[ Objective ] The paper is to explore the breeding of rice gall midge. [ Method ] The morphological characteristics, living habits, breeding method and resistance identification of rice gall midge are introduced. [ Re...[ Objective ] The paper is to explore the breeding of rice gall midge. [ Method ] The morphological characteristics, living habits, breeding method and resistance identification of rice gall midge are introduced. [ Result] TN1 can be used as feedstuff to feed rice gall midge, and water should be sprayed to keep moisture during the breeding process. The damage caused by mice, rice planthopper, ants and spiders during the breeding process should be paid attention, mice and ants can be controlled by water insulation method, rice planthopper and spiders can be controlled by tap water rinsing method and artificial capture method, respec- tively. [ Conlcusion] The study provides reference for further study on rice gall midge.展开更多
Resistance to rice gall midge in rice germplasm 91-1A2 was identified and genetically analyzed F1s of rice population were derived from 91-1A2 which crossed with rice materials Jinggui, TN1, W1263 (Gm1), IET2911 (...Resistance to rice gall midge in rice germplasm 91-1A2 was identified and genetically analyzed F1s of rice population were derived from 91-1A2 which crossed with rice materials Jinggui, TN1, W1263 (Gm1), IET2911 (Gm2), BG404-1 (gm3), OB677 (Gm4), ARC5984 (Gm5) and Duokang 1 (Gm6) as a male parent. The resistance of all parental lines and F1, BC1F1 and F2 populations to rice gall midge was identified. The results showed that 91-1A2 and all F1s were resistant to Chinese rice gall midge biotype IV. The segregation ratio of resistant plants to susceptible ones in BC1F1 and F2 were accorded with 1:3 and 9:7 rules by X2 test, suggesting that the resistance of 91-1A2 to Chinese rice gall midge biotype IV was controlled by two dominant genes which were new resistance genes, non-allelic to the known rice gall midge resistance genes.展开更多
The research results of marker aided selection(MAS)for resistant varieties and lines against rice gall midge Orseolia oryzae Wood-Mason successfully in 1999 - 2002 were reported in the present paper. The molecular mar...The research results of marker aided selection(MAS)for resistant varieties and lines against rice gall midge Orseolia oryzae Wood-Mason successfully in 1999 - 2002 were reported in the present paper. The molecular markers linked to the gene Gm6 against rice gall midge were used to select and breed the resistant varieties and lines. The RAPD marker OPM06 was used to verify the existence actually of gene Gm6 in ten developed varieties resistant to gall midge such as Duokang1, Duokang2, Kangwen2, Kangwen3, Kang-wen5, Duokangzaozhan, Kangwenqinzhan, which were derived from Daqiuqi. For resistance breeding through PCRbased marker aided selection(MAS), the polymorphisms in the resistant and susceptible parents were i-dentified by RG476/Alu I and RG476/Sca I respectively. The RAPD marker OPM06(1.4 kb)was used to i-dentify 15 new resistance lines from F3 lines of Fengyinzhan1/Daqiuqi in 1999. 21 and 7 resistance lines were selected from F4 and F6 lines of KWQZ/Gui99(restored line of hybrid rice)using RG476/Alu I in 2000-2001 respectively. The Gm6 gene was transferred into the restored line of hybrid rice. In 2001 - 2002, RG214/ Hha I and G214/Sca I were used for selecting 11 and 5 resistance lines from F3 lines of KWQZ/IR56 and AXZ/KWQZ successfully. The application of the resistance gene through PCR-based marker aided selection is a new and effective approach in resistance breeding.展开更多
The genus Gynandrobremia Mamaev, 1965 is recorded from China for the first time. A new species,Gynandrobremia effurcata Jiao Bu sp. nov. is described and illustrated. A key to males of all known species of the genus i...The genus Gynandrobremia Mamaev, 1965 is recorded from China for the first time. A new species,Gynandrobremia effurcata Jiao Bu sp. nov. is described and illustrated. A key to males of all known species of the genus in the world is provided. The generic diagnosis is revised.展开更多
基金Supported by Major Project of Innovation Plan of Guangxi Province ( GKG0228019-5)Guangxi "Ten,Hundred,Thousand" Talent Project( 2003213)~~
文摘[ Objective ] The paper is to explore the breeding of rice gall midge. [ Method ] The morphological characteristics, living habits, breeding method and resistance identification of rice gall midge are introduced. [ Result] TN1 can be used as feedstuff to feed rice gall midge, and water should be sprayed to keep moisture during the breeding process. The damage caused by mice, rice planthopper, ants and spiders during the breeding process should be paid attention, mice and ants can be controlled by water insulation method, rice planthopper and spiders can be controlled by tap water rinsing method and artificial capture method, respec- tively. [ Conlcusion] The study provides reference for further study on rice gall midge.
基金supported by the Natural Science Foundation of Guangxi Province (Grant No.0007015)Science Research and Technology Development Program of Guangxi Province (Grant Nos.0012027 and 9939006)Foundation of New Century Ten-Hundred-Thous and Talents of Guangxi,China (Grant No. 2003213)
文摘Resistance to rice gall midge in rice germplasm 91-1A2 was identified and genetically analyzed F1s of rice population were derived from 91-1A2 which crossed with rice materials Jinggui, TN1, W1263 (Gm1), IET2911 (Gm2), BG404-1 (gm3), OB677 (Gm4), ARC5984 (Gm5) and Duokang 1 (Gm6) as a male parent. The resistance of all parental lines and F1, BC1F1 and F2 populations to rice gall midge was identified. The results showed that 91-1A2 and all F1s were resistant to Chinese rice gall midge biotype IV. The segregation ratio of resistant plants to susceptible ones in BC1F1 and F2 were accorded with 1:3 and 9:7 rules by X2 test, suggesting that the resistance of 91-1A2 to Chinese rice gall midge biotype IV was controlled by two dominant genes which were new resistance genes, non-allelic to the known rice gall midge resistance genes.
文摘The research results of marker aided selection(MAS)for resistant varieties and lines against rice gall midge Orseolia oryzae Wood-Mason successfully in 1999 - 2002 were reported in the present paper. The molecular markers linked to the gene Gm6 against rice gall midge were used to select and breed the resistant varieties and lines. The RAPD marker OPM06 was used to verify the existence actually of gene Gm6 in ten developed varieties resistant to gall midge such as Duokang1, Duokang2, Kangwen2, Kangwen3, Kang-wen5, Duokangzaozhan, Kangwenqinzhan, which were derived from Daqiuqi. For resistance breeding through PCRbased marker aided selection(MAS), the polymorphisms in the resistant and susceptible parents were i-dentified by RG476/Alu I and RG476/Sca I respectively. The RAPD marker OPM06(1.4 kb)was used to i-dentify 15 new resistance lines from F3 lines of Fengyinzhan1/Daqiuqi in 1999. 21 and 7 resistance lines were selected from F4 and F6 lines of KWQZ/Gui99(restored line of hybrid rice)using RG476/Alu I in 2000-2001 respectively. The Gm6 gene was transferred into the restored line of hybrid rice. In 2001 - 2002, RG214/ Hha I and G214/Sca I were used for selecting 11 and 5 resistance lines from F3 lines of KWQZ/IR56 and AXZ/KWQZ successfully. The application of the resistance gene through PCR-based marker aided selection is a new and effective approach in resistance breeding.
基金supported by Natural Science Foundation of China 31401995 & J1210005)Tianjin Science & Technology Development Fundation for Higher Schools (20140606)
文摘The genus Gynandrobremia Mamaev, 1965 is recorded from China for the first time. A new species,Gynandrobremia effurcata Jiao Bu sp. nov. is described and illustrated. A key to males of all known species of the genus in the world is provided. The generic diagnosis is revised.