than that of LTGs for massive galaxies(M_(*)>10^(10)M_⊙),while low-mass(M_(*)≤10^(10)M_⊙)ETGs have statistically similar mass assembly histories as low-mass LTGs.The stellar metallicity of all massive galaxies shows a negative gradient and basically does not change with time.However,in low-mass galaxies,the stellar metallicity gradient of elliptical galaxies is negative,and the stellar metallicity gradient of lenticular and spiral galaxies evolves from positive to negative.ETGs are not all in a high-density environment,but exhibit mass dependence.As the tidal strength increases,the star formation rate of low-mass ETGs rapidly decreases.These results support a picture where massive galaxies exhibit inside-out quenching mode,while low-mass galaxies show outside-in quenching mode.Environmental effects play an important role in regulating the mass assembly histories of low-mass ETGs.
基金the National Natural Science Foundation of China(NSFC)through grants 12003022,12373035,12233009 and 12173047support from the Youth Innovation Promotion Association of the CAS(grant No.2022055)。
文摘Open clusters are the basic building blocks that serve as a laboratory for the study of young stellar populations in the Milky Way.Variable stars in open clusters provide a unique way to accurately probe the internal structure,temporal and dynamical evolutionary stages of individual stars and the host cluster.The most powerful tool for such studies is time-domain photometric observations.This paper follows the route of our previous work,concentrating on a photometric search for variable stars in NGC 884.The target cluster is the companion of NGC869,forming the well-known double cluster system that is gravitationally bound.From the observation run in 2016 November,a total of 9247 B-band CCD images and 8218Ⅴ-band CCD images were obtained.We detected a total of 15 stars with variability in visual brightness,including five Be stars,three eclipsing binaries,and seven of unknown types.Two new variable stars were discovered in this work.We also compared the variable star content of NGC 884 with its companion NGC 869.
基金partially supported by the National SKA Program of China(grant No.2022SKA0120103)the National Natural Science Foundation of China(Nos.11988101 and 11833009,12073036)+2 种基金support from the science research grants from the China Manned Space Project(CMS-CSST-2021-A01,CMS-CSST-2021-B01)the financial support from the National Key R&D Program of China(No.2021YFA1600401 and 2021YFA1600400)the International Partnership Program of Chinese Academy of Sciences,grant No.114A11KYSB20170044。
文摘The triggering mechanism for radio lobes from late-type galaxies is not fully understood.More samples are desired for a thorough investigation and statistics.By utilizing the optical data from the newly released Dark Energy Spectroscopic Instrument imaging surveys and the radio sources from the NRAO VLA Sky Survey and the Faint Images of the Radio Sky at Twenty-centimeter,we identify four Late-type Galaxies with double Radio Lobes(La GRLs):J0217-3645,J0947+6220,J1412+3723 and J1736+5108.Including previously known La GRLs,we confirm the correlation between radio power P_(1.4GHz)and stellar mass M_(*)of host galaxies.Most(25/35)La GRLs belong to the blue cloud galaxies,while the newly identified cases in this work are located within the region of the red sequence.We find a clear correlation between the differential radio power,i.e.,the offset from the P_(1.4GHz)-M_(*)relation,and the galaxy color,indicating that bluer galaxies at a fixed M_(*)tend to host more powerful radio lobes.Furthermore,the majority(31/36)of La GRLs are either located in a galaxy group or displaying a disturbed morphology.We suggest that all of the galaxy mass,color and surrounding environment could play important roles in triggering radio lobes in late-type galaxies.
基金supported through HLM’s Program Penelitian Pengabdian Masyarakat ITB(P2MI)Astronomy Division,FMIPA ITB grant 2022-2023Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX13AC07G and by other grants and contracts。
文摘We present optical spectra of 10 Galactic Wolf-Rayet(WR)stars that consist of five WN and five WC stars.The optical observation was conducted using a low-resolution spectrograph NEO-R1000(λ/Δλ~1000)at GAO-ITB RTS(27.94 cm,F/10.0),Bosscha Observatory,Lembang.We implemented stellar atmosphere Postdam Wolf-Rayet(PoWR)grid modeling to derive stellar parameters.The normalized optical spectrum can be used to find the best model from the available PoWR grid,then we could derive stellar temperature and transformation radius.To derive luminosity,stellar radius and color excess,we conducted a Spectral Energy Distribution(SED)analysis with additional data on the near-ultraviolet spectrum from the International Ultraviolet Explorer(IUE)database,and UBV and 2MASS JHK broadband filter data.Additional analysis to derive asymptotic terminal wind velocity was conducted from the P-Cygni profile analysis of the high-resolution IUE ultraviolet spectrum.With previously derived parameters,we could determine the mass loss rate of the WR stars.Furthermore,we compared our results with previous work that used PoWR code and the differences are not more than 20%.We conclude that the PoWR spectral grid is sufficient to derive WR stellar parameters quickly and could provide more accurate initial parameter input to the PoWR program code.
基金supported by the China Manned Space Project with No.CMSCSST-2021-A06the National Key R&D Program of China with No.2021YFA1600404+7 种基金the National Natural Science Foundation of China(NSFCgrant Nos.12173079 and 11991051)The STARLIGHT project is supported by the Brazilian agencies CNPqCAPESand FAPESP and by the France-Brazil CAPES/Cofecub programFunding for SDSS-III has been provided by the Alfred P.Sloan Foundationthe National Science Foundationthe U.S.Department of Energy Office of Science。
文摘In this paper we investigate the stellar populations and star formation histories of 235 active galactic nucleus(AGN)-host dwarf galaxies,consisting of four samples identified separately with different methods(i.e.,radio,X-ray,mid-IR and variability),utilizing the synthesis code STARLIGHT and spectra from the Sloan Digital Sky Survey Data Release 8.Our results show that the variability sample is the oldest,while the mid-IR sample is the youngest,for which the luminosity at 4020?is dominated(>50%)by the young population(t<10~8yr).The light-weighted mean stellar age of the whole sample is in general about 0.7 dex younger than the optical sample studied in Cai et al.We compare the population results between fitting models with and without a power-law(PL)component and find that the neglect of a PL component would lead to an under-and over-estimation by 0.2 and0.1 dex for the light-and mass-weighted mean stellar age,respectively,for our sample of dwarf galaxies,which has a mean fractional contribution of~16%from the AGN.In addition,we obtain further evidence for a possible suppression of star formation in the host galaxy by the central AGN.We also find that there exists an anticorrelation between the extinction-corrected[O III]luminosity and light-weighted mean stellar age,confirming our previous finding that there is a physical connection between AGN and star-forming activities in AGN-host dwarfs.
文摘Great experimental results and observations achieved by Astronomy in the last decades revealed new unexplainable phenomena. Astronomers have conclusive new evidence that a recently discovered “dark galaxy” is, in fact, an object the size of a galaxy, made entirely of dark matter. They found that the speed of the Earth’s rotation varies randomly each day. 115 years ago, the Tunguska Event was observed, and astronomers still do not have an explanation of It. Main results of the present article are: 1) Dark galaxies explained by the spinning of their Dark Matter Cores with the surface speed at equator less than the escape velocity. Their Rotational Fission is not happening. Extrasolar systems do not emerge;2) 21-cm Emission explained by the self-annihilation of Dark Matter particles XIONs (5.3 μeV);3) Sun-Earth-Moon Interaction explained by the influence of the Sun’s and the Moon’s magnetic field on the electrical currents of the charged Geomagma (the 660-km layer), and, as a result, the Earth’s daylength varies;4) Tunguska Event explained by a huge atmospheric explosion of the Superbolide, which was a stable Dark Matter Bubble before entering the Earth’s atmosphere.
基金supported by the Joint Research Fund in AstronomyNational Natural Science Foundation of China(NSFC,grant No.U1931134)+1 种基金the Natural Science Foundation of Hebei,A2020202001the Natural Science Foundation of Tianjin Municipality,22JCYBJC00410。
文摘This study introduces a novel convolutional neural network,the WISE Galaxy Classification Network(WGC),for classifying spiral and elliptical galaxies using Wide-field Infrared Survey Explorer(WISE)images.WGC attains an accuracy of 89.03%,surpassing the combined use of K-means or SVM with the Color-Color method in more accurately identifying galaxy morphologies.The enhanced variant,WGC_mag,integrates magnitude parameters with image features,further boosting the accuracy to 89.89%.The research also delves into the criteria for galaxy classification,discovering that WGC primarily categorizes dust-rich images as elliptical galaxies,corresponding to their lower star formation rates,and classifies less dusty images as spiral galaxies.The paper explores the consistency and complementarity of WISE infrared images with SDSS optical images in galaxy morphology classification.The SDSS Galaxy Classification Network(SGC),trained on SDSS images,achieved an accuracy of 94.64%.The accuracy reached 99.30% when predictions from SGC and WGC were consistent.Leveraging the complementarity of features in WISE and SDSS images,a novel variant of a classifier,namely the Multi-band Galaxy Morphology Integrated Classifier,has been developed.This classifier elevates the overall prediction accuracy to 95.39%.Lastly,the versatility of WGC was validated in other data sets.On the HyperLEDA data set,the distinction between elliptical galaxies and Sc,Scd and Sd spiral galaxies was most pronounced,achieving an accuracy of 90%,surpassing the classification results of the Galaxy Zoo 2 labeled WISE data set.This research not only demonstrates the effectiveness of WISE images in galaxy morphology classification but also represents an attempt to integrate multi-band astronomical data to enhance understanding of galaxy structures and evolution.