Superthin galaxies are observed to have stellar disks with extremely small minor-to-major axis ratios.In this work,we investigate the formation of superthin galaxies in the TNG100 simulation.We trace the merger histor...Superthin galaxies are observed to have stellar disks with extremely small minor-to-major axis ratios.In this work,we investigate the formation of superthin galaxies in the TNG100 simulation.We trace the merger history and investigate the evolution of galaxy properties of a selected sample of superthin galaxies and a control sample of galaxies that share the same joint probability distribution in the stellar-mass and color diagram.Through making comparisons between the two galaxy samples,we find that present-day superthin galaxies had similar morphologies as the control sample counterparts at higher redshifts,but have developed extended flat“superthin”morphologies since z~1.During this latter evolution stage,superthin galaxies undergo an overwhelmingly higher frequency of prograde mergers(with orbit-spin angleθ_(orb)≤40°).Accordingly the spins of their dark matter halos have grown significantly and become noticeably higher than those of their normal disk counterparts.This further results in the buildup of their stellar disks at larger distances much beyond the regimes of normal disk galaxies.We also discuss the formation scenario of those superthin galaxies that live in larger dark matter halos as satellite galaxies therein.展开更多
In the past,people did not realize the formation and structure of galaxies.They even mistook the black holes hidden in the center of a galaxy as independent celestial objects,making black holes mysterious and unbeliev...In the past,people did not realize the formation and structure of galaxies.They even mistook the black holes hidden in the center of a galaxy as independent celestial objects,making black holes mysterious and unbelievable.It was only after the author studied and discovered the laws of the formation and evolution of satellites,planets and stars that he put forward the scientific theory of galaxy formation and evolution,therefore revealing the hierarchical structure of galaxy and the existence and characteristics of black holes as the main nodes of galactic structure.展开更多
By numerical integration of hydro-dynamical equations, we study the formation of elliptical and spiral galaxies starting from primordial linear density-velocity-gravitational perturbations. Both dark matter and baryon...By numerical integration of hydro-dynamical equations, we study the formation of elliptical and spiral galaxies starting from primordial linear density-velocity-gravitational perturbations. Both dark matter and baryons are included. Warm dark matter perturbations acquire two low mass cut-offs: the free-streaming cut-off due to the power spectrum free-streaming cut-off factor τ<sup>2</sup>(k), and the velocity dispersion cut-off. The Press-Schechter mass distribution does not include velocity dispersion, and should not be used below the velocity dispersion cut-off mass. From the formation of first galaxies and reionization, we estimate limits on the non-relativistic warm dark matter velocity dispersion at expansion parameter , with .展开更多
The discovery of massive galaxies at high redshifts,especially the passive ones,poses a big challenge for the current standard galaxy formation models.Here we use the semi-analytic galaxy formation model developed by ...The discovery of massive galaxies at high redshifts,especially the passive ones,poses a big challenge for the current standard galaxy formation models.Here we use the semi-analytic galaxy formation model developed by Henriques et al.to explore the formation and evolution of massive galaxies(MGs,stellar-mass M*>1011 M⊙).Different from previous works,we focus on the ones just formed(e.g.just reach?1011 M⊙).We find that most of the MGs are formed around z=0.6,with the earliest formation at z>4.Interestingly,although most of the MGs in the local Universe are passive,we find that only 13%of the MGs are quenched at the formation time.Most of the quenched MGs at formation already host a very massive supermassive black hole(SMBH)which could power the very effective AGN feedback.For the star-forming MGs,the ones with more massive SMBH prefer to quench in shorter timescales;in particular,those with MSMBH>107.5 M⊙have a quenching timescale of~0.5 Gyr and the characteristic MSMBH depends on the chosen stellar mass threshold in the definition of MGs as a result of their co-evolution.We also find that the"in-situ"star formation dominates the stellar mass growth of MGs until they are formed.Over the whole redshift range,we find the quiescent MGs prefer to stay in more massive dark matter halos,and have more massive SMBH and less cold gas masses.Our results provide a new angle on the whole life of the growth of MGs in the Universe.展开更多
Stellar bars are important for the secular evolution of disk galaxies because they can drive gas into the galactic central regions. To investigate the star formation properties in barred galaxies, we presented a multi...Stellar bars are important for the secular evolution of disk galaxies because they can drive gas into the galactic central regions. To investigate the star formation properties in barred galaxies, we presented a multi-wavelength study of two barred galaxies: NGC 2903 and NGC 7080. We performed the three-component bulge-diskbar decomposition using the 3.6 μm images, and identified the bulges in the two galaxies as pseudobulges. Based on the narrowband Hα images, the star formation clumps were identified and analyzed. The clumps in the bulge regions have the highest surface densities of star formation rates in both galaxies, while the star formation activities in the bar of NGC 2903 are more intense than those in the bar of NGC 7080. Finally, we compared our results with the scenario of bar-driven secular evolution in previous studies, and discussed the possible evolutionary stages of the two galaxies.展开更多
Gravitation is one of the central forces playing an important role in formation of natural systems like galaxies and planets. Gravitational forces between particles of a gaseous cloud transform the cloud into spherica...Gravitation is one of the central forces playing an important role in formation of natural systems like galaxies and planets. Gravitational forces between particles of a gaseous cloud transform the cloud into spherical shells and disks of higher density during gravitational contraction. The density can reach that of a solid body. The theoretical model was tested to model the formation of a spiral galaxy and Saturn. The formations of a spiral galaxy and Saturn and its disk are simulated using a novel N-body self-gravitational model. It is demonstrated that the formation of the spirals of the galaxy and disk of the planet is the result of gravitational contraction of a slowly rotated particle cloud that has a shape of slightly deformed sphere for Saturn and ellipsoid for the spiral galaxy. For Saturn, the sphere was flattened by a coefficient of 0.8 along the axis of rotation. During the gravitational contraction, the major part of the cloud transformed into a planet and a minor part transformed into a disk. The thin structured disk is a result of the electromagnetic interaction in which the magnetic forces acting on charged particles of the cloud originate from the core of the planet.展开更多
Early-type galaxies (ETGs) are very important for understanding the formation and evolution of galaxies. Recent observations suggest that ETGs are not simply old stellar spheroids as we previously thought. Widesprea...Early-type galaxies (ETGs) are very important for understanding the formation and evolution of galaxies. Recent observations suggest that ETGs are not simply old stellar spheroids as we previously thought. Widespread recent star formation, cool gas and dust have been detected in a substantial fraction of ETGs. We make use of the radial profiles of 9 - r color and the concentration index from the Sloan Digital Sky Survey database to pick out 31 peculiar ETGs with central blue cores. By analyzing the photometric and spectroscopic data, we suggest that the blue cores are caused by star formation activities rather than the central weak active galactic nucleus. From the results of stellar population synthesis, we find that the stellar population of the blue cores is relatively young, spreading from several Myr to less than one Gyr. In 14 galaxies with H I observations, we find that the average gas fraction of these galaxies is about 0.55. The bluer galaxies show a higher gas fraction, and the total star forma- tion rate (SFR) correlates very well with the H I gas mass. The star formation history of these ETGs is affected by the environment, e.g. in the denser environment the H I gas is less and the total SFR is lower. We also discuss the origin of the central star formation of these early-type galaxies.展开更多
We build a sample of 298 spectroscopically-confirmed galaxies at redshift z - 2, selected in the z850-band from the GOODS-MUSIC catalog. By utilizing the rest frame 8 p.m luminosity as a proxy of the star formation ra...We build a sample of 298 spectroscopically-confirmed galaxies at redshift z - 2, selected in the z850-band from the GOODS-MUSIC catalog. By utilizing the rest frame 8 p.m luminosity as a proxy of the star formation rate (SFR), we check the accuracy of the standard SED-fitting technique, finding it is not accurate enough to provide reliable estimates of the physical parameters of galaxies. We then develop a new SED-fitting method that includes the IR luminosity as a prior and a generalized Calzetti law with a variable Rv. Then we exploit the new method to re-analyze our galaxy sample, and to robustly determine SFRs, stellar masses and ages. We find that there is a general trend of increasing attenuation with the SFR. Moreover, we find that the SFRs range between a few to 103 M~ yr-1, the masses from 109 to 4 ~ 1011 Mo, and the ages from a few tens of Myr to more than 1 Gyr. We discuss how individual age measurements of highly attenuated objects indicate that dust must have formed within a few tens of Myr and already been copious at 〈 100 Myr. In addition, we find that low luminosity galaxies harbor, on average, significantly older stellar populations and are also less massive than brighter ones; we discuss how these findings and the well known 'downsizing' scenario are consistent in a framework where less massive galaxies form first, but their star formation lasts longer. Finally, we find that the near-IR attenuation is not scarce for luminous objects, contrary to what is customarily assumed; we discuss how this affects the interpretation of the observed M,/L ratios.展开更多
This paper presents the results of Hαimaging of 169 galaxies randomly selected from the α.40-SDSS catalog.The sample has excluded all low surface brightness galaxies (LSBGs) whose central surface brightness in B ban...This paper presents the results of Hαimaging of 169 galaxies randomly selected from the α.40-SDSS catalog.The sample has excluded all low surface brightness galaxies (LSBGs) whose central surface brightness in B band (μ0(B)) fainter than 22.5 mag arcsec-2.It can be used as the counterparts sample to LSBGs.We observed their Hα and R band images by using the 2.16 m telescope at the Xinglong Observatory of the National Astronomical Observatories,Chinese Academy of Sciences (NAOC).The main goal of this work is to present the properties of those galaxies,together with Hαflux and star formation-,gas-,stellar mass-surface density.In addition,we confirm the correlations among HI content,stellar mass and star formation in ALFALFA galaxies.The HI mass increases with stellar mass,and the slope slows down at the higher stellar mass.The overall trend was that the specific star formation rate (s SFR) decreases with stellar mass,and the sSFR dropped sharply when the stellar mass is close to 1010.3~1010.5M⊙.The weak correlation between SFR/MHIand MHIimplies the HI contribute little to star formation.Our sample,which are mostly star-forming galaxies,follows the revisited Kennicutt-Schmidt law as well as the Kennicutt-Schmidt law.展开更多
The recent discovery of gravitational waves has revolutionized our understanding of many aspects regarding how the universe works. The formation of galaxies stands as one of the most challenging problems in astrophysi...The recent discovery of gravitational waves has revolutionized our understanding of many aspects regarding how the universe works. The formation of galaxies stands as one of the most challenging problems in astrophysics. Regardless of how far back we look in the early universe, we keep discovering galaxies with supermassive black holes lurking at their centers. Many models have been proposed to explain the rapid formation of supermassive black holes, including the massive accretion of material, the collapse of type III stars, and the merger of stellar mass black holes. Some of these events give rise to the production of gravitational waves that could be detected by future generations of more sensitive detectors. Alternatively, the existence of these supermassive black holes can be explained in the context of primordial black holes. In this paper we discuss the various models of galaxy formation shedding light on the role that gravitational waves can play to test of the validity of some of these models. We also discuss the prospect of primordial black holes as a seeding constituent for galaxy formation.展开更多
We create mock X-ray observations of hot gas in galaxy clusters with a new extension of the L-Galaxies semianalytic model of galaxy formation,which includes the radial distribution of hot gas in each halo.Based on the...We create mock X-ray observations of hot gas in galaxy clusters with a new extension of the L-Galaxies semianalytic model of galaxy formation,which includes the radial distribution of hot gas in each halo.Based on the model outputs,we first build some mock light cones,then generate mock spectra with the SOXS package and derive the mock images in the light cones.Using the mock data,we simulate mock X-ray spectra for the ROSAT all-sky survey,and compare the mock spectra with the observational results.Then,we consider the design parameters of the HUBS mission and simulate the observation of the halo hot gas for HUBS as an important application of our mock work.We find:(1)our mock data match the observations by current X-ray telescopes.(2)The survey of hot baryons in resolved clusters by HUBS is effective below redshift 0.5,and the observations of the emission lines in point-like sources at z>0.5 by HUBS help us understand the hot baryons in the early universe.(3)By taking advantage of the large simulation box and flexibility in semi-analytic models,our mock X-ray observations provide the opportunity to select targets and observation strategies for forthcoming X-ray facilities.展开更多
We use a large sample of gamma-ray narrow-line Seyfert 1 galaxies(γ-NLS1 s) to study the jet formation mechanisms. We find that the jet power of γ-NLS1 s is lower than the maximum jet power of the Blandford–Payne(B...We use a large sample of gamma-ray narrow-line Seyfert 1 galaxies(γ-NLS1 s) to study the jet formation mechanisms. We find that the jet power of γ-NLS1 s is lower than the maximum jet power of the Blandford–Payne(BP) mechanism. At the same time, we find that there is a significant correlation between jet power and accretion disk luminosity. Moreover, the contribution rates of the accretion to the jet power are larger than that of black hole mass to jet power. These results further suggest that the jet of γ NLS1 s is mainly produced by the BP mechanism.展开更多
Galaxy formation and evolution is one of the most active research areas in astrophysics,so many people have studied this area.But since they didn’t understand thoroughly the evolution law from satellite to planet the...Galaxy formation and evolution is one of the most active research areas in astrophysics,so many people have studied this area.But since they didn’t understand thoroughly the evolution law from satellite to planet then to star,their theories are very weak.In their theories,they proposed that large gas clouds collapsing to form a galaxy or more recently that matter started out in smaller clumps merged to form galaxy,which is incredible.Hence,the author of this paper,through studying the formation and orbit-variation of satellites,planets and stars,has put forward a new theory of galaxy formation and evolution,therefore revealing the hierarchical structure of galaxies and the formation and evolution of black holes and quasars.展开更多
The formation of galaxies with warm dark matter is approximately adiabatic. The cold dark matter limit is singular and requires relaxation. In these lecture notes, we develop, step-by-step, the physics of galaxies wit...The formation of galaxies with warm dark matter is approximately adiabatic. The cold dark matter limit is singular and requires relaxation. In these lecture notes, we develop, step-by-step, the physics of galaxies with warm dark matter, and their formation. The theory is validated with observed spiral galaxy rotation curves. These observations constrain the properties of the dark matter particles.展开更多
This study will see the resurgence of interest in precise velocity dispersion measurements, both for the study of galactic and active nuclei kinematics. As several works suggest, an excellent tactic to measure σ is t...This study will see the resurgence of interest in precise velocity dispersion measurements, both for the study of galactic and active nuclei kinematics. As several works suggest, an excellent tactic to measure σ is to use the absorption lines of the calcium triplet, as it is a spectral region relatively free from complications. The discovery of an empirical relationship between the mass of the central black hole (M•) and σ was the leading guide of my detailed study of the calcium triplet region. This search for more accurate methods to calculate the dispersion of velocities, in addition to the careful study of uncertainties. After investing so much time in the development and improvement of the method and its application to so many galaxies, it is time to reap the rewards of this effort, using my results to address a series of questions concerning the physics of galaxies.展开更多
A cosmological model was developed using the equation of state of photon gas, as well as cosmic time. The primary objective of this model is to see if determining the observed rotation speed of galactic matter is poss...A cosmological model was developed using the equation of state of photon gas, as well as cosmic time. The primary objective of this model is to see if determining the observed rotation speed of galactic matter is possible, without using dark matter (halo) as a parameter. To do so, a numerical application of the evolution of variables in accordance with cosmic time and a new state equation was developed to determine precise, realistic values for a number of cosmological parameters, such as the energy of the universe <i>U</i>, cosmological constant Λ, the curvature of space <i>k</i>, energy density <i>ρ</i><sub>Λe</sub> (part 1). The age of the universe in cosmic time that is in line with positive energy conservation (in terms of conventional thermodynamics) and the creation of proton, neutron, electron, and neutrino masses, is ~76 [Gy] (observed <img src="Edit_6d0b63d7-3b06-4a39-97c8-a0004319d14d.png" width="15" height="15" alt="" /> ~ 70 [km · s<sup>-1</sup> · Mpc<sup>-1</sup>]). In this model, what is usually referred to as dark energy actually corresponds to the energy of the universe that has not been converted to mass, and which acts on the mass created by the energy-mass equivalence principle and the cosmological gravity field, F<sub>Λ</sub>, associated with the cosmological constant, which is high during the primordial formation of the galaxies (<1 [Gy]). A look at the Casimir effect makes it possible to estimate a minimum Casimir pressure <i>P<sub>c</sub></i><sup>0</sup> and thus determine our possible relative position in the universe at cosmic time 0.1813 (<i>t</i><sub>0</sub>/<i>t</i><sub>Ω</sub> = 13.8[Gy]/76.1[Gy]). Therefore, from the observed age of 13.8 [Gy], we can derive a possible cosmic age of ~76.1 [Gy]. That energy of the universe, when taken into consideration during the formation of the first galaxies (<1 [Gy]), provides a relatively adequate explanation of the non-Keplerian rotation of galactic masses.展开更多
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling. Here, we focused on the role of Semaphorin 3A(Sema3A), expressed by sensory nerves, in mechanical loads-induced bo...Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling. Here, we focused on the role of Semaphorin 3A(Sema3A), expressed by sensory nerves, in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM) model. Firstly, bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold. Sema3A, rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM. Moreover, in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs) within 24 hours.Furthermore, exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload. Mechanistically, Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway, maintaining mitochondrial dynamics as mitochondrial fusion. Therefore, Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation, both as a pain-sensitive analgesic and a positive regulator for bone formation.展开更多
The Fengcheng Formation is a crucial source rock and the primary reservoir for oil accumulation in the Mahu Sag.Crude oils are distributed throughout the Fengcheng Formation,ranging from the edge to the interior of th...The Fengcheng Formation is a crucial source rock and the primary reservoir for oil accumulation in the Mahu Sag.Crude oils are distributed throughout the Fengcheng Formation,ranging from the edge to the interior of the sag in the southern Mahu Sag.These crude oils originate from in-situ source rocks in shallowly buried areas and the inner deep sag.During migration,the crude oil from the inner deep sag affects the source rocks close to carrier beds,leading to changes in the organic geochemical characteristics of the source rocks.These changes might alter source rock evaluations and oil-source correlation.Based on data such as total organic carbon(TOC),Rock-Eval pyrolysis of source rocks,and gas chromatography-mass spectrometry(GC-MS)of the saturated fraction,and considering the geological characteristics of the study area,we define the identification characteristics of source rock affected by migrated hydrocarbons and establish the various patterns of influence that migrated hydrocarbons have on the source rock of the Fengcheng Formation in the southern Mahu Sag.The source rocks of the Fengcheng Formation are mostly fair to good,containing mainly Type II organic matter and being thermally mature enough to generate oil.Source rocks affected by migrated hydrocarbons exhibit relatively high hydrocarbon contents(S1/TOC>110 mg HC/g TOC,Extract/TOC>30%,HC:hydrocarbon),relatively low Rock-Eval Tmax values,and relatively high tricyclic terpane contents with a descending and mountain-shaped distribution.Furthermore,biomarker composition parameters indicate a higher thermal maturity than in-situ source rocks.Through a comparison of the extract biomarker fingerprints of adjacent reservoirs and mudstones in different boreholes,three types of influence patterns of migrated hydrocarbons are identified:the edge-influence of thin sandstone-thick mudstone,the mixed-influence of sandstone-mudstone interbedded,and the full-influence of thick sandstone-thin mudstone.This finding reminds us that the influence of migrated hydrocarbons must be considered when evaluating source rocks and conducting oil-source correlation.展开更多
To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal ro...To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal rock reservoirs,coal rock quality,and coal rock gas features,resources and enrichment.Coal rock gas is a high-quality resource distinct from coalbed methane,and it has unique features in terms of burial depth,gas source,reservoir,gas content,and carbon isotopic composition.The Benxi Formation coal rocks cover an area of 16×104km^(2),with thicknesses ranging from 2 m to 25 m,primarily consisting of bright and semi-bright coals with primitive structures and low volatile and ash contents,indicating a good coal quality.The medium-to-high rank coal rocks have the total organic carbon(TOC)content ranging from 33.49%to 86.11%,averaging75.16%.They have a high degree of thermal evolution(Roof 1.2%-2.8%),and a high gas-generating capacity.They also have high stable carbon isotopic values(δ13C1of-37.6‰to-16‰;δ13C2of-21.7‰to-14.3‰).Deep coal rocks develop matrix pores such as gas bubble pores,organic pores,and inorganic mineral pores,which,together with cleats and fractures,form good reservoir spaces.The coal rock reservoirs exhibit the porosity of 0.54%-10.67%(averaging 5.42%)and the permeability of(0.001-14.600)×10^(-3)μm^(2)(averaging 2.32×10^(-3)μm^(2)).Vertically,there are five types of coal rock gas accumulation and dissipation combinations,among which the coal rock-mudstone gas accumulation combination and the coal rock-limestone gas accumulation combination are the most important,with good sealing conditions and high peak values of total hydrocarbon in gas logging.A model of coal rock gas accumulation has been constructed,which includes widespread distribution of medium-to-high rank coal rocks continually generating gas,matrix pores and cleats/fractures in coal rocks acting as large-scale reservoir spaces,tight cap rocks providing sealing,source-reservoir integration,and five types of efficient enrichment patterns(lateral pinchout complex,lenses,low-amplitude structures,nose-like structures,and lithologically self-sealing).According to the geological characteristics of coal rock gas,the Benxi Formation is divided into 8 plays,and the estimated coal rock gas resources with a buried depth of more than 2000 m are more than 12.33×10^(12)m^(3).The above understandings guide the deployment of risk exploration.Two wells drilled accordingly obtained an industrial gas flow,driving the further deployment of exploratory and appraisal wells.Substantial breakthroughs have been achieved,with the possible reserves over a trillion cubic meters and the proved reserves over a hundred billion cubic meters,which is of great significance for the reserves increase and efficient development of natural gas in China.展开更多
The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography a...The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography and sedimentological studies,reservoir quality and fluid flow units from derivative parameters,and capillary pressure and wetting fluid saturation relationship.Textural and diagenetic features are affecting the reservoir quality.Cementation,compaction,and presence of clay minerals such as kaolinite are found to reduce the quality while dissolution and secondary porosity are noticed to improve it.It is believed that the Narimba Formation is a potential reservoir with a wide range of porosity and permeability.Porosity ranges from 3.1%to 25.4%with a mean of 15.84%,while permeability ranges between 0.01 mD and 510 mD,with a mean of 31.05 mD.Based on the heterogenous lithology,the formation has been categorized into five groups based on permeability variations.Group I showed an excellent to good quality reservoir with coarse grains.The impacts of both textural and diagenetic features improve the reservoir and producing higher reservoir quality index(RQI)and flow zone indicators(FZI)as well as mostly mega pores.The non-wetting fluid migration has the higher possibility to flow in the formation while displacement pressure recorded as zero.Group II showed a fair quality reservoir with lower petrophysical properties in macro pores.The irreducible water saturation is increasing while the textural and digenetic properties are still enhancing the reservoir quality.Group III reflects lower quality reservoir with mostly macro pores and higher displacement pressure.It may indicate smaller grain size and increasing amount of cement and clay minerals.Group IV,and V are interpreted as a poor-quality reservoir that has lower RQI and FZI.The textural and digenetic features are negatively affecting the reservoir and are leading to smaller pore size and pore throat radii(r35)values to be within the range of macro,meso-,micro-,and nano pores.The capillary displacement pressure curves of the three groups show increases reaching the maximum value of 400 psia in group V.Agreement with the classification of permeability,r35 values,and pore type can be used in identifying the quality of reservoir.展开更多
基金supported by the National Key Research Development Program of China(grant Nos.2022YFA1602902 and 2022YFA1602903)。
文摘Superthin galaxies are observed to have stellar disks with extremely small minor-to-major axis ratios.In this work,we investigate the formation of superthin galaxies in the TNG100 simulation.We trace the merger history and investigate the evolution of galaxy properties of a selected sample of superthin galaxies and a control sample of galaxies that share the same joint probability distribution in the stellar-mass and color diagram.Through making comparisons between the two galaxy samples,we find that present-day superthin galaxies had similar morphologies as the control sample counterparts at higher redshifts,but have developed extended flat“superthin”morphologies since z~1.During this latter evolution stage,superthin galaxies undergo an overwhelmingly higher frequency of prograde mergers(with orbit-spin angleθ_(orb)≤40°).Accordingly the spins of their dark matter halos have grown significantly and become noticeably higher than those of their normal disk counterparts.This further results in the buildup of their stellar disks at larger distances much beyond the regimes of normal disk galaxies.We also discuss the formation scenario of those superthin galaxies that live in larger dark matter halos as satellite galaxies therein.
文摘In the past,people did not realize the formation and structure of galaxies.They even mistook the black holes hidden in the center of a galaxy as independent celestial objects,making black holes mysterious and unbelievable.It was only after the author studied and discovered the laws of the formation and evolution of satellites,planets and stars that he put forward the scientific theory of galaxy formation and evolution,therefore revealing the hierarchical structure of galaxy and the existence and characteristics of black holes as the main nodes of galactic structure.
文摘By numerical integration of hydro-dynamical equations, we study the formation of elliptical and spiral galaxies starting from primordial linear density-velocity-gravitational perturbations. Both dark matter and baryons are included. Warm dark matter perturbations acquire two low mass cut-offs: the free-streaming cut-off due to the power spectrum free-streaming cut-off factor τ<sup>2</sup>(k), and the velocity dispersion cut-off. The Press-Schechter mass distribution does not include velocity dispersion, and should not be used below the velocity dispersion cut-off mass. From the formation of first galaxies and reionization, we estimate limits on the non-relativistic warm dark matter velocity dispersion at expansion parameter , with .
基金supports from National Key R&D Program of China(Grant Nos.2018YFA0404503,2018YFE0202902)the National Key Program for Science and Technology Research and Development of China(2017YFB0203300,2015CB857005)+2 种基金the National Natural Science Foundation of China(NSFC,Nos.11988101,11425312,11503032,11773032,11390372,11873051,118513,11573033,11622325,12033008,and 11622325)funding supports from FONDECYT Postdoctoral Fellowship Project(No.3190354)NSFC(No.11703037)。
文摘The discovery of massive galaxies at high redshifts,especially the passive ones,poses a big challenge for the current standard galaxy formation models.Here we use the semi-analytic galaxy formation model developed by Henriques et al.to explore the formation and evolution of massive galaxies(MGs,stellar-mass M*>1011 M⊙).Different from previous works,we focus on the ones just formed(e.g.just reach?1011 M⊙).We find that most of the MGs are formed around z=0.6,with the earliest formation at z>4.Interestingly,although most of the MGs in the local Universe are passive,we find that only 13%of the MGs are quenched at the formation time.Most of the quenched MGs at formation already host a very massive supermassive black hole(SMBH)which could power the very effective AGN feedback.For the star-forming MGs,the ones with more massive SMBH prefer to quench in shorter timescales;in particular,those with MSMBH>107.5 M⊙have a quenching timescale of~0.5 Gyr and the characteristic MSMBH depends on the chosen stellar mass threshold in the definition of MGs as a result of their co-evolution.We also find that the"in-situ"star formation dominates the stellar mass growth of MGs until they are formed.Over the whole redshift range,we find the quiescent MGs prefer to stay in more massive dark matter halos,and have more massive SMBH and less cold gas masses.Our results provide a new angle on the whole life of the growth of MGs in the Universe.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11173030, 10833006, 10773014,10978014 and 11078017)the National Basic Research Program of China (973 Program,Grant Nos. 2007CB815406 and 2012CB821803)partially supported by the Open Project Program of the Key Laboratory of Optical Astronomy, National Astronomical Observatories,Chinese Academy of Sciences
文摘Stellar bars are important for the secular evolution of disk galaxies because they can drive gas into the galactic central regions. To investigate the star formation properties in barred galaxies, we presented a multi-wavelength study of two barred galaxies: NGC 2903 and NGC 7080. We performed the three-component bulge-diskbar decomposition using the 3.6 μm images, and identified the bulges in the two galaxies as pseudobulges. Based on the narrowband Hα images, the star formation clumps were identified and analyzed. The clumps in the bulge regions have the highest surface densities of star formation rates in both galaxies, while the star formation activities in the bar of NGC 2903 are more intense than those in the bar of NGC 7080. Finally, we compared our results with the scenario of bar-driven secular evolution in previous studies, and discussed the possible evolutionary stages of the two galaxies.
文摘Gravitation is one of the central forces playing an important role in formation of natural systems like galaxies and planets. Gravitational forces between particles of a gaseous cloud transform the cloud into spherical shells and disks of higher density during gravitational contraction. The density can reach that of a solid body. The theoretical model was tested to model the formation of a spiral galaxy and Saturn. The formations of a spiral galaxy and Saturn and its disk are simulated using a novel N-body self-gravitational model. It is demonstrated that the formation of the spirals of the galaxy and disk of the planet is the result of gravitational contraction of a slowly rotated particle cloud that has a shape of slightly deformed sphere for Saturn and ellipsoid for the spiral galaxy. For Saturn, the sphere was flattened by a coefficient of 0.8 along the axis of rotation. During the gravitational contraction, the major part of the cloud transformed into a planet and a minor part transformed into a disk. The thin structured disk is a result of the electromagnetic interaction in which the magnetic forces acting on charged particles of the cloud originate from the core of the planet.
基金supported by the Doctoral Fund of the Ministry of Education of China (20100091110009)the National Natural Science Foundation of China (Grant Nos. 10878010, 10221001 and 10633040)the National Basic Research Program (973 Program, No. 2007CB815405)
文摘Early-type galaxies (ETGs) are very important for understanding the formation and evolution of galaxies. Recent observations suggest that ETGs are not simply old stellar spheroids as we previously thought. Widespread recent star formation, cool gas and dust have been detected in a substantial fraction of ETGs. We make use of the radial profiles of 9 - r color and the concentration index from the Sloan Digital Sky Survey database to pick out 31 peculiar ETGs with central blue cores. By analyzing the photometric and spectroscopic data, we suggest that the blue cores are caused by star formation activities rather than the central weak active galactic nucleus. From the results of stellar population synthesis, we find that the stellar population of the blue cores is relatively young, spreading from several Myr to less than one Gyr. In 14 galaxies with H I observations, we find that the average gas fraction of these galaxies is about 0.55. The bluer galaxies show a higher gas fraction, and the total star forma- tion rate (SFR) correlates very well with the H I gas mass. The star formation history of these ETGs is affected by the environment, e.g. in the denser environment the H I gas is less and the total SFR is lower. We also discuss the origin of the central star formation of these early-type galaxies.
基金Supported by the National Natural Science Foundation of China
文摘We build a sample of 298 spectroscopically-confirmed galaxies at redshift z - 2, selected in the z850-band from the GOODS-MUSIC catalog. By utilizing the rest frame 8 p.m luminosity as a proxy of the star formation rate (SFR), we check the accuracy of the standard SED-fitting technique, finding it is not accurate enough to provide reliable estimates of the physical parameters of galaxies. We then develop a new SED-fitting method that includes the IR luminosity as a prior and a generalized Calzetti law with a variable Rv. Then we exploit the new method to re-analyze our galaxy sample, and to robustly determine SFRs, stellar masses and ages. We find that there is a general trend of increasing attenuation with the SFR. Moreover, we find that the SFRs range between a few to 103 M~ yr-1, the masses from 109 to 4 ~ 1011 Mo, and the ages from a few tens of Myr to more than 1 Gyr. We discuss how individual age measurements of highly attenuated objects indicate that dust must have formed within a few tens of Myr and already been copious at 〈 100 Myr. In addition, we find that low luminosity galaxies harbor, on average, significantly older stellar populations and are also less massive than brighter ones; we discuss how these findings and the well known 'downsizing' scenario are consistent in a framework where less massive galaxies form first, but their star formation lasts longer. Finally, we find that the near-IR attenuation is not scarce for luminous objects, contrary to what is customarily assumed; we discuss how this affects the interpretation of the observed M,/L ratios.
基金supported by the National Natural Science Foundation of China (Grant Nos. 12003043, 11733006, 12090041, 12090040, 12073035, 11890693 and U1931109)the National Key R&D Program of China (No. 2017YFA0402704)+2 种基金partially supported by the Open Project Program of the Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciencessupported by NSF grant AST-0607007 and AST-1107390by grants from the Brinson Foundation
文摘This paper presents the results of Hαimaging of 169 galaxies randomly selected from the α.40-SDSS catalog.The sample has excluded all low surface brightness galaxies (LSBGs) whose central surface brightness in B band (μ0(B)) fainter than 22.5 mag arcsec-2.It can be used as the counterparts sample to LSBGs.We observed their Hα and R band images by using the 2.16 m telescope at the Xinglong Observatory of the National Astronomical Observatories,Chinese Academy of Sciences (NAOC).The main goal of this work is to present the properties of those galaxies,together with Hαflux and star formation-,gas-,stellar mass-surface density.In addition,we confirm the correlations among HI content,stellar mass and star formation in ALFALFA galaxies.The HI mass increases with stellar mass,and the slope slows down at the higher stellar mass.The overall trend was that the specific star formation rate (s SFR) decreases with stellar mass,and the sSFR dropped sharply when the stellar mass is close to 1010.3~1010.5M⊙.The weak correlation between SFR/MHIand MHIimplies the HI contribute little to star formation.Our sample,which are mostly star-forming galaxies,follows the revisited Kennicutt-Schmidt law as well as the Kennicutt-Schmidt law.
文摘The recent discovery of gravitational waves has revolutionized our understanding of many aspects regarding how the universe works. The formation of galaxies stands as one of the most challenging problems in astrophysics. Regardless of how far back we look in the early universe, we keep discovering galaxies with supermassive black holes lurking at their centers. Many models have been proposed to explain the rapid formation of supermassive black holes, including the massive accretion of material, the collapse of type III stars, and the merger of stellar mass black holes. Some of these events give rise to the production of gravitational waves that could be detected by future generations of more sensitive detectors. Alternatively, the existence of these supermassive black holes can be explained in the context of primordial black holes. In this paper we discuss the various models of galaxy formation shedding light on the role that gravitational waves can play to test of the validity of some of these models. We also discuss the prospect of primordial black holes as a seeding constituent for galaxy formation.
基金the support from the National SKA Program of China No.2020SKA0110102the fund for key programs of Shanghai Astronomical Observatory(Grants E195121009 and E297091002)+1 种基金Shanghai Committee of Science and Technology Grant No.19ZR1466700supported in part by the Natural Science Foundation of China(Grants 12133008,12192220,and 12192223)。
文摘We create mock X-ray observations of hot gas in galaxy clusters with a new extension of the L-Galaxies semianalytic model of galaxy formation,which includes the radial distribution of hot gas in each halo.Based on the model outputs,we first build some mock light cones,then generate mock spectra with the SOXS package and derive the mock images in the light cones.Using the mock data,we simulate mock X-ray spectra for the ROSAT all-sky survey,and compare the mock spectra with the observational results.Then,we consider the design parameters of the HUBS mission and simulate the observation of the halo hot gas for HUBS as an important application of our mock work.We find:(1)our mock data match the observations by current X-ray telescopes.(2)The survey of hot baryons in resolved clusters by HUBS is effective below redshift 0.5,and the observations of the emission lines in point-like sources at z>0.5 by HUBS help us understand the hot baryons in the early universe.(3)By taking advantage of the large simulation box and flexibility in semi-analytic models,our mock X-ray observations provide the opportunity to select targets and observation strategies for forthcoming X-ray facilities.
基金supported from the research project of Qujing Normal University (Grant No. 2105098001/094)supported by the youth of Yunnan Provincial Science and Technology Department (Grant Nos. 202101AU070146 and 2103010006)+3 种基金supported by the National Natural Science Foundation of China (NSFC, Grant Nos.11733001, 11733002 and 11773013)supported by the National Key Research and Development Program of China (Grant No. 2017YFA0402703)financial support from the National Natural Science Foundation of China (NSFC, Grant No. 12103022)the Special Basic Cooperative Research Programs of Yunnan Provincial Undergraduate Universities Association (No.202101BA070001-043)。
文摘We use a large sample of gamma-ray narrow-line Seyfert 1 galaxies(γ-NLS1 s) to study the jet formation mechanisms. We find that the jet power of γ-NLS1 s is lower than the maximum jet power of the Blandford–Payne(BP) mechanism. At the same time, we find that there is a significant correlation between jet power and accretion disk luminosity. Moreover, the contribution rates of the accretion to the jet power are larger than that of black hole mass to jet power. These results further suggest that the jet of γ NLS1 s is mainly produced by the BP mechanism.
文摘Galaxy formation and evolution is one of the most active research areas in astrophysics,so many people have studied this area.But since they didn’t understand thoroughly the evolution law from satellite to planet then to star,their theories are very weak.In their theories,they proposed that large gas clouds collapsing to form a galaxy or more recently that matter started out in smaller clumps merged to form galaxy,which is incredible.Hence,the author of this paper,through studying the formation and orbit-variation of satellites,planets and stars,has put forward a new theory of galaxy formation and evolution,therefore revealing the hierarchical structure of galaxies and the formation and evolution of black holes and quasars.
文摘The formation of galaxies with warm dark matter is approximately adiabatic. The cold dark matter limit is singular and requires relaxation. In these lecture notes, we develop, step-by-step, the physics of galaxies with warm dark matter, and their formation. The theory is validated with observed spiral galaxy rotation curves. These observations constrain the properties of the dark matter particles.
文摘This study will see the resurgence of interest in precise velocity dispersion measurements, both for the study of galactic and active nuclei kinematics. As several works suggest, an excellent tactic to measure σ is to use the absorption lines of the calcium triplet, as it is a spectral region relatively free from complications. The discovery of an empirical relationship between the mass of the central black hole (M•) and σ was the leading guide of my detailed study of the calcium triplet region. This search for more accurate methods to calculate the dispersion of velocities, in addition to the careful study of uncertainties. After investing so much time in the development and improvement of the method and its application to so many galaxies, it is time to reap the rewards of this effort, using my results to address a series of questions concerning the physics of galaxies.
文摘A cosmological model was developed using the equation of state of photon gas, as well as cosmic time. The primary objective of this model is to see if determining the observed rotation speed of galactic matter is possible, without using dark matter (halo) as a parameter. To do so, a numerical application of the evolution of variables in accordance with cosmic time and a new state equation was developed to determine precise, realistic values for a number of cosmological parameters, such as the energy of the universe <i>U</i>, cosmological constant Λ, the curvature of space <i>k</i>, energy density <i>ρ</i><sub>Λe</sub> (part 1). The age of the universe in cosmic time that is in line with positive energy conservation (in terms of conventional thermodynamics) and the creation of proton, neutron, electron, and neutrino masses, is ~76 [Gy] (observed <img src="Edit_6d0b63d7-3b06-4a39-97c8-a0004319d14d.png" width="15" height="15" alt="" /> ~ 70 [km · s<sup>-1</sup> · Mpc<sup>-1</sup>]). In this model, what is usually referred to as dark energy actually corresponds to the energy of the universe that has not been converted to mass, and which acts on the mass created by the energy-mass equivalence principle and the cosmological gravity field, F<sub>Λ</sub>, associated with the cosmological constant, which is high during the primordial formation of the galaxies (<1 [Gy]). A look at the Casimir effect makes it possible to estimate a minimum Casimir pressure <i>P<sub>c</sub></i><sup>0</sup> and thus determine our possible relative position in the universe at cosmic time 0.1813 (<i>t</i><sub>0</sub>/<i>t</i><sub>Ω</sub> = 13.8[Gy]/76.1[Gy]). Therefore, from the observed age of 13.8 [Gy], we can derive a possible cosmic age of ~76.1 [Gy]. That energy of the universe, when taken into consideration during the formation of the first galaxies (<1 [Gy]), provides a relatively adequate explanation of the non-Keplerian rotation of galactic masses.
基金supported in part by National Natural Science Foundation of China(32271364 & 31971240)Interdisciplinary innovation project from West China Hospital of Stomatology, Sichuan University(RD-03-202305)。
文摘Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling. Here, we focused on the role of Semaphorin 3A(Sema3A), expressed by sensory nerves, in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM) model. Firstly, bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold. Sema3A, rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM. Moreover, in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs) within 24 hours.Furthermore, exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload. Mechanistically, Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway, maintaining mitochondrial dynamics as mitochondrial fusion. Therefore, Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation, both as a pain-sensitive analgesic and a positive regulator for bone formation.
文摘The Fengcheng Formation is a crucial source rock and the primary reservoir for oil accumulation in the Mahu Sag.Crude oils are distributed throughout the Fengcheng Formation,ranging from the edge to the interior of the sag in the southern Mahu Sag.These crude oils originate from in-situ source rocks in shallowly buried areas and the inner deep sag.During migration,the crude oil from the inner deep sag affects the source rocks close to carrier beds,leading to changes in the organic geochemical characteristics of the source rocks.These changes might alter source rock evaluations and oil-source correlation.Based on data such as total organic carbon(TOC),Rock-Eval pyrolysis of source rocks,and gas chromatography-mass spectrometry(GC-MS)of the saturated fraction,and considering the geological characteristics of the study area,we define the identification characteristics of source rock affected by migrated hydrocarbons and establish the various patterns of influence that migrated hydrocarbons have on the source rock of the Fengcheng Formation in the southern Mahu Sag.The source rocks of the Fengcheng Formation are mostly fair to good,containing mainly Type II organic matter and being thermally mature enough to generate oil.Source rocks affected by migrated hydrocarbons exhibit relatively high hydrocarbon contents(S1/TOC>110 mg HC/g TOC,Extract/TOC>30%,HC:hydrocarbon),relatively low Rock-Eval Tmax values,and relatively high tricyclic terpane contents with a descending and mountain-shaped distribution.Furthermore,biomarker composition parameters indicate a higher thermal maturity than in-situ source rocks.Through a comparison of the extract biomarker fingerprints of adjacent reservoirs and mudstones in different boreholes,three types of influence patterns of migrated hydrocarbons are identified:the edge-influence of thin sandstone-thick mudstone,the mixed-influence of sandstone-mudstone interbedded,and the full-influence of thick sandstone-thin mudstone.This finding reminds us that the influence of migrated hydrocarbons must be considered when evaluating source rocks and conducting oil-source correlation.
基金Supported by the PetroChina Science and Technology Major Project(2023ZZ18-03)Changqing Oilfield Major Science and Technology Project(2023DZZ01)。
文摘To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal rock reservoirs,coal rock quality,and coal rock gas features,resources and enrichment.Coal rock gas is a high-quality resource distinct from coalbed methane,and it has unique features in terms of burial depth,gas source,reservoir,gas content,and carbon isotopic composition.The Benxi Formation coal rocks cover an area of 16×104km^(2),with thicknesses ranging from 2 m to 25 m,primarily consisting of bright and semi-bright coals with primitive structures and low volatile and ash contents,indicating a good coal quality.The medium-to-high rank coal rocks have the total organic carbon(TOC)content ranging from 33.49%to 86.11%,averaging75.16%.They have a high degree of thermal evolution(Roof 1.2%-2.8%),and a high gas-generating capacity.They also have high stable carbon isotopic values(δ13C1of-37.6‰to-16‰;δ13C2of-21.7‰to-14.3‰).Deep coal rocks develop matrix pores such as gas bubble pores,organic pores,and inorganic mineral pores,which,together with cleats and fractures,form good reservoir spaces.The coal rock reservoirs exhibit the porosity of 0.54%-10.67%(averaging 5.42%)and the permeability of(0.001-14.600)×10^(-3)μm^(2)(averaging 2.32×10^(-3)μm^(2)).Vertically,there are five types of coal rock gas accumulation and dissipation combinations,among which the coal rock-mudstone gas accumulation combination and the coal rock-limestone gas accumulation combination are the most important,with good sealing conditions and high peak values of total hydrocarbon in gas logging.A model of coal rock gas accumulation has been constructed,which includes widespread distribution of medium-to-high rank coal rocks continually generating gas,matrix pores and cleats/fractures in coal rocks acting as large-scale reservoir spaces,tight cap rocks providing sealing,source-reservoir integration,and five types of efficient enrichment patterns(lateral pinchout complex,lenses,low-amplitude structures,nose-like structures,and lithologically self-sealing).According to the geological characteristics of coal rock gas,the Benxi Formation is divided into 8 plays,and the estimated coal rock gas resources with a buried depth of more than 2000 m are more than 12.33×10^(12)m^(3).The above understandings guide the deployment of risk exploration.Two wells drilled accordingly obtained an industrial gas flow,driving the further deployment of exploratory and appraisal wells.Substantial breakthroughs have been achieved,with the possible reserves over a trillion cubic meters and the proved reserves over a hundred billion cubic meters,which is of great significance for the reserves increase and efficient development of natural gas in China.
文摘The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography and sedimentological studies,reservoir quality and fluid flow units from derivative parameters,and capillary pressure and wetting fluid saturation relationship.Textural and diagenetic features are affecting the reservoir quality.Cementation,compaction,and presence of clay minerals such as kaolinite are found to reduce the quality while dissolution and secondary porosity are noticed to improve it.It is believed that the Narimba Formation is a potential reservoir with a wide range of porosity and permeability.Porosity ranges from 3.1%to 25.4%with a mean of 15.84%,while permeability ranges between 0.01 mD and 510 mD,with a mean of 31.05 mD.Based on the heterogenous lithology,the formation has been categorized into five groups based on permeability variations.Group I showed an excellent to good quality reservoir with coarse grains.The impacts of both textural and diagenetic features improve the reservoir and producing higher reservoir quality index(RQI)and flow zone indicators(FZI)as well as mostly mega pores.The non-wetting fluid migration has the higher possibility to flow in the formation while displacement pressure recorded as zero.Group II showed a fair quality reservoir with lower petrophysical properties in macro pores.The irreducible water saturation is increasing while the textural and digenetic properties are still enhancing the reservoir quality.Group III reflects lower quality reservoir with mostly macro pores and higher displacement pressure.It may indicate smaller grain size and increasing amount of cement and clay minerals.Group IV,and V are interpreted as a poor-quality reservoir that has lower RQI and FZI.The textural and digenetic features are negatively affecting the reservoir and are leading to smaller pore size and pore throat radii(r35)values to be within the range of macro,meso-,micro-,and nano pores.The capillary displacement pressure curves of the three groups show increases reaching the maximum value of 400 psia in group V.Agreement with the classification of permeability,r35 values,and pore type can be used in identifying the quality of reservoir.